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ABSTRACT

We present the results of our investigation of the feasibility of a new approach for collaborative drawing in 3D,
based on Android smart phones. Our approach utilizes a number of fiduciary markers, placed in the working area
where they can be seen by the smart phones’ cameras, in order to estimate the pose of each phone in the room.
Our prototype allows two users to draw 3D objects with their smart phones by moving their phones around in
3D space. For example, 3D lines are drawn by recording the path of the phone as it is moved around in 3D
space, drawing line segments on the screen along the way. Each user can see the virtual drawing space on their
smart phones’ displays, as if the display was a window into this space. Besides lines, our prototype application
also supports 3D geometry creation, geometry transformation operations, and it shows the location of the other
user’s phone.
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1. INTRODUCTION

3D data visualization1 is a typical application for virtual environments (VE). When displaying data to a user,
the user may want to manipulate or query the data or objects in the virtual world to obtain more detailed
information.2 Collaborative virtual reality (VR) applications allow multiple users to navigate the virtual world
and view the data.3 Some of the existing multi-user VR systems or applications have been developed for the PC,
where the input devices are simply keyboard and mouse4.5 In this type of non-immersive VR the user typically
sits in front of the computer and does not get up and move around to interact with the system. In immersive
VR systems, such as virtual reality CAVEs,6 the user is surrounded by large displays and can operate the system
while standing and moving about. This better takes advantage of the spatial skills people have developed over
the course of evolution. However, immersive VR systems often require customized and expensive display and
input devices to operate, and are thus unavailable to the average person. Head-mounted VR devices, such as
the Oculus Rift, allow the user to be immersed in the graphics, but block the view on the real world, so that
collaborative applications with people in the same room are more difficult to achieve. Mobile devices are an
inexpensive alternative with which users are able to navigate through the virtual world by moving the devices
as if they were windows into the virtual world, while the virtual world remains co-located with the real world.
Using this concept, we set off to build an application which implements a prototype of a multi-user VR aplication
based on smart phones, in which the users can simultaneously draw in 3D and view their own drawings, as well
as their collaborators’. We call this a 3D whiteboard, because our concept allows the users to collaboratively
create 3D sketches, for which they might otherwise have used an actual whiteboard.

The paper is organized as follows: Section 2 discusses prior work in this field. Section 3 explains how the
devices communicate with one another, and how the 3D world is synchronized. Section 4 discusses how we
do pose estimation. Section 5 examines performance and accuracy of our application. Section 6 discusses our
results, before Section 7 concludes the paper.
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2. RELATED WORK

Mobile virtual reality applications have used a variety of ways in order to solve the problem of pose estimation.
Traditional virtual reality systems rely on 3D tracking devices,7,8 or simply take input from mouse, joystick, or
specialized 3D input devices. Our goal was to use only the smart phone for pose estimation, so that the user
does not have to acquire additional hardware.

Some of the existing applications for mobile VR can estimate the device’s pose by using the data from
multiple of its sensors, which is called sensor fusion.9 The idea is to use the data from gyroscope, accelerometer
and magnetometer (compass) to obtain as accurately as possible a position and orientation.10,11 Sensor fusion
works well for orientation, but it is very difficult to estimate position due to issues with noise. Additionally, the
accuracy of the accelerometer is poor at high velocity, as discussed in.12 Since position is a critical component
of VR applications, other approaches have been investigated. Some commercial products use the device’s GPS
(Global Positioning System),13 but because the precision of the GPS is on the order of meters14 and requires a
line of sight connection with the satellites, it is insufficient for a 3D whiteboard, let alone using it indoors.

Another alternative for pose estimation is structure from motion (SfM). This is a technique from computer
vision, which estimates both orientation and position based on images taken of the environment. However, SfM
is a very compute intensive approach, not yet suitable for smart phones.

A more successful approach has been marker-based pose estimation. It is suitable for collaborative augmented
reality (AR) applications15 because it has high accuracy, and automatically comes with a global coordinate
system, namely the space the markers are located in. A simple AR tennis game16 illustrates this idea for
collaborative AR. We decided to utilize this approach in our project because existing libraries work reasonably
well and run on a smart phone. Similar collaborative AR ideas are used in multi-user AR games such as ”Invisible
Train”17 and ”Rock ’Em Sock ’Em Robots”.18 These collaborative AR applications build their global coordinate
systems with special marker patterns, which blend more into the scene than the fiduciary markers we use, but
are more complex to parse. We require our markers to be placed in multiple locations around the work area, so
that the users’ phones do not all have to point in the same direction.

3. COMMUNICATION AND SYNCHRONIZATION

Because our 3D whiteboard application is for multiple users, the smart phones need to communicate with one
another. We use the wireless network for communication. The network architecture to exchange information
between users is a traditional client-server model with a TCP connection. The server runs on one of the Android
phones, the others run clients. Our prototype only supports two devices: one is the server and the other one is
the client. We exchange the state of the virtual world (the 3D scene) every 10 milliseconds. Only changes to the
scene are exchanged during this time window. The scene is rendered locally on each phone. The state includes
the following data:

• Position and orientation of the other user.

• Commands for transferring geometry and the geometry’s parameters.

• Commands for geometry creation (creation of lines or cubes) and modifications (transformation, deletion
and color changes).

• Other information (e.g., marker IDs and positions).

4. POSE ESTIMATION

We use a set of fiduciary markers, which consist of a black square on a white background, along with a non-
rotationally symmetrical pattern inside it. Multiple markers in our work environment allow greater ranges of
orientations for the phones, as well as a larger area the users can move around in.



4.1 Marker Encoding, Detection and Pose Estimation

To detect and track the markers, we use OpenCV’s marker detection functionality19 with a custom marker ID
encoding method. The marker patterns are composed of eight black and white squares. We calculate the marker
ID as a binary number. This allows us to more easily create a large number of distinct markers compared to the
ARToolkit method, which is done by a bitwise XOR operation with ARTag.20 We slightly modified that marker
encoding method: the original encoding algorithm is similar to the encoding system in ARTag,20 which divides
the inner rectangle of the marker into grids, with each rectangle in the grid representing one bit; if the rectangle
is filled, the bit is set. With our method we can distinguish a total of 28 = 256 different markers. The remaining
algorithms for marker detection, recognition and pose estimation are similar to other marker tracking libraries
such as ARToolKit.21

Figure 1. Marker with 8 fields to encode 8 bits.

4.2 Enlarging the Workspace by Using Multiple Markers

Using only one marker limits the size of the working area to one that is too small for two people to do reasonable
work with our 3D whiteboard technique. In order to increase the size of the workspace, we use multiple markers
to enlarge the workspace. The AR library ArUco22 discusses this approach. The benefit is not just to enlarge
the workspace; the robustness of tracking is also increased: if only one marker is tracked, sometimes the marker
detection algorithm will fail and report an incorrect pose. However, with multiple markers in the camera’s field
of view, the probability that all pose estimations are wrong is relatively low, so tracking is more stable. In
addition, users can just track part of the marker array since the camera pose can be calculated by only one
marker if the 3D positions for all the markers are known. Based on the multiple markers concept, we extend this
idea to place markers anywhere in the work space rather than putting them all in one plane. Putting markers
in arbitrary positions can give the users more freedom to move their phones around the space. However, it is
harder to measure the positions of the markers with respect to one another. In order to allow users to calibrate
the marker positions, we use 3D reconstruction techniques, which we discuss in the next section.

4.2.1 Measuring Marker Positions

To measure the 3D positions of markers, we need to use camera frames that include the markers whose 3D
positions are known and markers whose 3D positions are not known. We use the known markers as references
to determine the poses of the other markers. We assume that the first marker processed has the origin as its
center and its ID value is zero. We decide that the first marker lies in the XY plane, and the positions of its
four corners are determined by the physical marker size, which is 90mm for each side (see Figure 2). For each
image that we use to reconstruct the unknown markers, we record the image coordinates of four corners of each
unknown marker and the camera pose of that image. The camera pose is computed by known markers. We
choose the marker which is the earliest reconstructed in the image to estimate the camera pose to reduce the



error that is accumulated from previous marker reconstructions. To find out which marker was reconstructed
the earliest, we record the markers’ ”age”, which is a number indicating how many marker reconstructions are
made before reconstructing this marker. The age of each reconstructed marker is calculated as the average age
of the markers that are used to find the camera pose. The oldest marker is the origin whose age is zero, the
younger markers have successively larger numbers. We do the marker position measurement offline and store
each marker’s position; then we can load the stored marker information to allow for pose estimation when the
3D whiteboard application is running.

Figure 2. Coordinate system of the marker.

4.2.2 Triangulation

To reconstruct the markers’ positions, we use several triangulation methods. The first one is linear triangula-
tion,23 which is based on solving the linear system of 3D point projection; however, due to non-linear distortion
and noise, the actual position cannot be perfectly reconstructed. We further use iterative linear triangulation24

to minimize the reprojection error. Sometimes noise or an oblique viewing angle of the marker that is used
for pose estimation causes a poor reconstruction result. To avoid problematic reconstruction errors, we use
random sampling techniques.25 For a non-reconstructed marker, we collect enough numbers of images for it and
randomly choose some images to do the reconstruction. After the reconstruction, we check if the reprojection
error is below a certain threshold; if it is, we accept the result. Users can run the random sampling multiple
times to find better reconstruction results for different images. We also tried the Levenberg-Marquardt (LM)
algorithm to minimize the reprojection error after using linear triangulation. The LM algorithm very effectively
reduces the reprojection error; however, we found that the reconstruction result is similar to that of iterative
linear triangulation. Since iterative linear triangulation is faster, we chose to use it.

After the reconstruction for every marker is finished, we force the four corners of each marker to be coplanar;
this reduces instability when estimating the camera position in our experiments. To make the corners coplanar,
the least square plane fitting method26 is used to find the plane that allows the sum of distances from the corners
to the plane to be minimized. We further adjust the corners to restore the marker’s properties (right angle for
each corner and length of 90mm for each edge). We first make the two diagonals in the reconstructed marker
perpendicular by rotating the corner around the intersection of the diagonals, which we call C. The rotation
axis is the norm of the fitting plane. After the diagonals are perpendicular, we adjust the length between C and
each corner to be 45

√
2mm; this further stabilizes the estimated pose.

4.2.3 How Many Images Are Needed for Marker Calibration?

To find out how many images are sufficient for marker calibration, we use different numbers of image to do the
reconstruction several times and find the error range of the reconstruction result. To measure the error of the



reconstruction result, we use the markers whose actual positions are known and compare the differences between
the reconstructed positions and actual positions. As mentioned above, we use ”age” to represent how early
a marker was reconstructed. Age 0 is the oldest (the first found) marker which contains the origin, younger
markers have larger number as their ages. We measured the error for ages from 0 to 3. Figure 3 shows that the
error range is similar if we use more than 5 images, so we use 5 images for the reconstruction since more images
take more time to do the reconstruction.

4.2.4 Multiple Markers in Field of View

Currently, if there is more than one marker in the camera frame, we take at most two markers to do the pose
estimation. We estimate the camera pose from each marker, and then use linear interpolation between these two
poses to get our final pose estimation. The linear interpolation includes translation and rotation. The rotation
interpolation is done with quaternions.27 We use the distance between the marker and the phone’s camera to
calculate the weight for the interpolation. The weight is inversely proportional to the distance between the
marker and the phone, which means that markers closer to the phone have higher weight in the interpolation.

4.2.5 Help From Sensor

When markers are not in the field of view of the camera, we switch to using the gyroscope to at least estimate
the orientation. The orientation estimation from the gyroscope is reliable in the short term;11 as long as we can
get the marker back into the camera frame by rotating, the gyroscope can help compensate for the loss of marker
visibility.

5. ACCURACY

We measured the accuracy and stability of our pose estimation, done by OpenCV’s marker detection algorithms,
to find out the effective tracking range. We use a very precise optical DTrack tracking system as our position
tracking reference and compute the error as the distance between reference position and estimated position.
We measured markers with ages from 0 to 3. The markers’ positions and the coordinate systems are shown in
Figure 4. However, since the positional reconstruction errors for reconstructed markers are constant for each
marker, the measurement results are similar for each age. Therefore, we only show the results for age 0. We
only move the camera in the XZ plane since we do not have devices that can control the position on the Y axis
well. We measured with resolutions of 640×480 and 320×240. Figures 5 and 6 show the results. We treat the
centers of the markers as world origins, the graph shows the distance in X and Z directions between the marker
center and the camera postion. There are two subgraphs. The upper subgraph shows the average error and the
lower subgraph shows the standard deviation of the error. The average of the error shows the average absolute
distance between actual camera postion and estimated postion. The standard deviation of the error represents
the stability of the tracking, low standard deviation means the error does not scatter much. According to the
graphs, we can see that the standard deviation grows quickly once the Z distance between marker center and
camera is greater than 800mm. Therefore, to get stable tracking, we should keep the distance between marker
and camera less than 800mm.

6. RESULTS

6.1 Screen Shots

To illustrate what our Android app looks like, we are presenting a few screen shots in this section. There is
also a short video clip, see Video 1 at the end of the paper. Figure 7 shows a red box, which is created by
one of the users, and both users can see it. Figure 8 shows a box; after a transformation it became a cuboid.
Figure 9 demonstrates the line drawing function. We can use the function to draw lines or write text in 3D
space. Figure 10 is a close-up.



Figure 3. Reconstruction error for different ages with different numbers of images.

6.2 Processing Time

6.2.1 Camera Frame Processing Time

The camera frame processing time depends on the camera resolution. We tested the application on a Samsung
Galaxy S II. The camera frame processing for a resolution of 640×480 takes about 100 to 200ms depending on



Figure 4. Experimental setup for accuracy measurements and the coodinate system.

Figure 5. Accuracy measurements for resolution of 640x480 pixels.

Figure 6. Accuracy measurements for resolution of 320x240 pixels.

how many markers are detected. At a resolution of 320×240 it takes about 60ms to 120ms. Unsurprisingly, lower
resolution reduces processing time. However, since the marker’s image is smaller then, too, marker detection
becomes harder, and the effective tracking space would also shrink.



Figure 7. A box was created and is visible on both phones.

Figure 8. A box after translation and transformation to a cuboid.

Figure 9. We drew ”‘OK”’ in 3D space and both users can see it.

6.3 A Case Study for Scene Design

We used our application to build a simple scene with the functions we provide. The purpose was to find out if
our application can allow users to design a simple scene. The scene includes a house and a tree. The house is
constructed using transformed cubes and a heart-shaped line. The tree is composed of a transformed box and



Figure 10. The screen shot of the ”OK” we wrote.

a spiraling green line as the leaves. The screen shot of the scene in the phone is Figure 11. Figure 12 and 13
show the model which is displayed on the PC. We tried to reproduce a similar scene by 3DS Max (shown in
Figure 14).

Figure 11. A screen shot of the phone. It shows the house we built with the modeling functions.

Figure 12. Showing the house we made in PC by PC version OSG.

6.3.1 Case Study discussion

In this section, we discuss the pros and cons of the modeling function.

Pros:

• If the functions of the game are supported, the game could be started as the model is completed; this
concept is common for user design based games. Possible products for a 3D design game can be based on



Figure 13. Another viewing direction of the house we made. This figure shows that some transformation of the geometries
are not very accurate.

Figure 14. The model we reproduced by 3DS Max.

structure design. For example, users will be able to create a building together and see if their building can
withstand an earthquake once they finish the design.

• Since free hand drawing in 3D space is supported, the 3D spiral line (the leaves) can be drawn in an
intuitive way. This process does not require that the line is drawn on a plane and then modified.

Cons:

• We found that the precision of transformations cannot be controlled as well as with a modeling tool on
a PC, as Figure 13 illustrates; it can only make the transformation roughly because the amount for the
transformation is set by the movement amount on the touch screen. We do not support users insofar as
inputting the transformation amount currently.

• The tracking precision is still a problem, which dramatically affects the line drawing since the point position
will be wrong. The problem is not only the pose estimation noise; sometimes, there is marker misdetection.
Marker misdetection introduces huge errors in the pose estimation.

• The total time for modeling by our application is much longer than when using 3DS Max since the functions
for modeling and basic geometry creation are not supported well. For example, geometry copy and paste
functions are not supported. This really slows down the speed for creating objects that have symmetrical
structures. Also, the box creation must start from a cube and its dimensions must be modified later.
Notably, 3DS Max can determine the dimensions of the box while the user is creating it.



. Video 1. This video clip shows the 3D Whiteboard app in action: http://dx.doi.org/doi.number.goes.here

7. CONCLUSIONS AND FUTURE WORK

We showed that a collaborative Android application with 3D pose estimation is feasible. This application
demonstrates that it is possible to develop multi-user interactive 3D applications with mobile devices. Possible
applications of this prototype could be multi-user games based on user-designed 3D objects. The users do not
need a dedicated network server. The user’s positional tracking is done by multiple fiducial markers in physical
3D space. Users can use our application to find the 3D positions of the markers. The marker information and
the drawn objects can be saved and shared with other users. The effective working distance from markers is
about 800mm according to our experiments. The camera frame processing time depends on processor speed and
camera resolution, but it is possible that it can run in real-time with latest phones.

Our application still requires markers in the environment. In the future, we hope that we can use markerless
tracking. PTAM on the iPhone 3G28 shows that markerless augmented reality is possible on smart phones.
However, some issues remain regarding markerless systems, which need to be considered. One is determining
how to make the coordinate systems of each user consistent. PTAM builds the coordinate system by assuming
that the first two key frames are taken by moving the camera approximately along the X direction of the image
coordinate system; the actual distance between the two key frames is assumed. As such, it is hard to guarantee
that other users can build the same coordinate system since it is impossible for each user to have the same key
frames. Using some special natural feature could build the same coordinate system for both users,29 but we need
to consider how large the workspace could be for users. Making a coordinate system consistent for multiple users
is a key point in the development of this type of technology. In addition, we can also try to allow more users
to be involved; however, this may require a workstation as the networking server to deal with the information
exchange for more users.
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