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a b s t r a c t

Transferring very high quality digital objects over optical networks is critical in many scientific applica-
tions, such as video streaming/conferencing, remote rendering on tiled display walls, or 3D virtual reality.
Current data transfer protocols rely onUDP aswell as a variety of compression techniques. None of the ex-
isting transfer protocols, however, scale well to many parallel data connections. Existing parallel stream-
ing protocols have limited synchronization mechanisms for multiple streams, and they are prone to be
slowed down significantly if one stream experiences significant packet loss. In this paper, we propose
a new parallel streaming protocol which can stream many parallel data streams over optical networks:
CSTP, the Cross-Stream Transfer Protocol. It not only tolerates random UDP packet loss, but also aims to
tolerate unevenly distributed packet loss patterns acrossmultiple streams to achieve synchronized paral-
lel streamswith limited coding overhead.We simulated the approach, and the results show that CSTP can
generate steady throughput with fluctuating data streams of different data loss patterns, and can transfer
data in parallel at a higher speed than multiple independent UDP streams.

© 2010 Elsevier B.V. All rights reserved.
1. Introduction

In recent years, CineGrid [1] has been a leader in using high
bandwidth networks to transfer very high quality digital con-
tent for real-time movie showings and digital preservation. Al-
though CineGrid has performed many successful demonstrations
of 4K video [2,3] streamed over fiber networks, we foresee chal-
lenges in designing new protocols which scale to applications de-
manding higher bandwidth and higher resolution digital content.
Today, ultra-high resolution displays have become standard infras-
tructure in scientific research. These displays are typically built by
tiling an array of standard LCD displays into a display wall, using
a PC cluster to drive it [4]. Figs. 1a and 1b show different types of
display walls: the HiPerSpace uses sixty 30’ LCD displays to form
a display wall with more than 200 million pixels, the StarCAVE [5]
uses 34 high-definition projectors to construct a 3D virtual space
in which people can work with 3D virtual reality objects. Mean-
while, high-speed research optical networks [6] make it possible
for scientists to use these ultra-high resolution displays over long
distances in their scientific applications like very-high-definition
video streaming or conferencing [7], real-time data visualization
generated by remote scientific instruments, etc. As a perfect exam-
ple of the combination of display walls and a high-speed network,
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the OptIPuter [7,8] research project, funded by the American Na-
tional Science Foundation, constructed 1–10 Gbps optical network
infrastructure andmiddleware aiming to give interactive access to
remote gigabyte to terabyte visualization data objects and bring
them to a visual interface, the OptIPortal [4].

However, scaling up visualization devices from a single PC with
a single display to a cluster of PCs with a cluster of displays has
brought up challenges of how to feed data to these display devices.
These challenges are based on an obsolete traditional single data
source communication model, and create the need for a new com-
munication model with multiple-to-multiple end points, which
achieves very-high-bandwidth parallel data streaming between
cluster-based display devices while still appearing as a point-to-
point communication protocol to the application programmer.
Traditional data transport protocols have limitations which pre-
vent their use for such multi-endpoint connections. The popular
Transport Control Protocol (TCP) is slow on long distance networks
because of its window-based congestion control mechanism.
Alternatives like RBUDP [9], UDT [10], and LambdaStream [11] are
recently developed UDP-based protocols focusing on high-speed
file transfer or real-time data streaming between two end nodes.
These protocols are point-to-point rate-based, which means they
support one sender and one receiver, and recover lost UDP pack-
ets by resending them, and the sender controls the sending rate to
minimize packets loss. RBUDP, for instance, uses a bitmap tomain-
tain a list of lost UDP packets and do amulti-round communication
to recover lost packets, which usually takes 2–5 Round Trips Time
(RTT) to retrieve a GB file correctly; LambdaStream detects packet
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Fig. 1a. HIPerSpace, one of the world’s largest display wall in Calit2, UC San Diego,
has 286,720,000 effective pixels.

Fig. 1b. The StarCAVE, a third-generation CAVE and virtual reality OptIPortal in
Calit2, UC San Diego, has ∼68,000,000 pixels.

loss based on the gap between the receiving time of two consecu-
tive UDPpackets, and if that gap is bigger than expected, the sender
will reduce the sending rate accordingly. None of these protocols
scale to amultiple-to-multiple communicationmodel in a straight-
forward way. Existing parallel data streaming protocols do not
sufficiently address the synchronization issue of multiple parallel
data streams. Existing multiple-to-multiple communication mod-
els [12,13] synchronize senders and receivers by adding a synchro-
nization module to senders and/or receivers. This synchronization
module waits until all senders/receivers have the next frame of
data, and then broadcasts the command of sending/displaying to
all senders/receivers. In these cases, the behaviors of individual
data streams will affect the overall protocol performance or data
integrity, for instance by packet loss of one data stream.

In summary, point-to-point or point-to-multipoint protocols
are not sufficient to feed increasingly larger displaying devices,
and multipoint-to-multipoint protocols are difficult to efficiently
synchronize. In this paper, we examine the multiple-to-multiple
communicationmodel, and present the newCross-StreamTransfer
Protocol (CSTP), which focuses on the synchronization challenge
of the parallel communication model. We ran experiments with
our new protocol, and the results show that even with fluctuating
network throughput, or unevenly distributed packet loss in
parallel streams, our approach can achieve reliable synchronized
throughput. In Section 2, we introduce related work; in Sections 3
and 4, we discuss our approach for reliable synchronized parallel
streaming.We show some of our simulation results in Section 5. In
Section 6, we conclude and suggest future research directions.

2. Forward Error Correction

Forward Error Correction (FEC) is ‘‘a system of error control for
data transmission, whereby the sender adds redundant data to its
messages, also known as an error correction code. This allows the
receiver to detect and correct errors (within some bound) without the
need to ask the sender for additional data’’ [14]. Since most high bit-
rate transfer protocols use unreliable UDP packets to deliver data,
they often use a certain type of FEC to recover lost data. FEC can
correct a small percentage of random packet loss, depending on
the amount of FEC data sent, but is not always effective for burst
packet loss over a certain bound.

In recent years, a new series of coding techniques have been
used in FEC, called Fountain Code [15–18], which ‘‘can generate a
Fig. 2a. V1–V4 are original data packets; Y1–Y5 are encoded data packets. The
formula and bipartite graph have the same meanings.

Fig. 2b. Matrix element M[i,j] is marked to black iff data packet Vi is included in
code packet Yj .

limitless sequence of encoding symbols from a given set of original
symbols such that the original symbols can be recovered from any
subset of the encoding symbols of size equal or only slightly larger
than the number of original symbols’’ [15]. In our case, a symbol
represents a UDP packet.

All FEC codes come with an overhead. The overhead of the
fountain code is defined asα, meaning ifN is the number of original
symbols, (1 + α) · N is the number of encoding symbols sufficient
to recover the N original symbols. Fountain code only works for
large N , so it is impossible to give a simple fountain code example.
But in principle, the encoding/decoding processes are based on
a bipartite graph, in which the edges are generated by a degree
distribution function [LTCode]. The three forms of representation
of fountain codes are shown in Figs. 2a and 2b: the formula, the
bipartite graph or the matrix. In this article, we use the matrix
representation because it best explains the encoding and decoding
processes. Examples of fountain code include online code, LTCode,
and Raptor Code [16].

Compared with other fountain codes, raptor codes are the
first known classes of fountain codes with linear encoding and
decoding. Sender and receivermust use the samedata structures to
encode or decode the data, for instance the same pseudo-random
number generator, and the same coding matrices.

In the following section, we will explain why synchronized
parallel data transfer is a hard problem, and discuss how FEC codes
are helpful but not sufficient for large scale parallel data streaming
protocols.

3. Parallel data transfer challenges

4K video streaming is very bandwidth intensive and a good
sample case for our streaming algorithm. 4K was defined by the
Digital Cinema Initiative (DCI) consortium of Hollywood studios
in 2003. It describes video with up to 4096 pixels per line and up
to 2160 lines per frame. In many practical applications, and in the
remainder of this article, 4K refers to a frame size of 3840 × 2160
pixels, which is exactly four times the resolution of 1080p HDTV.
4K video can be captured by 4K cameras, which store every frame
as an image file, for instance TIFF. 4K projectors can display this
material natively. Streaminguncompressed 4Kvideo is challenging
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Fig. 3a. Parallel iperf experiments between Chicago and San Diego. • 14 streams,
750 Mbps/stream (10.5 Gbps) over 10 Gbps optical network. • Average packet loss
rate is around 6% in all experiments. • X-axis: five independent experiments.

because the data bit-rate is very high, namely, the bit-rate for
32 bit per pixel 4K images at 24 fps is over 6 Gbps, which does
not fit into one Gigabit channel, but could be sent throughmultiple
parallel Gigabit connections. So alternatively, assuming we have a
large number of 4K frames to send, we can use multiple senders
to stream these images to multiple remote receivers. Each of the
senders sends out a portion of the images in UDP packets, and each
of the receivers receives the corresponding parts of the images and
displays these parts on part of a tiled display wall.

Ideally, if all parallel streams are reliably delivered, there will
be no problemwith this approach. But in reality, UDP packet loss is
likely in such high bandwidth applications,whichwill lead tomiss-
ing data and synchronization problems at the destination. To our
knowledge, there are no publications on the UDP packet loss pat-
tern of large scale parallel data streams over optical networks; but
based on our experience and experiments over the OptIPuter net-
work, UDP packet loss behavior is nondeterministic, and a function
of many variables, such as the destination nodes’ hardware con-
figuration, their workload, OS type and version, OS scheduler, NIC
configurations, switch/router scheduling, switch/router queuing
strategy, switch/router buffer size, andmanymore. In particular, if
there are multiple streams on the same fiber link nearly saturating
the capacity of the link, we found the following typical UDP packet
loss behavior over the link:

(1) Very frequently, burst packet loss for an individual streammay
happen and will not be recovered by simple FEC code. We can
either ignore that which will lead tomissing data, or we can go
back to the sender to request resending the lost packets, which
is time consuming and will make other streams wait.

(2) Bandwidth is not evenly shared by the streams for many rea-
sons. For instance, the UDP protocol does not have constant ex-
ecution time, neither does switch/router scheduling or queues
in switches/routers; the end nodes’ capability may vary with
time; occasional interference from other network applications
may make data streams fluctuate, etc.

(3) The overall/average packet loss rate of all data streams is sta-
ble, which means the switching capabilities are stable.

Fig. 3 shows experiments verifying packet loss behavior and
packet loss distribution of parallels streams over CaveWave, a
10 Gbps dedicated optical network between Chicago and San
Diego. In Fig. 3a, the result of fourteen parallel ‘‘iperf’’ tests on an
oversaturated 10 Gbps connection is shown. As expected, an aver-
age packet loss rate of 6% is observed in each of the five indepen-
dent experiments, but packet loss rate patterns and distribution
vary significantly between experiments. Fig. 3b is a plot of a similar
experiment using video streaming software tomeasure the frame-
by-frame packet loss rate and to understand the burst packet loss
pattern. It shows that burst packet loss occurred frequently and in
arbitrary streams.
150 seconds
X-axis: time
Y-axis: loss rate of parallel stream
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Fig. 3b. Parallel video streaming experiments between Chicago and San Diego.
• 13 streams, 700 Mbps/stream (9.1 Gbps) over 10 Gbps optical network. • The test
lasted 150 s. • X-axis: frame serial number. • Y -axis: loss rate of each frame in each
stream (14%–0%).

Our experiments confirm that using multiple data streams to
transfer data betweenmultiple senders/receivers brings along new
challenges. FEC code is helpful in many cases, but not sufficient to
handle burst packet loss for individual streams. In the next section,
we will discuss our new, parallel Cross-Stream Transfer Protocol
(CSTP).

4. CSTP—Cross-Stream Transfer Protocol

Loosely coupled streams are hard to coordinate; linking data
streams allows considering new methods to correct for single
stream burst packet loss. If one data stream experiences burst
packet loss, the receiver does not have to fetch the lost packets
from its sender, instead, it gets the data from its peers on the
receiving end. Considering the long Round Trip Time (RTT) to fetch
a bit from remote senders, being able to get it locally is a significant
advantage. However, it is difficult to couple parallel data streams
because the independent data streams carry uncorrelated data. To
do that, we first need to correlate the data in the data streams. The
encoding strategy of our parallel streaming protocol needs to be
able to:

(1) tolerate a certain percentage of packet loss;
(2) encode and decode efficiently;
(3) encode multiple streams to carry information between them.

We selected a fountain code as the basis of our work. Fountain
code is a type of FEC code which is often used in wireless
communication environments where receivers are sometimes
not capable of sending back acknowledgements to request the
resending of lost packets. In computer science, fountain codes have
been used for high bandwidth multicast [19], the robust storage
system RubuSTORE [20], etc. But to our knowledge, it has not been
used in high bandwidth parallel data transfer applications. In the
remainder of this article, we will explore and analyze the coupling
of parallel streams using fountain code, introduce our new CSTP
coding scheme, and we will discuss the implementation of it in
detail.

The input of the protocol is a sequence of original data frames,
for example, a series of video frames, and the goal is to transfer
these data frames to multiple receivers synchronously. Each
original data frame is divided into S equally sized sub-frames that
will be sent out by S individual senders to their corresponding
receivers. This subdivision does not always mean additional
computational cost, for instancewhen the sub-frames are acquired
independently, for example, by S independent cameras. Each
sub-frame is further divided into N equally sized original data
packets, and the original data packets are encoded into regular
code packets using fountain code. In addition to the regular code
packets, we encode a certain percentage of cross-stream code



980 S. Liu et al. / Future Generation Computer Systems 27 (2011) 977–985
Table 1
Definitions of CSTP.

Symbol Definition

S Number of data streams
N Number of original packets of each sub-frame
α Overhead of fountain code
β Overhead of transfer protocol
N ′ Number of packets (regular code packets and pipe packets) sent to each receiver N ′

− N · (1 + α) · (1 + β)

M1...S Fountain code generating matrices of S data streams which are known to all senders and receivers beforehand
V[1...S][1...N] The original data packets
Y[1...S][1...N ′] The encoded code packets
dF Code degree: the number of XORed data packets in a regular code packet
DF Code degree distribution: the degree distribution function of the fountain code
p Pipe width: percentage of pipe packets
dS Stream degree: equals 1 for a regular code packet, or 2 . . . S for a pipe packet, meaning howmany streams a pipe packet connects
DS Stream degree distribution: the distribution of dS . For example, when S is small, we use DS (x) = p · xS + (1 − p) · x
Fig. 4. Sample matrices. The portion in the big circle marked on M2 identified a
regular fountain codematrix; the chained four small circles identified a pipe packet
in M3. • S = 4,N = 4,N ′

= 6, p = 16.7%. • X-axis: code data Y[4][6] . • Y -axis:
original data V[4][4] . • Pipe packets (marked in red): Y13, Y25, Y32, Y44 .

packets, which are XOR versions of regular code packets from
different sub-frames, and we call them pipe packets. The senders
send out the combination of both regular code packets and pipe
code packets, and upon receiving those code packets, the receivers
use the regular code packets to decode the original data and
use pipe packets to communicate between streams to help them
reconstruct missing packets.

4.1. Definitions

The definitions used in our protocol are summarized in Table 1.

4.2. GeneratingM[1...S]

M[1...S] are pre-generated generating matrices for CSTP. Similar
to fountain code generating matrices like those shown in Figs. 2a
and 2b,M[i] is basically a standard fountain code matrix with extra
pipe packet columns. So, to generateM[i], we first create a standard
fountain code matrix, then randomly insert pipe columns into the
matrix. Each pipe column is an assembled column of multiple
columns from the S standard fountain codematrices of S streams. A
sample is shown in Fig. 4. A pipe packet can consist of code packets
from all streams, or only two streams. In the DS function in Table 1,
all pipe packets consist of code packets from all S streams. We will
use a different DS in our experiments in Sections 6.3 and 6.4. With
that distribution function, 50% of the pipe packets have a stream
degree of S, and 50% have stream degree 2. A pipe packet with a
streamdegree of 2will consist of one regular code packet of its own
and one regular code packet randomly selected from the other S−1
data streams.
Fig. 5a. Assuming R1,R2 and R4 have received all the packets and successfully
recovered their original data (marked as green), but R3 lost two code packets: Y34
and Y35 and need help.

4.3. Encoding and decoding algorithms

4.3.1. Encoding algorithm

For each encoder [1 . . . S]:
Step 1: Break its original sub-frame into equally sized data packets.
Step 2: Get next column fromMi , if it is a regular code packet, XOR all

packets that are valid in that column; if it is a pipe packet, fetch data
from other encoders and XOR all packets that are valid in that column.
Step 3: If enough packets were generated, stop, else go to Step 2.

4.3.2. Decoding algorithm

For each decoder [1 . . . S]
Step 1: Run a native fountain code decoding algorithm.
Step 2: Use pipe packet code to communicate with other decoders: if

data needed, request data from other decoders, if data available send to
other decoders.

Step 3: Repeat Step 2 until all data are decoded or the decoding
process halts.

Fig. 5 illustrates how the decoding process works, and how pipe
packets can help receiving nodes recover lost packets. Assuming
receivers R1, R2 and R4 have received enough packets, and R3
has lost a big portion of the packets, R1, R2 and R4 then can
recover their data by applying the standard fountain code decoding
algorithm, as illustrated in Fig. 5a. When they finish the decoding
process, all the code packets in the their pipe packets have also
been decoded through local communication, shown in Fig. 5b, and
the remaining parts of these pipe packets are extra code packets
for R3. These extra code packets are sent to R3 so that R3 now will
have enough code packets for decoding, as shown in Fig. 5c.
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Fig. 5b. The decoded original data packets are distributed to each other via pipe
packets, and all pipe packets columns now become regular columns ofM3 .

Fig. 5c. R3 collects pipe packets fromR1,R2 andR4 , and nowcan decode its original
data.

5. CSTP implementation

CSTP has multiple senders and multiple receivers. The goal
is to send sequential data frames from the senders to the
receivers synchronously. Each data frame is initially divided into
multiple sub-frames, and each sender sends out just one sub-
frame to its receiver. The senders keep reading sequential data
sub-frames, encode them and send the encoded sub-frames to
their corresponding receivers; the receivers receive the data
perform cross-stream decoding to reconstruct the original data.
The senders and receivers communicate via a high-speed network.
This topology, known as a dumbbell topology, characterizes the
connections between end clusters.

5.1. CSTP senders

The sending process consists of three major procedures:
reading, encoding and sending, which are controlled by a timer-
based synchronizer. Due to the deterministic behavior of the
senders, the senders are not the bottleneck in our protocol.

The CSTP encoding process is implemented using a coding
matrix, as shown in Fig. 6. The coding matrix is a two dimensional
(2D) linked list, associated with four memory buffers: DataBuf,
CodeBuf, PipeBuf and ExtraBuf. Each node (i, j) in the 2D linked
list means code packet i contains data packet j in its ‘‘XOR’’ list.
DataBuf stores the original data sub-frame read from the input
devices, e.g., a partition of the video frame file, or input from one
of multiple cameras. CodeBuf and ExtraBuf are generated from
DataBuf using the codingmatrix (also see Figs. 2a and 2b). CodeBuf
includes regular code packets and pipe packets; ExtraBuf includes
only regular code packets for the sending nodes to construct their
pipe packets. PipeBuf are regular code packets received from the
senders. Each packet in ExtraBuf will be sent to the PipeBuf of one
of the other senders.

A regular code packet (only composed of local data packets) in
CodeBuf is encoded immediately from DataBuf. A pipe packet that
Fig. 6. Code matrix data structure.

contains packets in PipeBuf will wait until that packet is received
from the peers. Practically, the senders will encode ExtraBuf first
and distribute the ExtraBuf packets to its peer senders so that the
encoding of CodeBuf will not need to wait for the PipeBuf packets.
Therefore, the encoding process is a deterministic process. Finally,
the sender only sends out the code packets in CodeBuf to the
receiver, while ExtraBuf is not sent.

5.2. CSTP receivers

The receivers have two major threads: a streaming thread and
a decoding thread. They operate on two major data structures: a
circular buffer and a coding matrix.

5.2.1. Circular buffer
A circular buffer is used to buffer the received data sub-frames.

It has two pointers: a reader’s pointer and a writer’s pointer,
controlled by the reading and writing thread respectively. The
writing thread (the stream thread) reads UDP packets from the
network and saves them into the blocks pointed to by the current
writer’s pointer. The reading thread (the decoding thread) fetches
a block from the circular buffer and sends it to the decoder for
decoding. Both threads will increase their circular buffer pointers
after finishing writing/reading.

5.2.2. Decoding matrix
Although the decoding matrix data structure is the same as

the encoding matrix data structure, the decoding algorithm is
much more involved. After the reading thread fetches a sub-frame
from the circular buffer, it will fill the decoding matrix’s CodeBuf
and associate with it a Mask Variable, which is an array of
‘‘Boolean’’ values,marking each packet in the CodeBuf either ‘‘Lost’’
or ‘‘Received’’ so that only ‘‘Received’’ packets will be used for de-
coding. Because the packet loss is not known before hand, the de-
coding process is nondeterministic.

In the decoding process of standard LTCode or Raptor code, the
decoder keeps looking for packets in CodeBuf whose remaining
code degree equals one, decoding that packet by copying the code
packet to the data packet, and distributing the decoded data packet
to all other code packets containing that data packet, until the
process stops without any further possible movement.

In our algorithm, we first perform this standard decoding pro-
cess based on CodeBuf and the Mask Variable using the decoding
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matrix. After this is done, a decoder either has recovered all its
packets in DataBuf, or only partially decodes DataBuf due to the
packet loss in CodeBuf. If all decoders have successfully decoded
their sub-frames, thewhole data frame is successfully received and
the algorithm can proceed to the next data frame.

If some receivers cannot recover all their data packets, the
decoders will need to work together to recover the un-decoded
parts. Extrabuf and PipeBuf are used to communicate between
decoders to decode those parts through pipe packets.
(a) From PipeBuf to ExtraBuf

Assuming receiver A has received a pipe packet Y = VA,1 ⊕

VA,2 ⊕ · · ·⊕ VA,k ⊕ YB, and has decoded all its data packets VA,[1...k],
it can now decode YB by doing k XOR operations on Y , and YB =

Y ⊕ VA,1 ⊕ VA,2 ⊕ · · · ⊕ VA,k.
YB becomes a new regular code packet inA’s PipeBuf for receiver

B, so that it will be sent to B’s ExtraBuf to help B decode un-decoded
data packets as if B receives one more regular code packet from its
sender.
(b) From ExtraBuf to PipeBuf

In each decoder, ExtraBuf is set to ‘‘zero’’ before the decoding
process. During the first phase of the decoding process, in addition
to the standard decoding process, all the decoded data packets are
also distributed to the associated code packets in ExtraBuf, and
the code packets in ExtraBuf will ‘‘XOR’’ the data packet to itself.
Therefore, for those decoders which have successfully decoded all
their data packets, they also have generated the code packets in
ExtraBuf. As explained before, ExtraBuf are used by the encoder
to encode a pipe packet during the encoding process and are not
sent to the receivers. Just as the encoder sends the code packet in
ExtraBuf to its peers to generate a pipe packet in the peers, now
the newly generated code packets in ExtraBuf are sent to the same
pipe packet. For example, assuming a pipe packet Y is located in
receiver A, and Y = VA,1 ⊕ VA,2 ⊕ · · · ⊕ VA,k ⊕ YB ⊕ YC ⊕ YD, once
B, C and D generate YB, YC and YD in their ExtraBuf, YB, YC , and YD
will be sent to A, so that the pipe packet Y in A can be converted
into a new regular code packet Y ′, Y ′

= Y ⊕ YB ⊕ YC ⊕ YD =

VA,1 ⊕ VA,2 ⊕ · · · ⊕ VA,k. Y ′ is a new code packet for A, as if A had
received a new code packet from its sender.

ExtraBuf and PipeBuf are mutually beneficial. In practice, Step
(a) and Step (b) will start as early as possible, overlapping with the
self-decoding process, andwill repeat in the post decoding process.

5.3. Reliable delivery

In our CSTP implementation, the goal is to tolerate unevenly
distributed burst packet loss below a certain threshold, but when
significant packet loss happens for many streams, CSTP cannot
guarantee the reliable delivery of the data. Based on our experi-
ments, CSTP tolerates burst packet loss quite well and is sufficient
for reliable delivery in many practical scenarios. However, in case
packet loss is significant formany data streams, and after the cross-
stream decoding process there are still unrecovered data packets
left, more data would have to be requested from the senders if
reliable delivery is required. Two categories of issues have to be
discussed: dynamic sending rate and lost packets resending. We
have not covered these in our CSTP implementation, but they could
be integrated in future versions of the algorithm. Dynamic send-
ing rates have been studied in [9–11], and we have a similar issue
in CSTP. In order to resend lost packets, other approaches main-
tain a bitmap for lost packets and retransfer lost packets, which is
straightforward but ineffective, because the senders have to keep
all data in main memory to avoid random disk access. For big file
transfers, RAM will be used to keep the original data quickly ac-
cessible, like in RBUDP. In CSTP, instead, we only need to keep a
small percentage of extra code packets in the RAM of the senders.
So when receivers ask for more data, the senders simply send out
these new code packets. This is less expensive than saving all orig-
inal data for retransfer.
5.4. Synchronization

Synchronization mechanisms are widely used in a cluster en-
vironment. In CSTP, both senders and receivers use a synchro-
nizer to do frame-by-frame synchronization for video transfer. The
synchronization scheme is simple: all senders/receivers send a
‘‘sync’’ message to a master node, and when the master node col-
lected all ‘‘sync’’ messages, it broadcasts a confirmation signal to all
other nodes, whichmakes them continuewith the next frame. This
mechanism is similar to the synchronization in computer graphics
clusters, like COVISE [21], where frame buffer swaps need to be
synchronized in a similar way.

5.5. Scalability of CSTP

The scalability of CSTP is primarily subject to the communica-
tion cost of CSTP. In CSTP, both encoding and decoding algorithms
will incur certain communication cost among the nodes of a clus-
ter. In the encoding process, the communication is deterministic,
while decoding communication is more nondeterministic because
the decoding process is subject to packet loss. But on both sides, the
communication cost of the CSTP is reasonably smallwhen S is small
because only pipe packets are needed to communicate among the
nodes. In the worst case, the total communication cost has an up-
per bound of (S − 1) · p, e.g., if p = 0.05, S = 4, the decoding
communication cost is about 15% of the size of the original data.

The scalability will be more important when S is bigger. For
small numbers of parallel streams, the stream degree distribution
function in Table 1 works quite well. However, for larger scale
applications, which use more than ten parallel streams, the
communication cost with that distribution function will increase
linearly with the number of streams. Therefore, we are designing
and experimenting with different distribution functions. Our
preliminary results show that with constant communication
overhead, the CSTP protocol scales very well to larger numbers of
parallelmachines, with reasonable assumption of parallel data loss
pattern.

Another factor that can affect the scalability of CSTP is the syn-
chronization of large numbers of nodes. In applications requiring
frequent synchronization operations,more thought needs to beput
into this. In our current experiments, the synchronizer in CSTP can
complete more than 600 synchronizations per second among 15
machines. With 100 machines, that number is about 360 per sec-
ond. Therefore, we do not foresee this as a limiting factor.

6. Experimental results

In our experiments, we evaluated the decoding performance
of the most recent version of the fountain code, and simulated
multiple data streams using cross-stream coding algorithms, test
the stability of decoding algorithmswith fluctuating data flows and
various packet loss rates, and compare the transfer speed of CSTP
with parallel RBUDP. The fountain code we selected is the Raptor
Code, which has linear time encoding and decoding algorithms.
The precode and LTCode we used are those described in [17]:

Precode: LDGM + HDPC
LTCode degree distribution:
DF (x) = 0.0156 · x40 + 0.0797 · x11 + 0.111 · x10 + 0.113 · x4 + 0.210 ·

x3 + 0.456 · x2 + 0.00971 · x.

The average code degree of LTCode is 4.6116, and the average
degree of Raptor Code is the sum of LTCode degree and precode
degree, which is a function of N , e.g., when N = 1024, Raptor
Code has an average code degree of 13. The average code degree
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Table 2
Decoding speed of the Raptor Code.

# of original packets # of Raptor Code packets Decoding percentage (%) Decoding speed (7680 B/pkt) (Gbps) Decoding speed (3840 B/pkt) (Gbps)

512 650 100 2.51 3.17
1024 1200 100 2.00 2.22
2048 2400 100 1.68 1.82
4096 4800 100 1.45 1.52
determines the complexity of the decoding algorithms. Theoret-
ically, assuming the packet size is fixed, the complexity of the
decoding algorithm is O(D · N), where D is the average degree of
Raptor Code, and N is the number of original data packets.

The platform we used for our experiments is a 2006 Dell XPS
720, with:
CPU: Intel(R) Core(TM)2 Quad CPU @ 2.40 GHz

Cache size: 4096 KB
Memory: 4 GB
OS: 64 bit Version of CentOS 5

6.1. Raptor Code decoding performance

An importantmeasurement is with howmuch overhead Raptor
Code can recover the original data. Although this has been
discussed in prior work, we have done our own experiments. In
our test, N cannot be too small since the Raptor Code is based on
probability theory and will not hold for small values of N . When
N is around 1000, Raptor Code can recover original data with an
overhead of around 6%–8%.

To test the decoding speed of the Raptor Code, we run our
implementation of it (there is no open source implementation of
the Raptor Code) with one thread to decode native Raptor Code,
and the decoding speed is shown in Table 2. We tested 7680 and
3840 bytes packets.

The decoding algorithm is CPU intensive, and consumes
significant memory bandwidth. Currently in our single thread
experiments, the decoding algorithm is capable of decoding a
single HD stream. The results also suggest that the cache miss rate
is an important factor. As shown, when we increased the number
of original packets, the decoding speedwent down.We believe this
is because the cache miss rate became higher with the larger data
set.

6.2. CSTP recovery performance

First, we need to understand whether streams can help each
other when one stream loses significantly more packets than
others. We use the following settings:
p = 5%
S = 4
N = 1024
Ds(x) = p · xS + (1 − p) · x.

Our next experiment we tested how CSTP works with random
packet loss across all streams. We encoded 1000 frames into
four sets of code packets using four generating matrices, and
then simulated sending a certain number N ′ of code packets to
each receiver. We did not assume all the packets were correctly
received, but purposely dropped some of them. And based on
our network assumption, the packet loss rate of each receiver is
randomly generated with every new frame. The average packet
loss rate of the receivers is set to 2%, 3% and 4% respectively.

We then plotted a figure with the X-axis representing N ′, and
the Y -axis representing the possibility of successful recovery of
the full frame. The result shows that with a reasonable overhead,
e.g., 5%–15%, our approach can recover significant packet loss in all
streams and the possibility of fully recovered frames is ∼99.99%
(Fig. 7).
Fig. 7. These lines show the function of frame recovery percentage to the number
of issued packet to receivers, and the lower figure is the zoom-in of the top-right
part of the upper figure. • X-axis: number of code packets. • Y -axis: percentage of
recovered original packets.

6.3. Burst packet loss recovery

By carefully controlling the sending rate, we are able to deliver
data with only a small average packet loss percentage. Ideally, if
all packet loss were completely random and evenly distributed
across all streams, simple FEC would solve the problem. But in
practice as shown in Figs. 3a and 3b, packet loss patterns are not
uniformly distributed, and FEC cannot recover burst packet loss.
Here we compare the recovery capability of native FEC code and
CSTP under a variety of assumed packet loss patterns. We use 10
parallel data streams to do the comparison with an assumption of
an average packet loss (APL) of 7.5%.We chose this APL tomake the
comparison more interesting. The settings of CSTP are:
p = 5%
S = 10
N = 1024
Ds(x) = p · (50% · xS + 50% · x2) + (1 − p) · x.

The meaning of Ds(x) is: for the pipe packets, 50% have stream
degree S, 50% have stream degree 2.

The four packet loss patterns we experimented with are:
(1) Unified pattern: all packet loss is evenly distributed across all

data streams.
(2) Linear pattern: packet loss of all data streams fits into a linear

pattern.
(3) Polynomial pattern: packet loss of all data streams forms a

polynomial pattern.
(4) Random chop: we treat the overall packet loss like a pie, and

randomly chop the pie to divide it into 10 parts.
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Fig. 8. CSTP vs. pure FEC. • X-axis: data stream ID from 1 to 10. • Y -axis: packet
recovery percentage.

Our experiments show a significant advantage of CSTP over
native FEC code (Fig. 8). In all four cases, CSTP can recover 100%
of the original data in all 10 data streams. But the independent
FEC code fails in some data streams in all cases. With packets loss
evenly distributed, the FEC code only recovers about 90% of the
original data in two streams.Withmore unevenly distributed burst
packet loss the FEC code’s performance is much worse than CSTP.

6.4. CSTP Parallel transfer performance

We then compared the transfer speed of CSTP to the popu-
lar UDP transfer protocol RBUDP. To measure the protocol perfor-
mance and avoid disk operations, wemodified the RBUDP protocol
by eliminating the disk I/O operations, and compared both proto-
cols using 2–10 parallel streams between EVL in Chicago and Calit2
in San Diego. The link between them was a 10 Gbps optical net-
work. The settings of CSTP are:

p = 5%
S = 2 . . . 14
N = 1024
Ds(x) = p · (50% · xS + 50% · x2) + (1 − p) · x.

As illustrated in Fig. 9, the overall transfer speed of CSTP is
about 30% higher than the overall transfer speed of parallel RBUDP
streams; the maximum throughput of CSTP is about 20% higher
than that of RBUDP.

7. Conclusion

We studied the problems which come along with large scale
data transfer/streaming, and present a solution, the CSTP protocol.
Traditional point-to-point protocols are not suitable for today’s
cluster-to-cluster communication scenarios, used by scientific
applications, and existing multi-to-multi-point protocols do not
sufficiently address the synchronization issue of parallel data
streaming and cannot tolerate burst packet loss [22]. In this paper,
we propose our new Cross-Stream Transfer Protocol (CSTP), which
used cross-stream fountain code and pipe packets to tightly couple
streams and help lossy streams to decode correctly and tolerate
burst packet loss. Our experimental results show that the CSTP
meets our expectation in terms of burst packet loss tolerance,
decoding efficiency, communication overhead, and overall data
throughput.

Numerous challenges remain to be addressed. Our future work
will mainly look at the scalability issue of our CSTP algorithm. We
Fig. 9. CSTP vs. RBUDP in parallel data transfer. • X-axis: number of parallel data
streams. • Y -axis: overall data transfer speed in MB/s.

also intend to addmodules for reliable delivery to the current CSTP
implementation.
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