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Abstract— Streaming very-high-definition visualization 

data objects on top of optical networks is critical in many 
scientific research areas, including video 
streaming/conferencing, remote rendering on tiled display 
walls, 3D virtual reality applications, etc. Current data 
streaming protocols rely on UDP as well as a variety of 
compression techniques. However, none of the protocols 
scale well to the parallel streaming model of large scale 
graphic applications, and the existing parallel streaming 
protocols have limited synchronization mechanisms to 
synchronize the streams efficiently, and are prone to be 
slowed down by just one slow stream. In this paper, we 
propose a new parallel streaming protocol that can stream 
synchronized multiple Gbps media content over optical 
networks through reliable Cross-Stream packet coding, 
which not only tolerates random UDP packet loss, but also 
aims to achieve good synchronization performance across 
multiple parallel data streams with reasonable coding 
overhead. We simulated the approach, and the results 
show that our approach can generate steady throughput 
with fluctuating data streams. 
 

Index Terms—Cross-Stream Coding, Streaming, Optical 
Network 
 

I. INTRODUCTION 
n recent years, ultra-high-resolution displays have become a 
standard infrastructure in scientific research. These displays 
are typically achieved by tiling together an array of standard 

LCD displays into a display wall, using a PC cluster to drive it. 
[3]. High-speed research optical network [1], on the other hand, 
make is possible for scientists to use these ultra-high resolution 
displays over long distance in their scientific applications like 
very-high-definition video streaming/conferencing [2], 
real-time data visualization generated by remote scientific 
instruments, etc. As a perfect example of the combination of 
display walls and high-speed network, the OpTiPuter [2] 
research project, funded by the American National Science 
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Foundation, constructed 1Gbps-10Gbps optical network 
infrastructure and middleware aiming to make interactive 
access of remote gigabyte to terabyte visualization data objects 
and bring them to its visual interface-OptIPortals [3], a tiled 
display wall with hundreds of million pixels, as shown in 
Figure 1 a).  Figure 1 b) shows a different setting of display 
walls, the StarCAVE [23], which uses 16 high-definition 
projectors to construct a 3D virtual room where people can 

navigate 3D virtual reality objects. 
The scaling up of display devices from a single PC with a 

single display to a cluster of PCs with a cluster of displays has 
created new multi-to-multi communication models, which 
require very-high-bandwidth parallel data streaming protocols 
between termination display devices while appearing as 
point-to-point communications between them. Those models 
are a challenge to the transport protocols in-between scientific 
applications and the hardware infrastructures. The traditional 
Transport Control Protocol (TCP) is too slow because of its 
window-based congestion control mechanism, particularly for 
long distance communications. Alternatives like RBUDP [6], 
UDT [7], and LambdaStream [12] are recently developed 
UDP-based protocols focusing on high-speed file transfer or 
real-time data streaming between two end nodes. These 
protocols are point-to-point rate-based, which means they only 
support one sender and one receiver, and recover lost UDP 
packets by resending them, and the sender controls the sending 
rate to minimize packets loss. RBUDP, for instance, uses a 
bitmap to maintain a list of lost UDP packets and do a 
multi-round communication to recover lost packets, which 
usually takes 2-5 round trips time (RTT) to retrieve a GB file 
correctly; LambdaStream detects packet loss based on the gap 
between the receiving time of two consecutive UDP packets, 
and if that gap is bigger that expected, the sender will reduce 
the sending rate accordingly. These protocols, however, cannot 
be scaled to the cluster-to-cluster communication model in a 
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Fig. 1 a): HIPerSpace, the world’s 
largest display wall in Calit2, UC San 
Diego, has 286,720,000 effective 
pixels.  

 

 
 
Fig. 1 b): The STARCAVE, a 
third-generation CAVE and virtual 
reality OptIPortal in Calit2, UC San 
Diego, ~68,000,000 pixels 
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straightforward way. On the other hand, existing parallel data 
streaming protocols do not sufficiently address the 
synchronization issue of multiple parallel data streams. For 
example, SAGE [5] extended LambdaStream to multiple 
senders/receivers by adding a simple synchronization module 
to both senders and receivers, and the synchronization module 
waits until all senders/receivers have the next frame of data, 
and then broadcasts the command of sending/displaying to all 
senders/receivers. Similarly, [11], a parallel 4K(e.g. 
3840x1920 image resolution) video streaming model 
developed by Purdue University, uses six streaming servers to 
stream data to a tiled display wall driven by twelve PCs, and 
the servers send frames as quick as possible, and receivers 
buffer the data and wait until all receivers have received their 
next frame. However, since both approaches synchronize 
streams by waiting, if some stream is slowed down by a higher 
packet loss rate, all other streams have to wait for it, which 
could be a significant overhead in long distance 
communication scenarios, and will cause severe jittering 
problems. 

Basically, point-to-point protocols are not scalable, and 
multipoint-to-multipoint protocols are hard to be efficiently 
synchronized. In this paper, we study the cluster-to-cluster real 
time communication model, and will focus on the 
synchronization challenge brought up by this model. We put 
forward a new approach aiming to achieve reliable 
synchronized data transfer, which can be potentially scalable to 
tens/hundreds of streams that can stream multiple 10Gbps for 
future graphic applications. We simulated our protocols and 
the results showed that even with fluctuating network flows, 
small but uneven distribution of packet losses, our approach 
could achieve reliable synchronized throughput. In Section 2, 
we introduce related work. In Section 3&4, we discuss our 
approach for reliable synchronized parallel streaming. We 
show some of our simulation results in Section 5, and in 
Section 6, we conclude and suggest future research directions. 

II. FORWARD ERROR CORRECTION 
Forward Error Correction (FEC) is “a system of error control 
for data transmission, whereby the sender adds redundant data 
to its messages, also known as an error correction code. This 
allows the receiver to detect and correct errors (within some 
bound) without the need to ask the sender for additional data.” 
Since most high bit-rate streaming protocols use unreliable 
UDP packets to deliver data, they often use a certain type of 
FEC to recover lost data. FEC can correct a small amount of 
random packet loss, but is not always effective. For example, 
most FEC algorithms cannot recover burst packet loss over a 
certain bound. 

In recent years, a new series of coding techniques have been 
used in FEC, called fountain code [19][20][21][22], which 
“can generate limitless sequence of encoding symbols from a 
given set of original symbols such that the original symbols can 
be recovered from any subset of the encoding symbols of size 
equal or only slightly larger than the number of original 
symbols.” [19] –In our case, a symbol is a UDP packet. 

 In practice, the overhead of fountain code is defined as α. If 
N is the number of original symbols,  is the number 
of encoding symbols sufficient to recover the N original 
symbols. Fountain code only works for large N, so it is 
impossible to give a simple fountain code example. But in 
principle, the encoding/decoding processes are based on a 
bipartite graph, in which the edges are generated by a degree 
distribution function. There are three forms of representations 
of typical fountain code, and Figure 2 shows how a piece of 
code is represented by a formula, a bipartite graph or a matrix. 
In this paper, we use the matrix representation because it is 
easier to explain the encoding and decoding processes with 

matrixes. Examples of fountain code include online code, 
LTCode, Raptor Code, etc. Currently, Raptor Code is the 
fastest known fountain code, which uses linear time encoding 
and decoding algorithms [20].  

In the next section, we will explain why parallel data 
streaming is a hard problem, and discuss why FEC codes are 
useful but not sufficient for large-scale parallel data streaming 
protocols. 

III. PARALLEL DATA STREAMING DILEMMA 
To be simple, we use 4K media streaming as an example. 4K 
is a high-definition image standard, which roughly specifies an 
image with 4000 pixels per line and 2000 lines per image. In 
this paper, by default, a 4K image means an image with 
3840x2160 pixels, exactly four times the resolution of HDTV. 
4K images are usually captured by 4K cameras, stored in TIFF 
files, and shown by 4K projectors. Streaming uncompressed 
4K video is very difficult because the data bit-rate is very high, 
for instance, the bit-rate of streaming RGBA (32bit/pixel) 4K 
images at 24fps is over 6Gbps, which is too high to be handled 
by one stream and has to be done by multiple data streams. So 
alternatively, assuming we have infinite 4K images, we can 
use multiple senders to stream these images to multiple remote 
receivers. Each of the senders sends out a portion of the 
images via UDP packets, and each of the receivers receives the 
corresponding parts of the images and displays the images 
simultaneously on a display wall. 

Ideally, if all parallel streams are reliably delivered, there 
will be no synchronization issue; but in reality, UDP packet 
loss is inevitable in our high-bandwidth applications, which 
will lead to synchronization problems. To our best knowledge,  

 
Fig. 2 a). V1-V4 are original data 
packets; Y1-Y5 are encoded data 
packets. The formula and bipartite 
graph have the same meanings. 

 

 
 
Fig. 2 b).  Matrix element M[i,j] is 
marked to black iff data packet Vi is 
included in code packet Yj . 
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the UDP packet loss pattern of large scale parallel data streams 
over optical network has not been very well studied; but based 
on our experience and experiments over the OptIPuter network, 
UDP packet loss behavior is very nondeterministic, and is 
basically a function of N variables, including end nodes 
hardware configuration, end nodes real time workload, OS 
version, OS scheduler, NIC, switch/router scheduling, 
switch/router queuing strategy, and many others. In particular, 
if there are multiple streams on the same fiber link nearly 
saturating the capacity of the link, we found the following 
UDP packet loss behavior over the link:  
1) Very frequently, blast packet loss for some individual 
stream may happen and will not be recovered by simple FEC 
code. We can either ignore that which will lead to missing 
data, or we can go all the way back to the sender to request lost 
packets, which is time consuming and can cause 
synchronization problems. 
2) Bandwidth is not even shared by streams due to many 
reasons. E.g. the UDP protocol is not fair; switch/router 
scheduling may not be fair; queues in switch/router may not be 
fair; end nodes capability may vary with time; occasional 
interfere from other network applications may bring 
fluctuation to data streams, etc. 
3) The overall/average packet loss rate of all data streams is 
stable. 

Figure 3 shows some experiments verifying the packet loss 
behaviors and packet loss distribution of parallels streams over 
CaveWave, a10Gbps dedicated optical network between 
Chicago and San Diego. Fig 3 a) run 14 parallel “iperf” tests, 
750Mb each totaling 10.5Gbps, which exceeded the 10Gbps 
capacity of the link. As we expected, an average of 6% packet 
loss rate occurred in each of the five independent experiments, 
but the packet loss rate patterns vary a lot and the distribution 
is very non-deterministic. Fig 3 b) is a plot of a similar 
experiment using video streaming software to measure 
frame-by-frame packet loss rate and to understand the burst 
packet loss property. It shows that burst packet loss occurred to 
random streams very frequently.  

 Our experiments showed that streaming strict synchronized 
parallel data streams is not trivial. FEC code can help in many 
cases, but apparently not all the time. In movie streaming, 
losing a few packets might be acceptable and we can use 
interpolation methods to simulate the lost pixels and probably 
will not affect the image quality a lot, as long as the packet 
loss rate is low. But in other scientific applications, for 
example, earthquake simulation and visualization, lost packets 
may contain critical data that cannot be simulated. 

Our experiments showed that loosely coupled streams make 
it hard for a health stream to help a faulty stream, so we use 
tightly coupled parallel data streams. 

Let’s considering a model similar to the water-streaming 
model, as shown in Fig 4. In a), four faucets are pouring water 
into four containers. Because water can splash out of the 
containers, the water levels are not even in four containers. 
Fortunately, we have a simple solution for this problem as 
shown in Fig 4. b): we add pipes between adjacent containers, 
so that the water levels are automatically equalized. Although 
this water is not directly applicable to our parallel data 
streaming model, it provides an important insight that we 
might be able to tightly couple data streams to design a 
correlated parallel data streaming protocol instead of a 
protocol consisting of multiple independent data streams.  

The idea of coupling data streams suggests that once one 
stream suffers from packet loss, it does not have to fetch the 
lost packets from the sender, instead, it fetches the data from 
its peers. Considering the high Round Trip Time (RTT) to 
fetch a bit from remote senders, being able to get it locally is a 
significant advantage. However, it is difficult to apply the 
water pipe coupling method directly to the parallel data 
streaming model, because water drops are all identical while 
data packets represent different data. So, to take advantage of 

 
 
Fig. 3 a).  Parallel iperf experiments between Chicago and San Diego. 
 14 streams, 750Mbps/stream (10.5Gbps) over 10Gbps optical network 
 Average packet loss rate is around 6% in all experiments 
 X-axis: five independent experiments 

 
Fig. 3 b).  Parallel video-streaming experiments between Chicago and San 
Diego. 
 13 streams, 700Mbps/stream (9.1Gbps) over 10Gbps optical network 
 The test lasted 150 seconds 
 X-axis: frame serial No. 
 Y-axis: loss rate of each frame in each stream (14% - 0%) 
 

 
 
Fig. 4 b).  Now, we install pipes 
between adjacent containers, and the 
water levels are even despite the 
water streams remain. 
 

 
 
Fig. 4 a).  Four faucet are pouring 
water into four containers. Because 
the water streams differ, the water 
levels in the containers differ. 
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the water pipe model, we must weaken the difference between 
individual data packets and make them nearly “identical”. 
Therefore, we came up with the idea to use encoding methods 
in our parallel streaming protocol, and the code should: 
1) Be able to tolerate certain percentage of packet loss. 
2) Have fast encoding and decoding algorithms to handle 
multiple Gbps. 
3) Have cross-stream encoding capability to communicate 
between streams 

We selected the fountain code as the basis of our work. The 
fountain code is mostly used in lossy wireless communication 
environments where receivers are sometimes not capable of 
sending back acknowledgements to notify lost packets. In 
computer science, the fountain code has been used for 
high-bandwidth multicast [14], the robust storage system 
RubuSTORE [15], etc. But to our best knowledge, it has not 
been used in high bandwidth parallel data streaming 
applications to solve synchronization issues. In the next section, 
we will briefly explore and analyze the problem of coupling 
parallel streams using the fountain code, and introduce our 
new 2D Cross-Stream coding approach, which will be 
discussed in detail in Section 5. 

IV. COUPLING PARALLEL DATA STREAMS  
Following the analysis in the previous sections, we will use 
UDP and the fountain code as the basic building blocks to 
construct our parallel data streaming model, and couple 
parallel streams to synchronize them. In this section, we will 
briefly analyze two naïve ways of coupling parallel streams, 
and explain why they are flawed, and then introduce our new 
2D Cross-Stream code. 

1. Unified Parallel Code 
In the 4K streaming example, each image can be divided into 
equally sized N original data packets. The unified approach 
generate  coded packets from N original data 
packets, and evenly distributes them to four receivers, and as 
long as the sum of received packets of all four receivers 
exceeds  (α is the overhead of the fountain code, 
α<χ), the image can be recovered.  

The issue of this approach is the very high decoding 
communication cost. The major decoding communication 
comes from the decoding algorithm, where once an original 
data packet is decoded, it has to be distributed to all receivers 
that have received code packets containing that data packet. 
Since the possibility of one data packet to be included in 
multiple code packets is very high in Fountain Code, this 
overhead will significantly slow down the decoding process. 
Moreover, once the decoding process is completed, the data 
needs to be relocated to the right receivers. For example, if we 
show the 4K images on four HD displays driven by four 
receivers, we need R1 (Receiver 1) to have the upper-left part 
of the image, R2 to have the upper-right part of the image, and 
so on. But, during the decoding process, although the decoders 
have recovered all the original data packets, those data packets 
are randomly distributed across the receivers and need to be 
re-distributed to the right receiver based on their positions in 

the image. The decoding communication cost is on the order of 
the total number of original data packets. 

2. Cross-Distributed Code 
We can also first divide each 4K image into sub-images, and 
separately encode them into encoded sub-images. After that, 
rather than sending each encoded sub-image to one receiver, 
we can first mix the encoded sub-images together, and send a 
portion of the mixed data to each receiver. Once the receivers 
have received their portion of the mixed data, they first 
communicate to reassemble their corresponding encoded 
sub-images and then start to decode independently. 

The benefit of this approach is that even if one stream lost 
many packets, those lost packets are likely evenly distributed 
among all encoded sub-images, so that all receivers can 
successfully decode their encoded sub-images with high 
possibility. But the problem is this approach still introduces 
very high communication cost on both sides.  

3. 2D Cross-Stream Code 
The two straightforward approaches to couple parallel data 
streams have fundamental problems and cannot be practically 
used in real applications. So we get back to the water stream 
model and couple parallel data streams in a similar way using 
pipes. We encode the original data in two dimensions: one 
dimension is along local original data packets; the other 
dimension is along parallel data streams. Therefore, each code 
has two degrees: a local fountain code degree and a stream 
degree. And, we name this 2D Cross-Stream Code, which is 
the basis of our Cross-Stream Transfer Protocol.  

V. CROSS-STREAM TRANSFER PROTOCOL 
In this section, we will thoroughly discuss our new parallel 
streaming protocol: Cross-Stream Transfer Protocol (CSTP). 
 We divide a piece of original data, for example, a video 
frame, into S equally sized sub-frames that will be sent out by 
S individual senders to their corresponding receivers. Each 
sub-frame is further divided into N equal sized original data 
packets, and is encoded separately into regular code packets 
using Fountain Code. In addition to regular code packets, we 
integrate a certain percentage of cross-stream code packets into 
each of the streams, which are XOR of regular code packets 
from different sub-frames, and we call them pipe packets. The 
senders send out the combination of both regular code packets 
and code packets, and upon receiving those code packets, the 
receivers use the regular code packets to decode original data 
and use pipe packets to communicate between streams to help 
lossy streams decode.  

1. Definitions 
 The definitions used in our protocol are summarized in 
Table 1.  

2. Creating M[1..S] 
M[1…S] are pre-generated generating matrices of 2D Cross- 
Stream Fountain Code. M[i] is basically a standard Fountain 
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Symbol Definition 
S Number of data streams 

N Number of original packet of each 
sub-frame 

α  Overhead of Fountain Code 
β  Overhead of transfer protocol 
N’ Number of packet (regular code packets 

& pipe packets) sent to each receiver 
 

M1…S Fountain Code generating matrices of S 
data streams that are known to all 
senders and receivers beforehand 

V[1..S][1…N] The original data packets 
Y[1..S][1…N’] The encoded code packet 
dF Code Degree, the number of XORed data 

packets in a regular code packet 
DF Code Degree Distribution, the degree 

distribution function of  the fountain 
code. 

p Pipe Width, percentage of pipe packets 
dS 
 

Stream Degree, equals to 1 for a regular 
code packet, or 2…S for a pipe packet, 
meaning how many streams a pipe 
packet connects 

DS Stream Degree Distribution, the 
distribution of dS. For example, when S 
is small, we use

  
Table 1: Definitions of CSTP 

Code matrix plus a few extra pipe packet columns. So, to 

compute M[i], we first create a standard Fountain Code matrix, 
then insert pipe columns into the matrix. Each pipe column is 
an assembled column of S columns from the S standard 
Fountain Code matrices of S streams. A sample is shown in 
Figure 5.  

3. Encoding and Decoding Algorithms 
1) Encoding Algorithm  
 
 
 
 
 
 
 
 
 
 
2) Decoding Algorithm 
 
 
 
 
 
 
 
 
 
During the encoding and decoding processes, we assume local 
communication is reliable. 
 Figure 6 shows how the decoding process works, and how 
pipe packets can help each other to recover lost packets in one 
stream. And if only one stream has significant loss, we have 
the following single stream fault-tolerance theorem.  
Theorem 1: 2D Cross-Stream Fountain Code can tolerate the 
single stream packet loss rate lr, with protocol overhead 

. 

Proof: 
 Assume x is the protocol overhead, which basically means 
we send out  code packets to each receiver. 
Firsts we must ensure that normal receivers have received 
enough regular code packets to recover their original data, 
which implies . 
So we have formula one: 

 

 After all normal receivers have recovered their original 
packets; only the one that has lost lr of the packets remains 
unfinished. To help the lossy receiver decode, the total number 
of pipe packets from other receivers plus the number of packets 
received by itself should be at least . That implies, 

 
So we have formula two: 

 

Summarizing formula one and two, x gets its smallest value  

, when . 

For each encoder [1…S]: 
Step1: break its original sub-frame into equal  sized 
data packets 
 Step 2: Get next column from Mi, if it’s a regular code 
packet, XOR all packets that are valid in that column; 
if it is a pipe packet, fetch data from other encoders 
and XOR all packets that are valid in that column 
Step 3: If enough packets were generated, stop, else 
 goes to Step 2. 

For each decoder [1…S] 
 Step 1: Run a native Fountain Code decoding 
algorithm  
 Step 2: Use pipe packet code to communicate with 
other decoders: if data needed, request data from 
other decoders, if data available send to other 
decoders 
 Step3: Repeat Step2 until all data are decoded or 
the decoding process halts 
 
 

 
Fig 5: Sample matrices. The portion in the big circle marked on M2 
identified a regular fountain code matrix; the chained four small circles 
identified a pipe packet in M3. 
 S=4, N=4, N’=6, p=16.7%  
 X-axis: Code data Y[4][6] 
 Y-axis: Original data V[4][4] 
 Pipe packets (marked as red): Y13, Y25, Y32, Y44  
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4. Decoding Communication Cost 
In CSTP, both encoding and decoding algorithms will incur 
certain communication cost among nodes within a cluster. In 
the encoding process, the communication is deterministic, 
while decoding communication is more nondeterministic 
because the decoding process is subject to packet loss. But on 
both sides, the communication cost of the 2D Cross-Stream 
Code is significantly smaller than that of Unified Parallel Code 
or Cross-Distributed Code because only pipe packets are 
needed to communicate among nodes. In worst case, since a 
pipe packet incurs at most (S-1) messages, the total 
communication cost’s upper bound is , e.g., if 
p=0.05, S=4, the decoding communication cost is about 15% 
of the size of the original data. 

5. Scale CSTP to large number of streams 
The synchronization problem gets harder as the number of 
parallel data streams increases. For small number of parallel 
streams, the stream degree distribution function in Table 1 
works well. However, for larger scale applications that use tens 
of parallel streams, the communication cost of the 2D 
Cross-Stream Code will increase linearly with the number of 
streams, which can be improved.  In that case, we will use a 
new degree distribution function. We are designing and 
experimenting different degree distribution functions, and our 
preliminary research shows that, constant communication 
overhead is achievable with careful selection of degree 
distribution functions. A further discussion of more efficient 
Cross-Stream degree distribution function is beyond the scope 
of this paper, and we will address it in future work. 

VI. EXPERIMENTAL RESULTS 
In our experiments, we evaluated the decoding performance of 
the most recent version of the fountain code, and simulated 
multiple data streams using Cross-Stream coding algorithms, 
and evaluated the stability of decoding algorithm with 
fluctuating data flows and various packet loss rates. The 
fountain code we selected is the Raptor Code, which has linear 
time encoding and decoding algorithms. The pre-code and 
LTCode we used are those suggested in [21]: 
  
 
 
 
 
  
 The average code degree of LT-Code is 4.6116, and the 
average degree of Raptor Code is the sum of LTCode degree 
and pre-code degree, which is a function of N, e.g., when 
N=1024, Raptor Code has an average code degree of 13. The 
average code degree determines the complexity of the 
decoding algorithms. Theoretically, assuming the packet size is 
fixed, the complexity of the decoding algorithm is , 
where D is the average degree of Raptor Code, N is the 
number of original data packets. 
 The platform we used is a 2006 Dell XPS 720, with: 

1.  Raptor Code decoding performance 
An important measurement is with how much overhead Raptor 
Code can recover the original data. Although this has been 
discussed in related work, we did some tests here as shown in 
Figure 7. This picture shows that N cannot be too small since 
the Raptor Code is based on probability theory and won’t hold 
for small value of N. When N is bigger than 1000, Raptor 

Precode: LDGM + HDPC 
LTCode degree distribution: 

 

 
 
Fig. 6. b) The decoded original data packets are distributed to each other 
via pipe packets, and all pipe packets columns now become regular 
columns of M3. 
 

 
Fig. 6. a) Assuming R1, R2 and R4 have received all the packets and 
successfully recovered their original data (marked as green), but R3 lost 
two code packets: Y34 and Y35 and need help. 
 

 
Fig. 6. c) R3 collects pipe packets from R1, R2 and R4, and now can 
decode its original data.  
 

CPU: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz 
 Cache size: 4096KB 
 Memory: 4GB 
    OS: x86_64 Version of CentOS 5. 
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Code can recover all original data with an overhead around 
4%-8%. 
 To test the decoding speed of the Raptor Code, we run our 
implementation of Raptor Code (there is no open source 
implementation of the fountain code) with one thread to 
decode native Raptor Code, and the decoding speed is shown 
in Table 2. We tested 7680 and 3840 bytes packets. 
#of 
Origina
l 
Packets 

#of 
Raptor 
Code 
Packet
s 

Decodin
g 
Percent- 
Age 

Decoding 
Speed 
(7680B/pkt
) 

Decoding 
Speed 
(3840B/pkt
) 

512 650 100% 2.51Gbps 3.17Gbps 
1024 1200 100% 2.00Gbps 2.22Gbps 
2048 2400 100% 1.68Gbps 1.82Gbps 
4096 4800 100% 1.45Gbps 1.52Gbps 

Table 2: Decode speed of the Raptor Code 
 
 The decoding algorithm is very CPU intensive, and 
consumes significant memory bandwidth. Currently in our 
single thread experiments, the decoding algorithm is capable of 
decoding a single HD stream, but in the future we will extend 
to multiple threads to relieve the CPU bottleneck. The results 
also suggest that the cache miss rate is an important factor. As 
shown, when we increased the number of original packets, the 
decoding speed went down. We believe this is because the 
cache miss rate became higher with the larger data set. 

2. Unified Parallel Code: communication overhead 
To estimate the communication cost, we built a 4096x4096 
Raptor Code generating matrix, and use it to generate 4096 
code packets. We assume that code packets are alternatively 
distributed to four receivers:  
                     for i=0; i < N; i++ 

The ( )th packet goes to R1; 

The ( +1)th packet goes to R2; 

The ( +2)th packet goes to R3; 

The ( +3)th packet goes to R4; 
 We then calculate the communication cost among the 
receivers: the total number of packets exchanged is about 3600 
packets, nearly 90% of the original data size. 

As we explained before, communication occurs when a data 
packet was encoded in code packets in multiple receivers. To 
reduce the overlapping portion of the code packets, we may 
repartition the matrix to minimize communication cost via 
integer programming, which however is a NP-hard problem. 
So instead, we run Zoltan [18], the most recent research result 
of hyper-graph partitioning, to repartition the matrix, and the 
improved communication overhead is around 3400 packets, a 
roughly 8% improvement. We set S=8, and get similar results. 
Therefore, we can conclude that this approach requires a lot of 
communication and is not suitable for our applications. 

3. 2D Cross-Stream Code Performance 
First, we want to understand whether streams can help each 
other when one stream is losing significantly more packets 
than the others. We use these settings: 

  

 We verify the performance when single stream packet loss is 
significant by sending data to four receivers and purposely 
drop 20% packets from one stream, and test how the other 
streams can help it recover lost packets to maintain 
synchronized throughput and measure the protocol overhead of 
the 2D Cross-Stream Code. Figure 8 shows the lossy stream 
can be recovered with pipe packets from other streams. By 
Theorem 1, protocol overhead should be lr/(S-lr) when p=lr/S, 
which is 5.26%, and our experiments reported 5.45, which 
verified the theorem. 
 Our next experiment tested how 2D Cross-Stream Code 
works with random packet loss across all streams. We encoded 
1000 frames into four sets of code packets using four 
generating matrices, and then simulated sending a certain 
number N’ of code packets to each receiver. We did not 
assume all the packets were correctly received, but purposely 
dropped some of them. And based on our network assumption, 
the packet loss rate of each receiver was randomly generated 
with every new frame. The average packet loss rate of 
receivers was set to 2%, 3% and 4% respectively. We then 
plotted a figure with the X-axis representing N’, and the Y-axis 
representing the possibility of successful recovery of the full 
frame. The result is shown in Figure 9, which proves that with 

 
 
Fig. 7: Raptor Code overhead 

 
 
Fig. 8: Protocol overhead can be calculated from this figure. The original 
number of data packet is 4340 including pre-code, Raptor Code overhead can be 
read from Fig. 5, which is about 7.5% for N=1024, and from this figure, the 
overall recovery percentage becomes 1 when N’=1230, so protocol overhead is 
1230*4/(4340*1.075) -1=5.45%.  
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a reasonable overhead, e.g. 5% to 15%, our approach can 
recover significant packet loss in all streams and the possibility 
of fully recovered frames is ~99.99%.  

 
 All experiments above showed that the 2D Cross-Stream 
Code met our expectation in tolerating packet loss and stream 
fluctuation. We performed the same experiments with eight 
streams, and got very similar results. Regarding the 
communication cost, we got <15% communication overhead 
when S=4, and <35% when S=8, both of which were 
significant better than the coding approach discussed in 
Section 4. We have implemented our parallel file-transfer 
software based on CSTP, and are in the progress of comparing 
our CSTP with other UDP based file transfer protocols, e.g. 
RBUDP, Lambdastream, and will report the results shortly. 

VII. CONCLUSION AND FUTURE WORK 
In this paper, we studied the problem of large-scale data 
transfer/streaming. Traditional point-to-point protocols are not 
scalable to our new cluster-to-cluster communication models 
in many new scientific applications, and existing 
multi-to-multi protocols do not sufficiently address the 
synchronization issue of parallel data streaming. In this paper, 
we proposed a new Cross-Stream Transfer Protocol, which 
used 2D Cross-Stream fountain code to tolerate packet loss, 
and pipe packets to tightly couple streams and help lossy 
streams to decode correctly. Simulation results met our 
expectation in terms of packet loss tolerance, decoding 
efficiency, communication overhead, etc. 
 There remain many challenges to be solved. We plan on 
using the CSTP approach to implement a 4K uncompressed 

streaming system that streams synchronized 4K movie at 
6-8Gbps.We are also going to optimize the decoding algorithm 
to use multi-core processors, eliminate buffer copies to reduce 
memory consumption, etc. And we are working on designing a 
more general stream degree distribution function that can 
easily scale to many streams.  
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Fig. 9: These lines show the function of frame recovery percentage to the 
number of issued packet to receivers, and the lower figure is the zoom-in of 
the top-right part of the upper figure.  


