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Abstract. Medical professionals rely on medical imaging to help diag-
nose and treat patients. It is therefore important for them to be able
to see all the details captured in the images. Often the use of contrast
enhancement or noise reduction techniques are used to help improve
the image quality. This paper introduces a real-time implementation of
3D Contrast Limited Adaptive Histogram Equalization (CLAHE) to en-
hance 3D medical image stacks, or volumes. This algorithm can be used
interactively by medical doctors to help visualize the 3D medical vol-
umes and prepare for surgery. It also introduces two novel extensions to
the algorithm to allow a user to interactively decide on what region to
focus the enhancement: Focused CLAHE and Masked CLAHE. Focused
CLAHE applies the 3D CLAHE algorithm to a specified block of the
entire medical volume and Masked CLAHE applies the algorithm to a
selected organ or organs. These three contributions can be used, to not
only help improve the visualization of 3D medical image stacks, but also
to provide that contrast enhancement in real-time.
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1 Introduction

Medical imaging, such as computed tomography (CT) and magnetic resonance
(MR) imaging is critical when it comes to helping doctors diagnose patients
and prepare for surgeries. Diagnoses are typically done by radiologists, while
surgeries are planned by surgeons. Radiologists typically view and study medical
images one slice at a time on special high-contrast 2D monitors. Surgeons use
the diagnosis they are given by the radiologist, and sometimes also look at the
medical image stacks, on their own computers which are standard laptop or
desktop computers with regular 2D monitors. Given that viewing 2D image
stacks from the CT and MR scans on a monitor is a considerable difference from
the reality they experience in an actual surgery, it seems advantageous to be
able to view and interact with this 3D data in a 3D environment, and at the
highest image quality their displays can reproduce.

The reason radiologists use special high contrast monitors is that CT and
MR data are typically generated with a single luminance data point per pixel
at 12 bit dynamic range. Standard monitors only have a dynamic range of 8 bit
for luminance values, which are typically displayed as grayscale values.
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The goal for our work was to maximize the available contrast in the data for
virtual reality (VR) headsets. These often have an even smaller dynamic range
than desktop monitors, which made the work even more important for us. But
the findings in this paper apply to regular monitors equally well, as long as the
goal is to display the CT or MR image stack in its entirety with volume rendering
techniques.

This paper offers three novel contributions. First it introduces a real-time im-
plementation of 3D Contrast Limited Adaptive Histogram Equalization (CLAHE).
This allows medical professionals to interactively enhance the contrast of a me-
dial volume or image stack within a 3D viewer. It also introduces two new exten-
sions to the real-time algorithm, which give the user more flexibility and control
over the contrast enhancement. The first extension is a focused version, which
applies the contrast enhancement algorithm to a specified block of the medical
volume. The second extension is a masked version which applies the algorithm
to a particular organ or organs.

2 Related Work

2.1 Medical Images

MR scanner data is stored in DICOM files as a series of 12 bit grayscale images
with each slice of the scan stored as a separate image. In order to display as much
of the detail as possible, special high dynamic range (HDR) grayscale monitors
were developed. These monitors are based on the Grayscale Standard Display
Function, which was developed based on the number of gray values the human
eye can detect [5, 7].

Numerous DICOM viewers have been developed that allow a user to view
DICOM files on their available display. Most of these are 2D viewers, which allow
a user to view an MRI scan one slice at a time. The interaction available gener-
ally includes zooming in and out of the image, the ability to take measurements,
and perhaps apply some preset filters to the image to increase or decrease the
contrast. There are some 3D DICOM viewers that create a 3D visual represen-
tation of the 2D slices that can then be viewed on the available 2D display. In
general, the interaction with these viewers is the same as their 2D counterparts.
There have been some more recent developments using virtual and augmented
reality (AR) to display and interact with 3D scans in an immersive environ-
ment. However, they are still in development and are all limited to displaying
within the 8 bit standard dynamic range. While HDR grayscale displays found
a hardware solution to display the details in medical scans, the same solution is
not currently available on laptops or in AR and VR headsets. Overcoming this
mismatch, and enhancing the contrast of the 3D visualization of these medical
images in real-time is the focus of this paper.

2.2 Contrast Enhancement Techniques

Image processing techniques have been around for decades. One method that
has sparked a lot of research is histogram equalization (HE) [4]. This method
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was developed in the 1970s and has the goal of increasing the global contrast of
an image, and is especially useful when applied to images that are either over or
under exposed. HE works by redistributing pixel values for an image throughout
the entire dynamic range, and has been shown to produce particularly good
results in x-ray images [2].

Histogram equalization enhances the contrast based on the pixel distribution
of the entire image, which may lead to areas that still appear over or underex-
posed. Adaptive Histogram Equalization (AHE) was developed to help combat
this effect and improve the contrast of these local regions. AHE creates local his-
tograms for each of the pixels in an image, so that the final enhancement adapts
to these smaller image sections. This is done by dividing the image into Contex-
tual Regions (CR) and bi-linearly interpolate between these local histograms to
generate the final image [6, 9].

A drawback to both Histogram Equalization and Adaptive Histogram Equal-
ization is the possibility of magnifying noise within the original image. Contrast
Limited Histogram Equalization aims to counteract this problem by limiting the
contrast amplification. This is done by clipping the histogram at a predefined
value, or clip limit, which in turn reduces the final contrast of the image [9].
Contrast Limited Adaptive Histogram Equalization (CLAHE) combines the ad-
vantages of the Contrast Limited approach to limit contrast and noise, as well
as the ability to decrease the over and underexposed regions in the final image
with Adaptive Histogram Equalization [12].This combination of methods pro-
vides multiple parameters that allow for flexibility and control over the final
enhancement of the image. Adjusting the number of CRs changes the amount
of detail enhanced in the final image whereas the changing the clip limit affects
the overall contrast and enhancement of the final image.

2.3 Medical Imaging Enhancement

Since Histogram Equalization is both an effective and simple method for con-
trast enhancement, it is a popular choice to enhance medical images. CLAHE
has a track record for providing good contrast enhancements for a variety of
medical images, and has been shown to be effective and helpful for the doctors
diagnosis, and interaction with the medical images [10, 8]. With the development
and availability of 3D visualization, multiple papers have taken to adapting 2D
methods to 3D. Amorim [1] extended CLAHE for 3D volumes by creating local
histograms for a sub-volume of the medical volume, and tri-linearly interpolat-
ing between these local histograms. These results while impressive are not fast
enough for real-time applications. This work takes this 3D CLAHE method and
develops it for real-time applications.

3 Implementation

We started by developing a Python version of the original 2D CLAHE algorithm,
and the 3D extension by Amorim [1, 12]. The first step in CLAHE is to create
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a look-up table. This look-up table (LUT) is used to convert the dynamic range
of the input image into the desired output dynamic range. This is done with a
simple linear mapping shown in Equation 1, where this equation is applied for
each of the gray values in the original input image. The inMin and inMax are
the maximum and minimum values of the input image, together making up the
input dynamic range. numBins refers to the number of gray values within the
desired output dynamic range. This LUT will be the size of the input image
dynamic range and contain the mappings between the original dynamic range
to the desired dynamic range. This LUT and the mapping used to generate it is
where the dynamic range disparity is handled.

LUT [inGrayV al] =

⌊
inGrayV al − inMin

binSize

⌋
binSize =

1 + inMax− inMin

numBins

(1)

After this LUT is generated, the local histograms are created. This is done
by dividing the image or volume into smaller sections or CRs. Local histograms
are then created for these sections where each histogram counts the number of
times each of the possible gray values occur within a particular CR. Once the
Histograms have been generated for their respective regions, the histograms are
clipped based on a clip value. Any gray values that occur more times than this
clip value within a CR are redistributed evenly throughout that histogram. This
redistribution limits the amount of times a particular gray value can occur, which
in turn limits the resulting contrast of the final image. This is done with the goal
of reducing the amount of noise in the final image. The clip limit presented in
[12] was calculated as given in Equation 2. This one clipV alue is used to clip all
the histograms such that there is no more than clipV alue pixels with a particular
gray value in any of the CRs.

clipV alue = clipLimit · (sizeCRx · sizeCRy)

numBins
, cliLimit ∈ [1,∞) (2)

The clipLimit is a user inputted value that must be larger than 1. A value of
1 corresponds to a completely uniform distribution of pixels and visually results
in an unaltered image. As the clip limit increases, the contrast is also increased.
If, however, the clipV alue is larger than the count for the most common gray
value in a CR, the histogram will not be clipped and the clip Limit will have no
effect on the image. Figure 1 shows the histograms and resulting images for the
example case of using just one CR for the image. The value for the clip limit
can be thought of as how far away the histograms can stray from a uniform
distribution. Through experimentation, values between 2 and 8 seem to give a
good range of results, but the results do vary between different amounts of CRs
and different sized images.

This clip limit is constant throughout the adaptive equalization process.
Meaning that the same clipV alue is used for every local histogram. So it is
possible that the clip value only clips some of the histograms. We implemented
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Fig. 1. Resulting Images and plots of the histogram (in red), CDF (in blue), and
clipV alue (in green). Using a single Contextual Region for the entire image and varying
values for the clipV alue calculated with Equation 2.

a more adaptive approach to the clip limit in which it is treated as a percentage
of the most frequently occurring value in a particular CR (Equation 3. With this
approach the clipLimit ranges between [0, 1], with a value of 1 corresponding to
the fully enhanced contrast, and the smaller the value corresponding to less con-
trast in the final image. It is important to place a lower bound on the clipV alue
since it would be impossible to re-distribute the values of the histogram if they
were clipped below a uniform distribution. The minClipV al or lower bound is
found utilizing the original formula for the clipV alue and 1.1 as the clip limit
because the closer the clipV alue is to a uniform distribution, the harder it gets
to re-distribute the histogram values. Figure 2 shows the results of this approach
for varying clip values on a DICOM slice, again using 4x4 CRs.

clipV alue = max
(
minClipV al, clipLimit ·max(histcurrCR)

)
minClipV al = 1.1 · (sizeCRx · sizeCRy)

numBins
, clipLimit ∈ [0, 1]

(3)

Fig. 2. Applying CLAHE to a slice of an MRI DICOM with an increasing clipLimit
where clipV alue is calculated with Equation 3.



6 K. Lucknavalai, J.P. Schulze

The difference between these two approaches is subtle. The original approach
treats the clip value as a global clip on the histograms, which results in a smooth
transition between the raw image and the CLAHE enhanced image. On the other
hand, the percentage approach depends on the local histograms, which results
in a local clipV alue that adjusts the contrast of each local region individually.
Figure 3 shows the comparison between these two approaches using 4x4 CRs on
a single DICOM slice. To make the comparisons as close and fair as possible,
the clip limit used in the original global method is equivalent to the average clip
limit applied in the local approach. So the overall contrast is about the same
for these sets of images; however, differences can be seen between the two sets
of images. The original method seems to over expose the center bottom of the
images especially in middle and right images. Whereas the details in this region
are better preserved in the local approach. The rest of the results presented will
be using this local approach to the clip limit.

Fig. 3. Comparison between using the clipV alue as calculated in the original CLAHE
paper (Equation 2, with the presented adaptive/local approach (Equation 3).

Once the histograms have been clipped, the cumulative distribution function
is calculated for each histogram to create the mapping between the original gray
value and the CLAHE enhanced gray value. The final pixel value is determined
by bi-linearly interpolating between the 4 neighboring CR mappings in the 2D
case, and tri-linearly interpolating between the 8 neighboring CR mappings in
the 3D case. The results of the 3D implementation of CLAHE can be seen in
Figure 4. All the 2D images shown are from DICOM slices which are 512x512
pixels, and the Volumes are on the full 512x512x116 DICOM volume.
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Fig. 4. Comparison between the original DICOM volume on the left, alongside the
CLAHE enhanced volume on the right.

3.1 Optimizing for Real-Time Interaction

The initial implementation was done in Python because of its simplicity when
working with images. However, it became clear that the speed limitations of
the language would be unacceptable for a real-time application. Running the
algorithm on just a DICOM slice would take about 2.2 seconds, and the entire
volume took about 5 minutes. These are nowhere near acceptable run-times for
a real-time application. The fist change to speed up the computation was to re-
implement the algorithms in C++. This change alone produced a considerable
improvement: computing the entire volume went from 5 minutes to 3 seconds,
which was still not fast enough for real-time. To further optimize, we transferred
the algorithm onto the GPU using GLSL Compute Shaders.

Using GLSL Compute Shaders provides a significant speed up since they are
computed in parallel on the GPU. But only a few of them can be done in lockstep
due to hardware constraints. Since the GPU allocates the computations the user
has little control over the how the computations are completed or the order in
which they are computed. So if a particular block of code needs to be completed
by all inputs before moving onto something else, it is safest to place that block of
code in its own shader. This is especially crucial for any global data that needs
to be accessed in parallel between the threads or used for future computations.

The first step in the 3D CLAHE algorithm is computing the LUT to map
from HDR to SDR. The equation for calculating this mapping is straightforward
(Equation 1). However, in order to compute this table, we need to know what
the max and min values of the volume are. In Python, this was calculated with a
function call. In C++, a double nested for loop is needed to loop over every single
pixel in the volume. With compute shaders, it is calculated with one dispatch call
to run a single compute shader that processes each pixel in the entire volume.
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Once the Max and Min values for the volume are computed, a separate com-
pute shader can then be called to compute the LUT. Computing the histograms
can similarly be done with a single shader. Clipping the histograms and re-
distributing the pixels is less straightforward. The algorithm works by evenly
re-distributing the pixels that are above the clip value, which means that the
amount of pixels above this value, or the number of excess pixels, needs to be
known before they can be re-distributed. As a result, the process of clipping
the histogram needs to be done through multiple shader executions - the first
to calculate the number of excess pixels in each histogram, and a second to
re-distribute those evenly throughout the histogram.

The next step is to calculate the mapping from the original gray value to
the new histogram equalized gray value. This is done by calculating the Cumu-
lative Distribution Function for each histogram. This is the only portion of the
algorithm that not optimized through compute shaders. To be done efficiently,
Cumulative Distribution Functions should be calculated in a sequential order.
This is, unfortunately, not easy to make efficient with compute shaders. After
dispatching the compute shader, there is no explicit control over the order in
which those groups, and therefore indices, are being processed. So it is possible
that the CDF value for index 100 gets computed before the value for index 1.
This is a problem because the value for index 100 is dependent on the values
calculated for index 1 through index 99. To ensure that these values were calcu-
lated sequentially, they were instead computed via CPU based multi-threading,
with one thread per histogram.

The last and final step is interpolating between these mappings to process
each pixel in the volume and generate the final 3D enhanced volume. Overall,
changing from Python to compute shaders decreased the computation time to
the point that these could be completed in real-time. This will allow for the user
to vary the parameters and interact the results in real-time.

4 Results

4.1 Run-time Results

The initial CLAHE implementation in Python was prohibitively slow for a real-
time application, even in the 2D case, so it was in need of optimization. The
differences in language speed alone can clearly be seen through the speed up in
run-times for the Python and C++ implementations. The improvement between
C++ and the GLSL compute shader implementation, while not as drastic, does
offer a significant boost in getting the algorithm to run in real-time. The average
measured run-times for the Python, C++ and GLSL implementations can be
seen in Table 1, and the data used was a 512x512x116 DICOM volume.

4.2 Extensions

In an effort to provide more focused and varied control of the contrast en-
hancement, I implemented two new versions of a selective application of the
3D CLAHE algorithm; Focused CLAHE and Masked CLAHE.
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Table 1. The average computation time in seconds for the Python, C++ and GPU
based CLAHE methods, calculated on a laptop with an Intel HD Graphics 620 Graphics
Card.

Python (secs) C++ (secs) GLSL (secs)

2D 2.201 0.025 −
2D focused 3.228 0.019 −
3D 400 3.092 1.165

3D focused − 0.333 0.189

Focused CLAHE: Focused CLAHE allows the user to focus the contrast en-
hancement on a particular region of the image or volume. This is accomplished
by extracting the desired region from the original image or volume, and apply-
ing the CLAHE algorithm on just that extracted region. When working with a
smaller portion of the entire image or volume, the number of CRs has a large
impact on the results. The more regions used, the more specialized those map-
pings become which further enhances the images, sometimes to the point that
any noise in the original image is also enhanced. The affect of just varying the
number of CRs can be seen in Figure 5. All these results are applied to the same
240x240 pixels with a clip limit of 0.75. With all other factors held constant, it
can be seen that the increased number of CRs also enhances the noise.

Fig. 5. Comparing the number of Contextual Regions for a focused region in a DICOM
slice.

To help reduce the amount of noise in the final image, instead of letting the
user choose the number of CRs in addition to the area CLAHE is applied to, we
decided to calculate the number of CRs to use based on number of pixels in the
desired focused region. Based on visual inspection and trial and error, we found
that using one CR for every 100 pixels seems to produce a good balance between
adaptive enhancement without too much noise. The results from the 3D version
of this Focused CLAHE method can be seen in Figure 6. The size and placement
of the focused region can be manipulated by the user, with the results shown
in real-time. The dispatch calls to create the histograms for Focused CLAHE
are based only on the size of the region. However, the call to interpolate and
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create the entire volume still needs to be based on the full volume dimensions
to produce a complete volume.

Fig. 6. Two different viewpoints of the DICOM volume with Focused CLAHE applied
to different regions of the volume. These images show the flexibility of Focused CLAHE
in that the user can adjust both the size and placement of the focused region.

Masked CLAHE: A second method to focus the enhancement on a region
of interest is Masked CLAHE. In this case, the enhancement is directed to a
particular organ or set of organs. This method utilizes masks of the organs
for each slice in the DICOM to help determine which pixels to include in the
histograms and apply the enhancement to. In Focused CLAHE, the volume is
divided into CRs, with the number of CRs based on the size of the focused
region. In the Masked version, CLAHE is applied to a small region of the overall
volume. This means that breaking that masked region into CRs runs the risk of
having a very small number of pixels in each histogram, or not having those CRs
be evenly distributed throughout the organs. As a result, we chose to implement
this Masked version with just one CR for each masked organ.

5 Conclusions

We developed an algorithm to help improve the contrast of MRI data on typical
monitors and VR displays. To accomplish this, we developed a 3D version of
CLAHE. CLAHE itself is geared towards improving the contrast of medical
imaging, and the 3D version further improves that enhancement for medical
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Fig. 7. The first column of images show the raw DICOM file displayed as a part of the
entire volume, and the organs alone. The next four images show two different views of
the DICOM volume and organs after applying Masked CLAHE.

volumes. We optimized the 3D CLAHE computations for real-time interaction by
computing them with compute shaders. We then extended 3D CLAHE to focus
on a particular region of the volume - Focused CLAHE, and Masked CLAHE, in
which the user can enhance the contrast of a particular organ. With our GPU-
based implementation, all of these computations can be done in real-time to
enable the user to interact with the different methods.

6 Future Work

Our current algorithm uses a linear look-up table to map the HDR values to
the standard dynamic range. The simplicity of this method is beneficial to the
overall speed of the algorithm, but it may be possible to use a better compression
method such as the Accelerated Bilateral Filter method [3].

To further improve the CLAHE algorithm, the Local Contrast Modification
CLAHE method could be added to help improve the results [11]. The current
method used in Masked CLAHE is not adaptive. It should be investigated if the
results could be improved with the addition of adaptive methods and using more
than one CR.
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