
 1

Abstract— Streaming very-high-definition visualization

data objects on top of optical networks is critical in many
scientific research areas, including video
streaming/conferencing, remote rendering on tiled display
walls, 3D virtual reality applications, etc. Current data
streaming protocols rely on UDP as well as a variety of
compression techniques. However, none of the protocols
scale well to the parallel streaming model of large scale
graphic applications, and the existing parallel streaming
protocols have limited synchronization mechanisms to
synchronize the streams efficiently, and are prone to be
slowed down by just one slow stream. In this paper, we
propose a new parallel streaming protocol that can stream
synchronized multiple Gbps media content over optical
networks through reliable Cross-Stream packet coding,
which not only tolerates random UDP packet loss, but also
aims to achieve good synchronization performance across
multiple parallel data streams with reasonable coding
overhead. We simulated the approach, and the results
show that our approach can generate steady throughput
with fluctuating data streams.

Index Terms—Cross-Stream Coding, Streaming, Optical
Network

I. INTRODUCTION
n recent years, ultra-high-resolution displays have become a
standard infrastructure in scientific research. These displays
are typically achieved by tiling together an array of standard

LCD displays into a display wall, using a PC cluster to drive it.
[3]. High-speed research optical network [1], on the other hand,
make is possible for scientists to use these ultra-high resolution
displays over long distance in their scientific applications like
very-high-definition video streaming/conferencing [2],
real-time data visualization generated by remote scientific
instruments, etc. As a perfect example of the combination of
display walls and high-speed network, the OpTiPuter [2]
research project, funded by the American National Science

Shaofeng Liu is a Ph.D candidate in the Computer Science and Engineering

Dept. at the University of California San Diego (e-mail: s8liu@ ucsd.edu).
Jurgen Schulze, Ph.D, is a Project Scientist at Calit2, UCSD (e-mail:

jschulze@ucsd.edu).
Thomas A. DeFanti, Ph.D., at the University of California, San Diego, is a

Senior Research Scientist at Calit2. (email: tdefanti@ucsd.edu).

Foundation, constructed 1Gbps-10Gbps optical network
infrastructure and middleware aiming to make interactive
access of remote gigabyte to terabyte visualization data objects
and bring them to its visual interface-OptIPortals [3], a tiled
display wall with hundreds of million pixels, as shown in
Figure 1 a). Figure 1 b) shows a different setting of display
walls, the StarCAVE [23], which uses 16 high-definition
projectors to construct a 3D virtual room where people can

navigate 3D virtual reality objects.
The scaling up of display devices from a single PC with a

single display to a cluster of PCs with a cluster of displays has
created new multi-to-multi communication models, which
require very-high-bandwidth parallel data streaming protocols
between termination display devices while appearing as
point-to-point communications between them. Those models
are a challenge to the transport protocols in-between scientific
applications and the hardware infrastructures. The traditional
Transport Control Protocol (TCP) is too slow because of its
window-based congestion control mechanism, particularly for
long distance communications. Alternatives like RBUDP [6],
UDT [7], and LambdaStream [12] are recently developed
UDP-based protocols focusing on high-speed file transfer or
real-time data streaming between two end nodes. These
protocols are point-to-point rate-based, which means they only
support one sender and one receiver, and recover lost UDP
packets by resending them, and the sender controls the sending
rate to minimize packets loss. RBUDP, for instance, uses a
bitmap to maintain a list of lost UDP packets and do a
multi-round communication to recover lost packets, which
usually takes 2-5 round trips time (RTT) to retrieve a GB file
correctly; LambdaStream detects packet loss based on the gap
between the receiving time of two consecutive UDP packets,
and if that gap is bigger that expected, the sender will reduce
the sending rate accordingly. These protocols, however, cannot
be scaled to the cluster-to-cluster communication model in a

Synchronizing Parallel Data Streams via
Cross-Stream Coding

I

Fig. 1 a): HIPerSpace, the world’s
largest display wall in Calit2, UC San
Diego, has 286,720,000 effective
pixels.

Fig. 1 b): The STARCAVE, a
third-generation CAVE and virtual
reality OptIPortal in Calit2, UC San
Diego, ~68,000,000 pixels

Shaofeng Liua,b, Jurgen P. Schulzeb, Tomas A. Defantib
a Dept. Of Computer Science and Engineering, University of California San Diego (UCSD), United States
b California Institute for Telecommunications and Information Technology (Calit2), University of California San Diego (UCSD), United States

 2

straightforward way. On the other hand, existing parallel data
streaming protocols do not sufficiently address the
synchronization issue of multiple parallel data streams. For
example, SAGE [5] extended LambdaStream to multiple
senders/receivers by adding a simple synchronization module
to both senders and receivers, and the synchronization module
waits until all senders/receivers have the next frame of data,
and then broadcasts the command of sending/displaying to all
senders/receivers. Similarly, [11], a parallel 4K(e.g.
3840x1920 image resolution) video streaming model
developed by Purdue University, uses six streaming servers to
stream data to a tiled display wall driven by twelve PCs, and
the servers send frames as quick as possible, and receivers
buffer the data and wait until all receivers have received their
next frame. However, since both approaches synchronize
streams by waiting, if some stream is slowed down by a higher
packet loss rate, all other streams have to wait for it, which
could be a significant overhead in long distance
communication scenarios, and will cause severe jittering
problems.

Basically, point-to-point protocols are not scalable, and
multipoint-to-multipoint protocols are hard to be efficiently
synchronized. In this paper, we study the cluster-to-cluster real
time communication model, and will focus on the
synchronization challenge brought up by this model. We put
forward a new approach aiming to achieve reliable
synchronized data transfer, which can be potentially scalable to
tens/hundreds of streams that can stream multiple 10Gbps for
future graphic applications. We simulated our protocols and
the results showed that even with fluctuating network flows,
small but uneven distribution of packet losses, our approach
could achieve reliable synchronized throughput. In Section 2,
we introduce related work. In Section 3&4, we discuss our
approach for reliable synchronized parallel streaming. We
show some of our simulation results in Section 5, and in
Section 6, we conclude and suggest future research directions.

II. FORWARD ERROR CORRECTION
Forward Error Correction (FEC) is “a system of error control
for data transmission, whereby the sender adds redundant data
to its messages, also known as an error correction code. This
allows the receiver to detect and correct errors (within some
bound) without the need to ask the sender for additional data.”
Since most high bit-rate streaming protocols use unreliable
UDP packets to deliver data, they often use a certain type of
FEC to recover lost data. FEC can correct a small amount of
random packet loss, but is not always effective. For example,
most FEC algorithms cannot recover burst packet loss over a
certain bound.

In recent years, a new series of coding techniques have been
used in FEC, called fountain code [19][20][21][22], which
“can generate limitless sequence of encoding symbols from a
given set of original symbols such that the original symbols can
be recovered from any subset of the encoding symbols of size
equal or only slightly larger than the number of original
symbols.” [19] –In our case, a symbol is a UDP packet.

 In practice, the overhead of fountain code is defined as α. If
N is the number of original symbols, is the number
of encoding symbols sufficient to recover the N original
symbols. Fountain code only works for large N, so it is
impossible to give a simple fountain code example. But in
principle, the encoding/decoding processes are based on a
bipartite graph, in which the edges are generated by a degree
distribution function. There are three forms of representations
of typical fountain code, and Figure 2 shows how a piece of
code is represented by a formula, a bipartite graph or a matrix.
In this paper, we use the matrix representation because it is
easier to explain the encoding and decoding processes with

matrixes. Examples of fountain code include online code,
LTCode, Raptor Code, etc. Currently, Raptor Code is the
fastest known fountain code, which uses linear time encoding
and decoding algorithms [20].

In the next section, we will explain why parallel data
streaming is a hard problem, and discuss why FEC codes are
useful but not sufficient for large-scale parallel data streaming
protocols.

III. PARALLEL DATA STREAMING DILEMMA
To be simple, we use 4K media streaming as an example. 4K
is a high-definition image standard, which roughly specifies an
image with 4000 pixels per line and 2000 lines per image. In
this paper, by default, a 4K image means an image with
3840x2160 pixels, exactly four times the resolution of HDTV.
4K images are usually captured by 4K cameras, stored in TIFF
files, and shown by 4K projectors. Streaming uncompressed
4K video is very difficult because the data bit-rate is very high,
for instance, the bit-rate of streaming RGBA (32bit/pixel) 4K
images at 24fps is over 6Gbps, which is too high to be handled
by one stream and has to be done by multiple data streams. So
alternatively, assuming we have infinite 4K images, we can
use multiple senders to stream these images to multiple remote
receivers. Each of the senders sends out a portion of the
images via UDP packets, and each of the receivers receives the
corresponding parts of the images and displays the images
simultaneously on a display wall.

Ideally, if all parallel streams are reliably delivered, there
will be no synchronization issue; but in reality, UDP packet
loss is inevitable in our high-bandwidth applications, which
will lead to synchronization problems. To our best knowledge,

Fig. 2 a). V1-V4 are original data
packets; Y1-Y5 are encoded data
packets. The formula and bipartite
graph have the same meanings.

Fig. 2 b). Matrix element M[i,j] is
marked to black iff data packet Vi is
included in code packet Yj .

 3

the UDP packet loss pattern of large scale parallel data streams
over optical network has not been very well studied; but based
on our experience and experiments over the OptIPuter network,
UDP packet loss behavior is very nondeterministic, and is
basically a function of N variables, including end nodes
hardware configuration, end nodes real time workload, OS
version, OS scheduler, NIC, switch/router scheduling,
switch/router queuing strategy, and many others. In particular,
if there are multiple streams on the same fiber link nearly
saturating the capacity of the link, we found the following
UDP packet loss behavior over the link:
1) Very frequently, blast packet loss for some individual
stream may happen and will not be recovered by simple FEC
code. We can either ignore that which will lead to missing
data, or we can go all the way back to the sender to request lost
packets, which is time consuming and can cause
synchronization problems.
2) Bandwidth is not even shared by streams due to many
reasons. E.g. the UDP protocol is not fair; switch/router
scheduling may not be fair; queues in switch/router may not be
fair; end nodes capability may vary with time; occasional
interfere from other network applications may bring
fluctuation to data streams, etc.
3) The overall/average packet loss rate of all data streams is
stable.

Figure 3 shows some experiments verifying the packet loss
behaviors and packet loss distribution of parallels streams over
CaveWave, a10Gbps dedicated optical network between
Chicago and San Diego. Fig 3 a) run 14 parallel “iperf” tests,
750Mb each totaling 10.5Gbps, which exceeded the 10Gbps
capacity of the link. As we expected, an average of 6% packet
loss rate occurred in each of the five independent experiments,
but the packet loss rate patterns vary a lot and the distribution
is very non-deterministic. Fig 3 b) is a plot of a similar
experiment using video streaming software to measure
frame-by-frame packet loss rate and to understand the burst
packet loss property. It shows that burst packet loss occurred to
random streams very frequently.

 Our experiments showed that streaming strict synchronized
parallel data streams is not trivial. FEC code can help in many
cases, but apparently not all the time. In movie streaming,
losing a few packets might be acceptable and we can use
interpolation methods to simulate the lost pixels and probably
will not affect the image quality a lot, as long as the packet
loss rate is low. But in other scientific applications, for
example, earthquake simulation and visualization, lost packets
may contain critical data that cannot be simulated.

Our experiments showed that loosely coupled streams make
it hard for a health stream to help a faulty stream, so we use
tightly coupled parallel data streams.

Let’s considering a model similar to the water-streaming
model, as shown in Fig 4. In a), four faucets are pouring water
into four containers. Because water can splash out of the
containers, the water levels are not even in four containers.
Fortunately, we have a simple solution for this problem as
shown in Fig 4. b): we add pipes between adjacent containers,
so that the water levels are automatically equalized. Although
this water is not directly applicable to our parallel data
streaming model, it provides an important insight that we
might be able to tightly couple data streams to design a
correlated parallel data streaming protocol instead of a
protocol consisting of multiple independent data streams.

The idea of coupling data streams suggests that once one
stream suffers from packet loss, it does not have to fetch the
lost packets from the sender, instead, it fetches the data from
its peers. Considering the high Round Trip Time (RTT) to
fetch a bit from remote senders, being able to get it locally is a
significant advantage. However, it is difficult to apply the
water pipe coupling method directly to the parallel data
streaming model, because water drops are all identical while
data packets represent different data. So, to take advantage of

Fig. 3 a). Parallel iperf experiments between Chicago and San Diego.
 14 streams, 750Mbps/stream (10.5Gbps) over 10Gbps optical network
 Average packet loss rate is around 6% in all experiments
 X-axis: five independent experiments

Fig. 3 b). Parallel video-streaming experiments between Chicago and San
Diego.
 13 streams, 700Mbps/stream (9.1Gbps) over 10Gbps optical network
 The test lasted 150 seconds
 X-axis: frame serial No.
 Y-axis: loss rate of each frame in each stream (14% - 0%)

Fig. 4 b). Now, we install pipes
between adjacent containers, and the
water levels are even despite the
water streams remain.

Fig. 4 a). Four faucet are pouring
water into four containers. Because
the water streams differ, the water
levels in the containers differ.

 4

the water pipe model, we must weaken the difference between
individual data packets and make them nearly “identical”.
Therefore, we came up with the idea to use encoding methods
in our parallel streaming protocol, and the code should:
1) Be able to tolerate certain percentage of packet loss.
2) Have fast encoding and decoding algorithms to handle
multiple Gbps.
3) Have cross-stream encoding capability to communicate
between streams

We selected the fountain code as the basis of our work. The
fountain code is mostly used in lossy wireless communication
environments where receivers are sometimes not capable of
sending back acknowledgements to notify lost packets. In
computer science, the fountain code has been used for
high-bandwidth multicast [14], the robust storage system
RubuSTORE [15], etc. But to our best knowledge, it has not
been used in high bandwidth parallel data streaming
applications to solve synchronization issues. In the next section,
we will briefly explore and analyze the problem of coupling
parallel streams using the fountain code, and introduce our
new 2D Cross-Stream coding approach, which will be
discussed in detail in Section 5.

IV. COUPLING PARALLEL DATA STREAMS
Following the analysis in the previous sections, we will use
UDP and the fountain code as the basic building blocks to
construct our parallel data streaming model, and couple
parallel streams to synchronize them. In this section, we will
briefly analyze two naïve ways of coupling parallel streams,
and explain why they are flawed, and then introduce our new
2D Cross-Stream code.

1. Unified Parallel Code
In the 4K streaming example, each image can be divided into
equally sized N original data packets. The unified approach
generate coded packets from N original data
packets, and evenly distributes them to four receivers, and as
long as the sum of received packets of all four receivers
exceeds (α is the overhead of the fountain code,
α<χ), the image can be recovered.

The issue of this approach is the very high decoding
communication cost. The major decoding communication
comes from the decoding algorithm, where once an original
data packet is decoded, it has to be distributed to all receivers
that have received code packets containing that data packet.
Since the possibility of one data packet to be included in
multiple code packets is very high in Fountain Code, this
overhead will significantly slow down the decoding process.
Moreover, once the decoding process is completed, the data
needs to be relocated to the right receivers. For example, if we
show the 4K images on four HD displays driven by four
receivers, we need R1 (Receiver 1) to have the upper-left part
of the image, R2 to have the upper-right part of the image, and
so on. But, during the decoding process, although the decoders
have recovered all the original data packets, those data packets
are randomly distributed across the receivers and need to be
re-distributed to the right receiver based on their positions in

the image. The decoding communication cost is on the order of
the total number of original data packets.

2. Cross-Distributed Code
We can also first divide each 4K image into sub-images, and
separately encode them into encoded sub-images. After that,
rather than sending each encoded sub-image to one receiver,
we can first mix the encoded sub-images together, and send a
portion of the mixed data to each receiver. Once the receivers
have received their portion of the mixed data, they first
communicate to reassemble their corresponding encoded
sub-images and then start to decode independently.

The benefit of this approach is that even if one stream lost
many packets, those lost packets are likely evenly distributed
among all encoded sub-images, so that all receivers can
successfully decode their encoded sub-images with high
possibility. But the problem is this approach still introduces
very high communication cost on both sides.

3. 2D Cross-Stream Code
The two straightforward approaches to couple parallel data
streams have fundamental problems and cannot be practically
used in real applications. So we get back to the water stream
model and couple parallel data streams in a similar way using
pipes. We encode the original data in two dimensions: one
dimension is along local original data packets; the other
dimension is along parallel data streams. Therefore, each code
has two degrees: a local fountain code degree and a stream
degree. And, we name this 2D Cross-Stream Code, which is
the basis of our Cross-Stream Transfer Protocol.

V. CROSS-STREAM TRANSFER PROTOCOL
In this section, we will thoroughly discuss our new parallel
streaming protocol: Cross-Stream Transfer Protocol (CSTP).
 We divide a piece of original data, for example, a video
frame, into S equally sized sub-frames that will be sent out by
S individual senders to their corresponding receivers. Each
sub-frame is further divided into N equal sized original data
packets, and is encoded separately into regular code packets
using Fountain Code. In addition to regular code packets, we
integrate a certain percentage of cross-stream code packets into
each of the streams, which are XOR of regular code packets
from different sub-frames, and we call them pipe packets. The
senders send out the combination of both regular code packets
and code packets, and upon receiving those code packets, the
receivers use the regular code packets to decode original data
and use pipe packets to communicate between streams to help
lossy streams decode.

1. Definitions
 The definitions used in our protocol are summarized in
Table 1.

2. Creating M[1..S]
M[1…S] are pre-generated generating matrices of 2D Cross-
Stream Fountain Code. M[i] is basically a standard Fountain

 5

Symbol Definition
S Number of data streams

N Number of original packet of each
sub-frame

α Overhead of Fountain Code
β Overhead of transfer protocol
N’ Number of packet (regular code packets

& pipe packets) sent to each receiver

M1…S Fountain Code generating matrices of S
data streams that are known to all
senders and receivers beforehand

V[1..S][1…N] The original data packets
Y[1..S][1…N’] The encoded code packet
dF Code Degree, the number of XORed data

packets in a regular code packet
DF Code Degree Distribution, the degree

distribution function of the fountain
code.

p Pipe Width, percentage of pipe packets
dS

Stream Degree, equals to 1 for a regular
code packet, or 2…S for a pipe packet,
meaning how many streams a pipe
packet connects

DS Stream Degree Distribution, the
distribution of dS. For example, when S
is small, we use

Table 1: Definitions of CSTP

Code matrix plus a few extra pipe packet columns. So, to

compute M[i], we first create a standard Fountain Code matrix,
then insert pipe columns into the matrix. Each pipe column is
an assembled column of S columns from the S standard
Fountain Code matrices of S streams. A sample is shown in
Figure 5.

3. Encoding and Decoding Algorithms
1) Encoding Algorithm

2) Decoding Algorithm

During the encoding and decoding processes, we assume local
communication is reliable.
 Figure 6 shows how the decoding process works, and how
pipe packets can help each other to recover lost packets in one
stream. And if only one stream has significant loss, we have
the following single stream fault-tolerance theorem.
Theorem 1: 2D Cross-Stream Fountain Code can tolerate the
single stream packet loss rate lr, with protocol overhead

.

Proof:
 Assume x is the protocol overhead, which basically means
we send out code packets to each receiver.
Firsts we must ensure that normal receivers have received
enough regular code packets to recover their original data,
which implies .
So we have formula one:

 After all normal receivers have recovered their original
packets; only the one that has lost lr of the packets remains
unfinished. To help the lossy receiver decode, the total number
of pipe packets from other receivers plus the number of packets
received by itself should be at least . That implies,

So we have formula two:

Summarizing formula one and two, x gets its smallest value

, when .

For each encoder [1…S]:
Step1: break its original sub-frame into equal sized
data packets
 Step 2: Get next column from Mi, if it’s a regular code
packet, XOR all packets that are valid in that column;
if it is a pipe packet, fetch data from other encoders
and XOR all packets that are valid in that column
Step 3: If enough packets were generated, stop, else
 goes to Step 2.

For each decoder [1…S]
 Step 1: Run a native Fountain Code decoding
algorithm
 Step 2: Use pipe packet code to communicate with
other decoders: if data needed, request data from
other decoders, if data available send to other
decoders
 Step3: Repeat Step2 until all data are decoded or
the decoding process halts

Fig 5: Sample matrices. The portion in the big circle marked on M2
identified a regular fountain code matrix; the chained four small circles
identified a pipe packet in M3.
 S=4, N=4, N’=6, p=16.7%
 X-axis: Code data Y[4][6]
 Y-axis: Original data V[4][4]
 Pipe packets (marked as red): Y13, Y25, Y32, Y44

 6

4. Decoding Communication Cost
In CSTP, both encoding and decoding algorithms will incur
certain communication cost among nodes within a cluster. In
the encoding process, the communication is deterministic,
while decoding communication is more nondeterministic
because the decoding process is subject to packet loss. But on
both sides, the communication cost of the 2D Cross-Stream
Code is significantly smaller than that of Unified Parallel Code
or Cross-Distributed Code because only pipe packets are
needed to communicate among nodes. In worst case, since a
pipe packet incurs at most (S-1) messages, the total
communication cost’s upper bound is , e.g., if
p=0.05, S=4, the decoding communication cost is about 15%
of the size of the original data.

5. Scale CSTP to large number of streams
The synchronization problem gets harder as the number of
parallel data streams increases. For small number of parallel
streams, the stream degree distribution function in Table 1
works well. However, for larger scale applications that use tens
of parallel streams, the communication cost of the 2D
Cross-Stream Code will increase linearly with the number of
streams, which can be improved. In that case, we will use a
new degree distribution function. We are designing and
experimenting different degree distribution functions, and our
preliminary research shows that, constant communication
overhead is achievable with careful selection of degree
distribution functions. A further discussion of more efficient
Cross-Stream degree distribution function is beyond the scope
of this paper, and we will address it in future work.

VI. EXPERIMENTAL RESULTS
In our experiments, we evaluated the decoding performance of
the most recent version of the fountain code, and simulated
multiple data streams using Cross-Stream coding algorithms,
and evaluated the stability of decoding algorithm with
fluctuating data flows and various packet loss rates. The
fountain code we selected is the Raptor Code, which has linear
time encoding and decoding algorithms. The pre-code and
LTCode we used are those suggested in [21]:

 The average code degree of LT-Code is 4.6116, and the
average degree of Raptor Code is the sum of LTCode degree
and pre-code degree, which is a function of N, e.g., when
N=1024, Raptor Code has an average code degree of 13. The
average code degree determines the complexity of the
decoding algorithms. Theoretically, assuming the packet size is
fixed, the complexity of the decoding algorithm is ,
where D is the average degree of Raptor Code, N is the
number of original data packets.
 The platform we used is a 2006 Dell XPS 720, with:

1. Raptor Code decoding performance
An important measurement is with how much overhead Raptor
Code can recover the original data. Although this has been
discussed in related work, we did some tests here as shown in
Figure 7. This picture shows that N cannot be too small since
the Raptor Code is based on probability theory and won’t hold
for small value of N. When N is bigger than 1000, Raptor

Precode: LDGM + HDPC
LTCode degree distribution:

Fig. 6. b) The decoded original data packets are distributed to each other
via pipe packets, and all pipe packets columns now become regular
columns of M3.

Fig. 6. a) Assuming R1, R2 and R4 have received all the packets and
successfully recovered their original data (marked as green), but R3 lost
two code packets: Y34 and Y35 and need help.

Fig. 6. c) R3 collects pipe packets from R1, R2 and R4, and now can
decode its original data.

CPU: Intel(R) Core(TM)2 Quad CPU @ 2.40GHz
 Cache size: 4096KB
 Memory: 4GB
 OS: x86_64 Version of CentOS 5.

 7

Code can recover all original data with an overhead around
4%-8%.
 To test the decoding speed of the Raptor Code, we run our
implementation of Raptor Code (there is no open source
implementation of the fountain code) with one thread to
decode native Raptor Code, and the decoding speed is shown
in Table 2. We tested 7680 and 3840 bytes packets.
#of
Origina
l
Packets

#of
Raptor
Code
Packet
s

Decodin
g
Percent-
Age

Decoding
Speed
(7680B/pkt
)

Decoding
Speed
(3840B/pkt
)

512 650 100% 2.51Gbps 3.17Gbps
1024 1200 100% 2.00Gbps 2.22Gbps
2048 2400 100% 1.68Gbps 1.82Gbps
4096 4800 100% 1.45Gbps 1.52Gbps

Table 2: Decode speed of the Raptor Code

 The decoding algorithm is very CPU intensive, and
consumes significant memory bandwidth. Currently in our
single thread experiments, the decoding algorithm is capable of
decoding a single HD stream, but in the future we will extend
to multiple threads to relieve the CPU bottleneck. The results
also suggest that the cache miss rate is an important factor. As
shown, when we increased the number of original packets, the
decoding speed went down. We believe this is because the
cache miss rate became higher with the larger data set.

2. Unified Parallel Code: communication overhead
To estimate the communication cost, we built a 4096x4096
Raptor Code generating matrix, and use it to generate 4096
code packets. We assume that code packets are alternatively
distributed to four receivers:
 for i=0; i < N; i++

The ()th packet goes to R1;

The (+1)th packet goes to R2;

The (+2)th packet goes to R3;

The (+3)th packet goes to R4;
 We then calculate the communication cost among the
receivers: the total number of packets exchanged is about 3600
packets, nearly 90% of the original data size.

As we explained before, communication occurs when a data
packet was encoded in code packets in multiple receivers. To
reduce the overlapping portion of the code packets, we may
repartition the matrix to minimize communication cost via
integer programming, which however is a NP-hard problem.
So instead, we run Zoltan [18], the most recent research result
of hyper-graph partitioning, to repartition the matrix, and the
improved communication overhead is around 3400 packets, a
roughly 8% improvement. We set S=8, and get similar results.
Therefore, we can conclude that this approach requires a lot of
communication and is not suitable for our applications.

3. 2D Cross-Stream Code Performance
First, we want to understand whether streams can help each
other when one stream is losing significantly more packets
than the others. We use these settings:

 We verify the performance when single stream packet loss is
significant by sending data to four receivers and purposely
drop 20% packets from one stream, and test how the other
streams can help it recover lost packets to maintain
synchronized throughput and measure the protocol overhead of
the 2D Cross-Stream Code. Figure 8 shows the lossy stream
can be recovered with pipe packets from other streams. By
Theorem 1, protocol overhead should be lr/(S-lr) when p=lr/S,
which is 5.26%, and our experiments reported 5.45, which
verified the theorem.
 Our next experiment tested how 2D Cross-Stream Code
works with random packet loss across all streams. We encoded
1000 frames into four sets of code packets using four
generating matrices, and then simulated sending a certain
number N’ of code packets to each receiver. We did not
assume all the packets were correctly received, but purposely
dropped some of them. And based on our network assumption,
the packet loss rate of each receiver was randomly generated
with every new frame. The average packet loss rate of
receivers was set to 2%, 3% and 4% respectively. We then
plotted a figure with the X-axis representing N’, and the Y-axis
representing the possibility of successful recovery of the full
frame. The result is shown in Figure 9, which proves that with

Fig. 7: Raptor Code overhead

Fig. 8: Protocol overhead can be calculated from this figure. The original
number of data packet is 4340 including pre-code, Raptor Code overhead can be
read from Fig. 5, which is about 7.5% for N=1024, and from this figure, the
overall recovery percentage becomes 1 when N’=1230, so protocol overhead is
1230*4/(4340*1.075) -1=5.45%.

 8

a reasonable overhead, e.g. 5% to 15%, our approach can
recover significant packet loss in all streams and the possibility
of fully recovered frames is ~99.99%.

 All experiments above showed that the 2D Cross-Stream
Code met our expectation in tolerating packet loss and stream
fluctuation. We performed the same experiments with eight
streams, and got very similar results. Regarding the
communication cost, we got <15% communication overhead
when S=4, and <35% when S=8, both of which were
significant better than the coding approach discussed in
Section 4. We have implemented our parallel file-transfer
software based on CSTP, and are in the progress of comparing
our CSTP with other UDP based file transfer protocols, e.g.
RBUDP, Lambdastream, and will report the results shortly.

VII. CONCLUSION AND FUTURE WORK
In this paper, we studied the problem of large-scale data
transfer/streaming. Traditional point-to-point protocols are not
scalable to our new cluster-to-cluster communication models
in many new scientific applications, and existing
multi-to-multi protocols do not sufficiently address the
synchronization issue of parallel data streaming. In this paper,
we proposed a new Cross-Stream Transfer Protocol, which
used 2D Cross-Stream fountain code to tolerate packet loss,
and pipe packets to tightly couple streams and help lossy
streams to decode correctly. Simulation results met our
expectation in terms of packet loss tolerance, decoding
efficiency, communication overhead, etc.
 There remain many challenges to be solved. We plan on
using the CSTP approach to implement a 4K uncompressed

streaming system that streams synchronized 4K movie at
6-8Gbps.We are also going to optimize the decoding algorithm
to use multi-core processors, eliminate buffer copies to reduce
memory consumption, etc. And we are working on designing a
more general stream degree distribution function that can
easily scale to many streams.

REFERENCES
[1] GLIF: http://www.glif.is
[2] OPIPUTER: http://www.optiputer.net
[3] Thomas A. DeFanti, Jason Leigh, Luc Renambot, Byungil Jeong, Larry

L Smarr, etc. “The OptIPortal, a Scalable Visualization, Storage, and
Computing Interface Device for the OptiPuter”, Future Generation
Computer Systems 25(2), Elsevier, February 2009, pp. 114-123.

[4] C. Cruz-Neira, D. Sandin, T. DeFanti, R. Kenyon, J. Hart, “The CAVE®:
Audio Visual Experience Automatic Virtual Environment,”
Communications of the ACM, June 1992

[5] SAGE: http://www.evl.uic.edu/cavern/sage/index.php
[6] E. He, J. Leigh, O. Yu, T. A. DeFanti, “Reliable Blast UDP : Predictable

High Performance Bulk DataTransfer”, IEEE Cluster Computing 2002,
Chicago, Illinois, Sept, 2002.

[7] Yunhong Gu and Robert L. Grossman,UDT: UDP-based Data Transfer
for High-Speed Wide Area Networks Computer Networks (Elsevier).
Volume 51, Issue 7. May 2007

[8] CALIT2: http://www.calit2.net/newsroom/release.php?id=694
[9] Luc Renambot1, Byungil Jeong, Jason Leigh, “REALTIME

COMPRESSION FORHIGH-RESOLUTION CONTENT”, Proceedings
of the Access Grid Retreat 2007, Chicago, IL

[10] DMC4K: http://www.dmc.keio.ac.jp/en/topics/071126-4K.html
[11] 4KStreaming: http://www.envision.purdue.edu/4k stream/
[12] Vishwanath, V., J. Leigh, E. He, M. D. Brown, L. Long, L. Renambot, A.

Verlo, X. Wang, T. A. DeFanti, “Wide-Area experiments with
LambdaStream over dedicated high-bandwidth networks”, IEEE
INFOCOM 2006.

[13] Vishwanath, V., Shimizu, T., Takizawa, M., Obana, K., Leigh, J.
Towards Terabit/s Systems: Performance Evaluation of Multi-Rail
Systems”, Proceedings of Supercomputing 2007 (SC07), Reno, NV.

[14] Miguel Castro, Peter Druschel, Anne-marie Kermarrec, Animesh Nandi,
Antony Rowstron, Atul Singh, “SplitStream: High-bandwidth multicast
in cooperative environments”, SOSP'03 ACM Symposium on Operating
Systems Principles No19, Bolton Landing (Lake George), New York ,
ETATS-UNIS (19/10/2003)

[15] Huaxia Xia, Andrew Chien, “RobuSTore: A Distributed Storage
Architecture with Robust and High Performance”, Proceedings of
Supercomputing 2007 (SC07), Reno, NV.

[16] U. Catalyurek, E. Boman, K. Devine, D. Bozdag, R. Heaphy,
“Hypergraph-based Dynamic Load Balancing for Adaptive Scientific
Computations”,Proceedings of IPDPS'07, Best Algorithms Paper Award,
March 2007.

[17] Bruce Hendrickson, Tamara G. Kolda, “Partitioning Rectangular and
Structurally Unsymmetric Sparse Matrices for Parallel Processing”,
SIAM Journal on Scientific Computing, volume 21, issue 6 (December
1999), Pages: 2048 - 2072, ISSN: 1064-8275

[18] Zoltan: http://www.cs.sandia.gov/Zoltan/
[19] Fountain Code: http://en.wikipedia.org/wiki/Fountain_code
[20] Amin Shokrollahi, "Raptor Codes," IEEE Transactions on Information

Theory, vol. 52, pp. 2551-2567, 2006.
[21] Raptor Code: http://algo.epfl.ch/contents/output/presents/

Raptor-Bangalore.pdf
[22] M. Luby, “LT-codes.” In Proc. 43rd Annu. IEEESymp. Foundations of

Computer Science (FOCS), Vancouver, BC, Canada, Nov. 2002,
pp.271-280.

[23] Thomas A. DeFanti, Gregory Dawe, Daniel J. Sandin, Jurgen P. Schulze,
Peter Otto, Javier Girado, Falko Kuester, Larry Smarr, Ramesh Ral, “The
STARCAVE, a third-generation CAVE and virtual reality OptIPortal”.
The international journal of FGCS, volume 25, issue 2 (Feb. 2009), Page:
169-178, ISSN:0167-739X

Fig. 9: These lines show the function of frame recovery percentage to the
number of issued packet to receivers, and the lower figure is the zoom-in of
the top-right part of the upper figure.

