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Abstract
Virtual reality is rapidly becoming a pervasive component

in the field of computing. From head mounted displays to CAVE
virtual environments, realism in user immersion has continued to
increase dramatically. While user interaction has made signifi-
cant gains in the past few years, visual quality within the virtual
environment has not. Many CAVE frameworks are built on li-
braries that use rasterization methods which limit the extent to
which complex lighting models can be implemented.

In this paper, we seek to remedy this issue by introducing
the NVIDIA OptiX real-time raytracing framework to the CAVE
virtual environment. A rendering engine was first developed using
NVIDIA OptiX before being ported to the CalVR virtual reality
framework, which allows running OptiX in CAVE environments
as well as modern consumer HMDs such as the Oculus Rift.

Introduction
Before delving into the solution, it is important to understand

the problem. Equally as important, we must know how we have
arrived at this problem.

Advancements have been made in the field of computer
graphics driven by different motivations. On one end, there is in-
teractive rendering. Rendering in which a user is able to move
around the scene, move objects within the scene, or move the
scene itself. The advancements in this region have been largely
motivated by the gaming industry, visualization, and computer-
aided design to name a few. In these applications, interactive
frame rates are integral to a usable product. On the other end,
there is photorealistic rendering, a field which has been largely
motivated by the special effects industry as well as advertisement.
It is often more possible to create a good looking view of a prod-
uct by using photorealistic rendering rather than having to deal
with complex lighting systems and cameras to capture a photo-
graph in a physical environment. Similarly, it is often easier (and
sometimes necessary) to create a frame of a movie through ren-
dering techniques to allow for unreal appearances or to cut cost of
production.

In recent years though, there has been an increased need to
have realism in virtual environments. As virtual reality becomes
more a part of our every day lives, it too becomes integrated with
other fields within academia as well as in industry. Virtual real-
ity has become a key part of training within the military. Service
men and women are currently being trained using head mounted
displays, omni-directional treadmills, and virtual cockpits. In this
sense, it is imperative to create a sense of realism for the individ-
ual in training. A lack of realism could lead to a disconnect to
one’s training when out in the field. Another field in which virtual
reality applications have seen a marked increase in quantity is the
field of medicine. Whether it is for surgical training or phobia
treatment, the desire for realism stands.

In this publication we describe how we integrated the

NVIDIA Optix [12] real-time raytracing library into our virtual
reality framework CalVR [11] so that we can render VR environ-
ments interactively.

Related Work
As previously mentioned, knowing where to start building

a solution requires knowledge not only of the problem itself, but
why the problem exists in the first place and how it developed.

Before the 1970s, shading methods were performed on a
coarse-grained polygon level until the introduction of shading
models which more realistically modeled lighting and materials
within the real world. Diffuse shading on the polygon level - a
method developed by Gouraud [5], was the method of choice for
rendering at this time until 1974 when Phong [6] and Blinn [7]
introduced specular shading on the fragment (pixel) granularity.

By the 1980s and 1990s, a lot more focus had been dedi-
cated to the implementation of complex lighting models. Various
methods such as ray tracing introduced by Whitted [8], Radiosity
by Goral/Torrance [9], and path tracing developed by Kajiya [10],
were able to achieve new levels of lighting complexity that exist-
ing methods could not. The development of physically accurate
lighting models has been an important factor which has brought
us to the visual results we see in graphics applications every day.

Over the years, there has been a great divergence between
the interactive and photorealistic sectors of the field of Computer
Graphics. Today, there are various libraries to choose from for
development of interactive graphics applications. Some examples
include OpenGL, a cross platform API, and DirectX, a Windows-
specific graphics API. Over the years, much of the focus has been
on increasing the amount of geometry within a scene while main-
taing interactive frame rates as well as efficient texturing tech-
niques. Unfortunately, very few tweaks for realism have been
made over the years. Real-world phenomena such as shadows
have been poorly addressed within the world of interactive graph-
ics. Current methods only allow for hard shadows to be rendered
at interactive frame rates within these graphics APIs.

Photorealistic rendering has seen many more techniques in-
troduced since the 1990s such as bi-directional path tracing,
Metropolis Light Transport, and Photon Mapping. These tech-
niques allow for high levels of realism by allowing global illumi-
nation, realistic soft shadowing, and refraction through multiple
media. Historically, though, these methods are very slow. To gen-
erate a single frame using these complex algorithmic methods, it
may take minutes, hours, or even days.

Motivation
In comparing the two methods of polygonal rendering and

ray tracing, a distinguishing factor emerges. In interactive, polyg-
onal graphics, much of the time spent generating a frame for dis-
play on the screen is spent sending data to the GPU. Interactive
graphics relies on a method called rasterization; an inherently se-



rial process. For each object in a given scene, all data must be
directed to the GPU serially. Current frameworks implement the
aforementioned Z-buffer algorithm for determining object depth
with respect to a specific viewer. As such, generation of visual
data in an interactive rendering context is not conducive to multi-
threading.

Ray tracing, a photorealistic rendering technique, is an in-
herently parallel workload. This allows implementation to take
advantage of multiple processing units in parallel. This is espe-
cially attractive when considering scalability. Rasterization tech-
niques find performance increases in determining what is able to
be avoided whereas photorealistic rendering is driven by the de-
sire to achieve better results based on what is even possible with
lighting models that have yet been discovered.

Normally, CAVE environments are mechanized by a cluster
of nodes, where each node is dedicated to generating display data
for a specific screen or set of screens within the viewing region. In
the context of photorealistic rendering, this lends itself perfectly
to the idea of parallelization. For a given scene, the workload
can easily be divided amongst various nodes within the cluster to
generate various parts of the frame which can be stitched together
to form a complete image.

CalVR
CAVEs are immersive virtual reality environments which are

typically a video theater situated within a larger room. The view-
ing area is comprised of multiple screens, often times oriented in
such a way that the viewer can be completely surrounded. The
viewable area can be made of screens which are rear projection,
or LCD displays oriented in a tiled fashion.

At UCSD, several CAVE environments exist. Namely, the
StarCAVE (rear projection screens), NexCAVE, TourCAVE, and
WAVE (all tiled LCD monitors). All of these CAVEs run on a
common framework called CalVR. CalVR is a portable virtual re-
ality framework developed at the Qualcomm Institute of UCSD.
CalVR implements typical VR functionality of middleware such
as window and viewport creation, viewer-centered perspective
calculations, multiple graphics channels displays, multiprocess-
ing, multithreading, cluster synchronization, and stereoscopic 3D
viewing. Additionally, it supports non-standard VR systems such
as autostereoscopic displays, 3D menu system, among others.

CalVR uses OpenSceneGraph, a graphics API written in
standard C++ which uses OpenGL. As a result of this, CalVR
uses rasterization methods which allows it to achieve reliable in-
teractive frame rate. With the introduction of new graphics APIs
which harness the parallelization capabilities of GPUs, it was our
goal to integrate such a tool into the CalVR framework.

OptiX
One such framework which provides the capability to har-

ness the parallelization capabilities of GPUs is the OptiX render-
ing framework developed by NVIDIA. OptiX itself is not a ren-
derer, but rather a general purpose ray tracing API which facili-
tates development of applications built for the purposes of render-
ing, baking, collision detection, A.I. queries, etc. OptiX is based
on NVIDIA CUDA, a parallel computing language platform with
syntax and compilation very similar to that of the C language.
The OptiX framework works by offloading computation to GPUs
based on kernels written by the developer and passed into the Op-

tiX engine. Within these kernels, the developer is free to perform
any computations necessary for a given algorithm. This is espe-
cially helpful when developing for the CalVR framework due to
the flexibility for implementation of various photorealistic render-
ing techniques.

As of the release of OptiX 3.5, a new addition was added
to the API which handled the construction and traversal of ac-
celeration structures as well as ray-triangle intersection routines,
responsible for roughly 90% of the computation within a ray trac-
ing application.

Ray Tracing
The development of the CalVR Plugin began with the cre-

ation of the rendering engine written in OptiX. The first task was
to build a ray tracer that was capable of producing soft shadows
with a movable area light, as well as structured importance sam-
pling of an HDR environment map.

Area Light
The first step was to implement shadow ray casting. The ray

generation program shoots a ray into the scene from the location
of the camera through the image plane and intersects the objects
within the scene. Upon a successful intersection, a shadow ray is
shot from the location of the intersection to the light source itself.
If there is an intersection on the path from the point of intersec-
tion to the light source, the object is in shadow. The second step
was to create the area light itself. The area light is represented
simply as an anchor point and two vectors which extend from the
anchor to form a parallelogram. Once the area light was created,
the algorithm for shooting shadow rays needed to be modified.
The modification made first was to shoot 100 samples along the
parallelogram which formed the area light.

The method of sampling was uniform jitter in which for the
10x10 grid of samples along the area light, the same sample point
within each of the 100 squares was chosen (Figure 2). The algo-
rithm for uniform jitter can be seen in Algorithm 1.

Algorithm 1 Uniform jitter algorithm

1: procedure AREA LIGHT

2: let offset = rand float2()
3: let irradiance = float3(0)
4: for each sample i ∈ N do
5: Shoot ray from intersection to light with offset
6:
7: if no occlusion from hit point to light sample then
8: Add contribution to irradiance
9:

10: end if
11: end for
12: end procedure

As seen in Figure 1, the uniform jitter sampling technique
creates banding due to repetition in the way the area light is sam-
ple by nearby points in the scene. Due to this complication, it was
evident that the sampling technique needed to be altered again. In
order to remove the banding, random numbers needed to be used.
A buffer was created on the host end and passed down to the de-
vice code. By doing this, each pixel in the window has different



Figure 1: The beginning stages of the ray tracer (left) with only one shadow ray cast per intersection. Uniform sampling of the area light
source (middle) creates visible banding due to a lack of randomness in the sampling pattern. Stratified area light source sampling (right)
creates a much more pleasant soft shadow.

Figure 2: Uniform jitter sample (left) samples each grid element
in the same relative location. Stratified sampling (right) samples
a random position within each respective grid element[2].

offset values to lessen any sort of repetition within the sampling
of the area light. The algorithm for this stratified technique can be
found in Algorithm 2. Results showing the improvement over the
uniform jitter algorithm can be seen in Figure 1.

Algorithm 2 Stratified algorithm

1: procedure AREA LIGHT

2: let irradiance = float3(0)
3: for each sample i ∈ N do
4: let offset = offset buffer(i)
5:
6: Shoot ray from intersection to light with offset
7:
8: if no occlusion from hit point to light sample then
9: Add contribution to irradiance

10:
11: end if
12: end for
13: end procedure

Figure 3: Depiction of the three sampling strategies used for the
grids scene. The random sampling (top) technique causes un-
wanted noise as a result of potential clumping of sample points.
Uniform jitter (left) has less noise than the random sampling re-
sults but still has some noticeable noise especially within the grid
spaces. Stratified sampling (right) has the best results with smooth
soft shadows and gradual transition from shadowed regions to lit
regions.

The ray tracer really was the rendering engine in its
nascency. At the time the soft shadow implementation was devel-
oped, it was novel. Until that point, image processing solutions
had been used to approximate soft shadows to maintain interactive
frame rates.

Progressive Photon Mapping
While ray tracing allows for decent performance and far su-

perior image quality to rasterization methods, ray tracing does not
adequately model more complex lighting. For example, ray trac-
ing is unable to model real world phenomena such as caustics.
A caustic is a result of a curved surface directing light to a focal
point. It is the process in which the trajectory of photons from a
light source is bent in a similar fashion such that photons meet at
specific areas in a scene which appear to the viewer as very well
lit.

Despite the success of the ray tracer developed, GPU tech-
nology is improving rapidly enough to where more complex algo-
rithms can be implemented in preparation for improved hardware
capability. Because of this, the next step was to improve the ren-
dering engine to encompass progressive photon mapping.

GPUs are very capable computing devices when fed data
quickly. They have great potential for providing marked perfor-
mance improvement in workloads that allow for parallelization.
Where GPUs fall short is in memory bandwidth as well as mem-



Figure 4: Results generated with the renderer developed and described within this paper. The two images are of the famous Cornell Box.
Purely diffuse surfaces (left) show noticeable color bleeding on the sides of the two boxes from the red wall on the left and the green wall
on the right. Specular mirrored surfaces (right) for the large box as well as the floor show reflection of photons within the scene creating
a reflection of the smaller box on the front face of the larger box. Notice the reflected light off the top of the tall box onto the ceiling as it
bounces directly from the light source and is absorbed by the diffuse ceiling material.

Figure 5: Progressive photon mapping diagram illustrating the
iterative process of continually refining the results at the hit points
by shooting more photons from the light source[3].

ory capacity. Photon mapping is a rendering algorithm which is
known to require large quantities of memory for storage of pho-
tons that have been absorbed around the scene. An extension of
photon mapping is a method called progressive photon mapping
in which smaller quantities of photons are traced from the light
sources at a time, but are gathered at hit points throughout the
scene. Photons are continually traced from the light source and
the hit points are refined to have more accurate irradiance values.
This is a three pass algorithm, all three passes are discussed in the
subsequent sections.

Algorithm 3 PPM Trace

1: procedure TRACE

2: if camera position has changed then
3: ray tracing pass()
4: end if
5: photon tracing pass()
6: Generate kd-tree
7: gather photons()
8: end procedure

Ray Tracing Pass
The first of the three passes is the ray tracing pass. In this

pass, primary rays are traced from the cameras location into the
scene to find hit points which are visible within that pixel’s vol-
ume. During this pass, material properties of hit points are queried
to determine whether to store the point of intersection as a hit
point or continue by shooting more rays. This qualification is
tested based on a given materials specularity value. If a material
is specular, a hit point is not recorded at the point of intersection,
but rather another ray is recursively traced to find the object being
reflected at the hit point. Hit points are stored in a buffer allocated
on the GPU from the host side.

Algorithm 4 Ray tracing pass

1: procedure RTPASS

2: if material is diffuse then
3: Store hit point in output buffer
4: else
5: Recursively trace a reflected ray
6: end if
7: end procedure

Photon Tracing Pass
The second of the three passes is the photon tracing pass.

This is the pass in which photons are traced from the light source
itself and stored into an output buffer if it hits a diffuse material.
The tracing algorithm is quite similar to that of the first ray tracing
pass in that specular materials result in a reflected ray. However,
in the photon tracing pass, photons are stored upon hitting a dif-
fuse surface and a recursive ray is traced. Unlike the reflected
ray for specular materials, the direction of the recursively traced
ray from a diffuse surface is generated along the unit hemisphere.
That is, the hemisphere that resides on top of the normal at the
point of intersection. Random number generation is very impor-



Figure 6: The image on the left is an image generated using the renderer described in this paper. It addresses the SDS light path problem
and clearly shows the caustics within the rings being reflecting in the mirror. On the other hand, the image on the right (not rendered
by the renderer described in this paper) which employs bidirectional path tracing fails to capture the caustic from the case in the mirror.
Notice the caustic appears as a shadow when reflected from the mirror[4].

tant in ray tracing applications for exactly this reason. If there is
any bias or repetition, there will be unwanted visual effects. Ide-
ally, the direction of the recursive ray would be completely ran-
dom, since this is how light travels off of diffuse surfaces in the
real world. Recursive ray tracing from diffuse surfaces allows for
color bleeding between the wall and tall block as seen in Figure 4.

Algorithm 5 Photon tracing pass

1: procedure PPASS

2: if material is diffuse then
3: Store hit point in output buffer
4: Recursively trace a reflected ray sampled along the

unit hemisphere
5: else
6: Recursively trace a reflected ray
7: end if
8: end procedure

Gather Phase
The third and final of the three stages of the progressive pho-

ton mapping algorithm is the gather phase. This is the phase in
which a kd-tree is queried to find photons near the hit points gen-
erated from the ray tracing pass. This kd-tree is generated on the
host side out of the photon hit points generated during the photon
tracing pass. This process occurs between the photon tracing and
gather phases. At a very high level, the idea of photon mapping is
that in order to find the light paths converging on a singular point
in space within the scene, we estimate based on the light paths of
the parts of the scene around that point. The photons which hit the
area surrounding a given hit point are likely to have the same light
paths as the hit point in question (the view point generated from
the ray trace pass). However, as the radius of photons which we
take into consideration grows, so too does the disparity in the like-
ness of the light paths of all those absorbed photons. Conversely,
as the radius shrinks and we continue to gather photons hitting
nearer and nearer the hit point in question, the more similar the
light paths are and the better the results. At the limit where the
radius approaches 0, the result converges on all of the light paths
reaching the given hit point.

SDS Path

A major topic of research within the Computer Graphics
community within the past decade has been on creating algo-
rithms which are capable of handling the SDS path. This is a
phenomenon in which a light ray travels from the light source, hits
a specular surface, a diffuse surface, another specular surface, and
then reaches the camera. The ability to handle this complex light
path has become a measurement of the effectiveness of a given
rendering technique.

Existing methods such as path tracing struggle to converge
on a correct result due to the low likelihood of tracing a ray from
a diffuse surface which will reach the eye. Specifically, when a
ray is traced and intersected, the reflected ray coming off of the
diffuse surface is generated by randomly sampling the unit hemi-
sphere surround the normal vector at the hit point. The number of
directions that can be chosen when sampling the unit hemisphere
is infinite. As a result of this, method such as path tracing and
even bidirectional path tracing struggle to make the connections
between the diffuse surface and the viewer.

Progressive photon mapping, on the other hand, handles this
specific light path very well. As seen in Figure 6, the progressive
photon mapping technique implemented in my renderer shows
caustics in the mirror. Contrast this to the mirrored desk scene
in Figure 6 where the caustic of the vase is unable to be properly
reflected in the mirror.

CalVR Plugins

Applications are developed for CalVR in the form of plug-
ins. Plugins in CalVR must implement a virtual base class which
contains functions called by the CalVR core. The last part of this
project was to create a plugin for CalVR. The biggest hurdle in
integrating OptiX with CalVR was the compilation of the source
files into a shared library. In order to use a specific plugin, CalVR
needs to be rebuilt such that the core knows which plugin to load
at runtime. Each plugin is compiled into a shared library, and its
virtual functions specified by the CalVR Plugin based class are
called by the core for rendering as well as for callbacks such as
various forms of user input.



Config Files
It is also noteworthy that CalVR Plugins are initialized dif-

ferently depending on the specific CAVE environment the appli-
cation is running on at a given time. Each of the CAVE envi-
ronment has differing hardware specifications, number of moni-
tors, number of nodes, IP addresses, among other traits. These
specifics are passed into the CalVR Plugin as well as the CalVR
core through the use of config files. These files are files in XML
format which specify the aforementioned traits of a CAVE envi-
ronment as well as desired priority, tracking information (mouse,
heads, hands), and menu system information.

Future Work
The renderer presented in this work has many more features

it can include to more accurately represent phenomena within the
real world. A possible improvement to the progressing photon
mapping algorithm implemented would be the addition of a dis-
tributed rendering pass such that the method becomes stochas-
tic progressive photon mapping. This alteration to the existing
pipeline may prove to in fact be quite small. Visual improvement
would take the form of improved representation of SDS lighting
paths as stochastic progressive photon mapping performs more
samples with a given pixel volume.

Additional improvements to this renderer could take the form
of subsurface scattering as well as participating media. Subsur-
face scattering is a phenomenon in which photons traverse com-
plex light paths within a medium itself rather than reflecting off.
The most commonly used example of this is shining light through
a human finger. A third and final potential improvement to the
renderer is the ability to render light paths through participating
media such as clouds, smoke, or fog. Both of these methods could
also prove to be integrated with the existing rendering framework
with ease as photon mapping lends itself very well to these two
extensions.

Conclusion
With the release of various rendering frameworks such as

NVIDIA’s IRay and NVWorks, it seems very clear that the future
holds much promise for distributed photorealistic rendering using
GPUs. Although the common method for generating displayable
data for a CAVE environment at present is scene graph OpenGL-
based libraries, GPU-based ray tracing methods are become ever
more attractive as dramatic improvements in performance con-
tinue to be made.

In this paper, the process by which a rendering engine was
built using the OptiX ray tracing API was introduced, as well as
the way in which it was integrated into the CalVR CAVE virtu-
ality reality framework. Within the past few years, much modern
technology has been released and improved to allow users a more
visually pleasing immersive experience. On the whole, applica-
tions have done well to make use of the improved hardware ca-
pabilities with the existing methods. However, it is important to
always consider the ways in which the improved hardware can be
used differently than the way it is used by existing methods.
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