
Hotspot Mitigation in the StarCAVE

Jordan Rhee, Jurgen Schulze, Thomas A. DeFanti

California Institute for Telecommunications and Information Technology (Calit2), University of California San Diego

(UCSD)

Abstract

Rear-projected screens such as those in Digital Light Projection (DLP) televisions suffer from an image quality

problem called hot spotting, where the image is brightest at a point dependent on the viewing angle. In rear-

projected mulit-screen configurations such as the StarCAVE at Calit2, this causes discontinuities in brightness at

the edges where screens meet, and thus in the 3D image perceived by the user. In the StarCAVE we know the

viewer’s position in 3D space and we have programmable graphics hardware, so we can mitigate this effect by

performing post-processing in the inverse of the pattern, yielding a homogenous image at the output. Our

implementation improves brightness homogeneity by a factor of 4 while decreasing frame rate by only 1-3 fps.

1. Introduction

The StarCAVE at Calit2 is a room-sized immersive

virtual reality environment that projects 3D images in

real-time. The cave is used for displaying higher order

scientific data in real time, such as protein structures

and earthquake simulations. The user wears polarized

glasses and stands in the center of an array of 15

screens, each driven by two projectors. The user sees

images in 3D because the system uses polarizing

filters to send a different image to each eye. In order

to give a 360° viewing angle, the screens are rear-

projected. As with all rear projected screens, the

StarCAVE suffers from an image quality problem

called hot spotting.

The software framework that runs in the cave is called

Covise (See Covise). Cave applications are written as

Covise plugins, and multiple plugins can run at the

same time. Covise abstracts the fact that the

application is running in parallel over many machines

and multiple OpenGL contexts, and handles things

such as stereo perspective calculations and OpenGL

context management.

Figure 1. Simplified top view of the StarCAVE. Each wall has

three screens, with two projectors driving each screen. The cave

has a total of 15 screens and 30 projectors.

Hot Spots. A bright spot appears on each screen in a

unique location determined by the viewer’s position,

the screen’s position, and the projector’s position. The

image is brightest at the hot spot, with brightness

decreasing outwards. Because the hot spots are in

different locations on each screen, there are

discontinuities in brightness at the edges where

screens meet, making the effect more noticeable in a

tiled display configuration than a single screen

configuration.

Figure 2. This CAD model of the cave shows a side view of one

of the walls. The projectors are located behind the screens, so the

position of the hotspot changes depending on where the user is

standing in the cave. Image courtesy of Greg Dawe.

The hot spotting problem has been around for a long

time, most notably in DLP (Digital Light Projection)

televisions, which cope with the problem using

Fresnel sheets (Takahashi). For the StarCAVE, using

Fresnel sheets was prohibitively expense because of

the custom nature of the system, and the required

screen size and resolution (DeFanti).

In the cave, we have a critical piece of information not

available to the makers of rear projection televisions -

the viewer’s position in 3D space. This allows us to

compensate for the viewing angle-dependent hot

spotting effect in a post processing step in software.

The idea is to draw an inverse hotspot as the last stage

in the rendering cycle so the image appears

homogenous to the viewer when displayed. We

implemented this strategy in a Covise plugin, with the

result that image quality in the cave is qualitatively

improved. Two key requirements for the

implementation were to seamlessly integrate with

other Covise applications and to not adversely affect

performance. Our implementation meets both of these

requirements. Frame rate in typical Covise

applications is reduced by 1-2 fps, while brightness

deviates over a range of 0.1, as opposed to 0.4 without

mitigation. This paves the way for acceptance into the

Covise codebase and adoption by others.

2. Strategy

To achieve the end goal of the viewer perceiving a

homogenous image, we compensate for the hot spot

effect in software. After the application has rendered

its scene to the frame buffer, we modulate the

brightness of the image in the inverse profile of the

hot spotting effect. The idea is, when the image is

displayed, the two modifications cancel each other out

and the user sees a homogeneous image. To

effectively compensate for the hot spotting effect, we

need to characterize it analytically and empirically.

Based on this characterization, we will design a

correcting function. Finally, we will implement the

correcting function as a post processing step in the

OpenGL rendering pipeline. We will use a GLSL

fragment shader to perform the computationally

expensive work of modulating the brightness of each

pixel in the frame buffer.

3. Characterization of Hot Spots

The context that most of us are used to seeing a

projector is in a movie theater, where the projector is

at the back of the theater, in front of the screen. It

shines light on the screen, and it bounces off into our

eyes. A good movie screen is opaque and dispersive.

Now, imagine the projector is no longer behind you in

the back of the theater, but in front of you, behind the

screen. If the screen is opaque, we see nothing. If the

screen is completely transparent like a pane of glass,

we don't see an image; we are looking straight into the

projector's lens and are blinded. In order for us to see

an image, the screen must be translucent - it must pass

some light, but unlike a clear pane of glass must

disperse some light. The brightness of the image is not

uniform, however. Imagine a line from your eyes to

the projector's lens, and think of the screen as a plane.

The image on the screen appears brightest where the

line intersects with the plane. This point is the hot

spot. As we walk around the theater, the location of

the hotspot on the screen changes because the line

from our eyes to the projector intersects with the

screen in a different place.

Hot spots occur because the screens are rear-

projected, and because the screens are partially

dispersive and partially transmissive. For an

explanation of why hot spotting occurs, we look to

theory of light transmission through diffuse media

[Eliyahu]. The intensity of diffuse transmission

through random media is given by

𝐼 = 𝐾(
1

𝛿
)𝑆𝑇 𝜃 [𝑅𝑒 Γ + 𝛿 cos𝛼 cos 𝜃 − 𝑅𝑒 Γ′ + 𝛿′ sin 𝛼 sin 𝜃]

where K is an arbitrary constant, and 𝑆𝑇(𝜃) is the

intensity of the scalar field in transmission

𝑆𝑇 θ =
Δ cos θ + cos2 𝜃

1 + Δ

𝜌 = 𝑑𝑒𝑝𝑜𝑙𝑎𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑖𝑜 [0, 1.0]

𝛼 = 𝑎𝑛𝑔𝑙𝑒 𝑜𝑓 𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑐𝑒 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑓𝑟𝑜𝑚 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑛𝑜𝑟𝑚𝑎𝑙

𝜃 = 𝑠𝑐𝑎𝑡𝑡𝑒𝑟𝑖𝑛𝑔 𝑎𝑛𝑔𝑙𝑒 (𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑓𝑟𝑜𝑚 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑛𝑜𝑟𝑚𝑎𝑙)

Γ =
1 − 𝜌

1 + 𝜌

𝛿 = 𝜌
1 − 𝜌

1 + 𝜌

𝜌′ = 𝜌 + 𝜌 1 − 𝜌

Γ′ = Γ − Γ 1 − Γ

𝛿′ = 𝜌′Γ′

Δ = 1.0

Using this model, we plot the intensity of transmitted

light versus the viewing angle for several values of the

depolarization ratio 𝜌 in figure 3.

Figure 3. This graph shows the intensity of linearly polarized light

transmitted through a diffuse medium for several values of the

depolarization ratio. The x axis is angle of incidence in radians,

the y axis is intensity. Imagine standing in front of the screen and

rotating your head as you look from the left edge of the screen to

the right. The intensity is greatest at 0 angle of incidence, when

you are looking straight at the center of the screen. As you

continue turning your head to the right, the intensity decreases and

eventually crosses zero because of the incident light exceeds the

critical angle. The shape of the cave is such that it would be

physically challenging to look at a screen at an angle greater than

the critical angle, so this is not an issue. We note that the

analytically predicted angular dependence of transmitted light

matches very nicely with the measured data of Figure 4.

We now measure intensity in transmission versus

viewing angle in the Cave. We do this by rendering a

white background, taking a picture of the screen with

a digital camera (figure 4), and plotting the brightness

versus viewing angle (figure 6).

Figure 4. The hot spotting effect is most visible when a flat white

image is displayed. This is a picture of the screen taken with a

digital SLR camera. You can see that the image is substantially

darker at the edges, even though the same color (white) is being

displayed everywhere.

Figure 5. This graph shows brightness versus x-axis for Figure 3

above. This graph was created by holding the y position constant

(in the middle of the image), and moving horizontally across the

image taking samples of the brightness. Each datapoint is the

average brightness of a square region of pixels. This was done to

reduce noise due to optical effects inherent in digital photography.

Figure 6. Intensity versus viewing angle - theory and measured

data. Y-axis: intensity. X-axis: viewing angle in radians.

Theoretical predicted curve (dashed blue). Experimentally

measured data (solid black).

Color Dependence. From Maxwell’s Equations we

know that electromagnetic waves change in direction

and magnitude at the boundary between two mediums

in a frequency dependent manner.

The tangential and normal components of the electric

field on either side of the interface are related by:

𝐸𝑡1 = 𝐸𝑡2

𝜖1 𝜔 𝐸𝑛1 = 𝜖2 𝜔 𝐸𝑛2

The tangential component of the electric field is

continuous, and the normal component is

discontinuous. The discontinuity is proportional to the

ratio of the electric permittivity of the two mediums.

Electric permittivity is in general a complex quantity

dependent on frequency.

In the cave, color dependence is not detectable with

the eye. To determine how prominent the color

dependence is, we plot the intensity of red, green, and

blue light versus viewing angle in figure 7 below.

Figure 7. Intensity of red, blue, and green channels versus

viewing angle. Y-axis: intensity. X-axis: viewing angle in radians.

Color dependence is present, but so slight that we will

not compensate for it. Now that we have characterized

the hot spotting effect theoretically and verified it

experimentally, we will design our compensation

scheme.

4. Design of the Correcting Function

We now must design a function such that when every

pixel in the original image is multiplied by this

function, the user will perceive an image of

homogenous brightness at the output. Obviously, a

number times its inverse is 1, so the optimal

correcting function is the inverse of the solid black

curve in figure 5 above [proof in Appendix A].

There are two constraints on the correcting function.

First, the intermediate product of the correcting

function and the original image must not exceed 1 or

parts of the image will saturate and image quality will

degrade. Second, the correcting function must be

computable quickly on the GPU.

One simplification we can make is to write the

correcting function as a function of linear position

across the screen instead of angle of incidence and

scattering angle. By the small angle approximation,

tan⁡(𝑥) ≈ 𝑥 for small values of x. Viewing angles for

a given screen in the cave range from 20° - 30°. In

figure 8 below, we plot brightness versus viewing

angle and brightness versus linear position on the

same plot. The negligible difference between the two

curves validates usages of the small angle

approximation.

Figure 8. Brightness versus viewing and brightness versus linear

position. The x-axis units have been normalized [0, 1] to fit both

curves on the same plot.

To compute the correcting function quickly on the

GPU, we approximate it as linear. In the figure below,

the original image is 1 (constant white background),

the hot spot effect is shown in solid blue, and the

optimal correcting function is shown in dashed red.

We notice however that the optimal correcting

function is always greater than 1, and since our input

is equal to 1, the product of these two functions will

be greater than 1, violating the requirement that the

intermediate product of the original image and the

correcting function be less than or equal to 1.

Therefore we must shift the correcting function

downwards so it is always less than or equal to 1.

Figure 9. Y-axis: brightness, x-axis is linear position on screen,

similar to figure 5. Optimal correction function (dashed red).

Linearly approximated correction function (solid red). Original

image (horizontal line at y = 1). Perceived image before

compensation (solid blue). Predicted perceived image after

compensation (dashed black).

The predicted brightness of the image after

compensation is shown in dashed black. We notice

several things about this curve.

 While not perfectly flat, it is much flatter than

the image would be without hotspot

mitigation. Testing in the cave shows that the

eye cannot perceive this slight nonlinearity,

and the image does appear homogenous.

 There is an upper limit on brightness that

cannot be exceeded without saturating the

image. The edges of the image dictate the

brightest part, and the rest of the image must

be normalized to these points. The difference

between the blue curve and the dashed black

curve represents the amount of brightness

we’re losing. At the center of the image, there

is a 53% loss of brightness. This is bad, and

we want to avoid it. The constant white

background is a worst case scenario though,

and we will see later that typical images

displayed in the cave are dark enough that we

don’t have to worry about saturation. In fact,

we have found that we can make the edges

brighter by a factor of 1.4 ~ 1.8 without any

noticeable saturation, resulting in a brighter

image than we started with.

Now we want to see how well our simplified

correction function performs in the real world. The

results are shown in figure 8 below.

Figure 10. Y-axis: brightness. X-axis: linear position. Linear

correction function (solid red). Perceived image before

compensation (solid blue). Predicted perceived image after

compensation (dashed black). Actual perceived image after

compensation (solid black).

The first thing we notice between the theoretical and

measured data is vertical displacement. This can be

explained by automatic color correction and white

balance by the camera. We used a Nikon D3000

digital SLR mounted on a tripod to take these pictures.

We set the ISO and exposure manually, but in order to

get anything to turn out we had to use automatic white

balance. Automatic white balance is applied as a

constant over the whole image, so the relative

brightness between points remains valid. When the

two curves are shifted on top of each other in figure 9,

we can see the correlation much better .

Figure 11. Y-axis: brightness. X-axis: linear position. Linear

correction function (solid red). Perceived image before

compensation (solid blue). Predicted perceived image after

compensation (dashed black). Actual perceived image after

compensation with vertical displacement (solid black).

Considering the many approximations involved and

the inherent imprecision of taking a picture of the

screen with the camera, we would consider this an

excellent correlation between theory and the real

world. The difference between the real curve and

theoretical curve can be accounted for by imprecision

in the measuring device - the camera. The pictures

were taken in very low light, and the camera simply

isn’t sensitive enough to detect such subtle changes in

brightness.

5. Implementation

Now that we have examined the hotspotting problem

and we have a strategy of how to compensate for it,

we turn our attention to the implementation. The first

task is to compute the hotspot location given the

viewer's position, the screen position and orientation,

and the projector position. One's first instinct would

be to set up a line-plane intersection formula, but there

is a more elegant way. The viewer's position is

encoded in the OpenGL View matrix and the screen's

position and orientation are encoded in the OpenGL

projection matrix. The view matrix takes object

coordinates to world coordinates and the projection

matrix takes world coordinates to screen coordinates.

To calculate the position of the hotspot in screen

coordinates, we perform a series of matrix

transformations on the projector coordinates:

𝑕𝑜𝑡𝑠𝑝𝑜𝑡 = 𝑝𝑟𝑜𝑗𝑀𝑎𝑡𝑟𝑖𝑥 ∗ 𝑣𝑖𝑒𝑤𝑀𝑎𝑡𝑟𝑖𝑥 ∗ 𝑝𝑟𝑜𝑗𝐶𝑜𝑜𝑟𝑑𝑠

where projMatrix and viewMatrix are 4x4 matrices

and projCoords is a 1x4 vector in homogeneous

coordinates. The result is a 4-component vector where

the first two components are the x, y position of the

hot spot in screen coordinates. The z and w

components can be ignored. Now that we know how

to compensate for the hotspot and how to calculate its

position, we must apply the compensation to the

image.

5.1 Alternative Implementations

We researched and implemented several techniques of

applying the correction function to the original image

before we arrived at the final implementation. We will

now discuss the pros and cons of these

implementations.

Always-on Shader. The idea behind this

implementation was to enable a shader and leave it on,

so that it processed all fragments coming from all

plugins. The potential upside of this technique is that

it would be very fast and simple. By intercepting each

pixel on its way to the framebuffer, there would be no

need for an additional post processing step. This

approach has several critical downsides, however.

First, when you enable a shader, it replaces the fixed-

functionality shader. Since the fixed-functionality

shader is responsible for built-in OpenGL

functionality including texturing, lighting, and fog,

one would have to implement all of these features in

the custom shader. We wrote a simple shader that

operated on the incoming gl_FragColor, but this

approach was highly inadequate because it did not

take care of texture mapping. Elementary shapes with

solid colors turned out fine, but, for example, it made

the Covise menu unintelligible because it did not do

texture mapping. Since in OpenGL there is exactly

one shader enabled at any given time, this would

preclude plugins from using their own shaders -

clearly an unworkable requirement. Also, this

approach is not modular, and is fragile because it

could break if other plugins modify the state of the

rendering pipeline.

Blending. The strategy of this implementation is to

draw the hotspot pattern on a screen-aligned rectangle,

then blend this rectangle with the current framebuffer

using GL_FUNC_REVERSE_SUBTRACT. With this

approach you can subtract (or add) a different value to

every pixel in the framebuffer. The benefits of this

technique are there is no copying involved, it uses

addition and subtraction which is faster than

multiplication, it does not interfere with other plugins,

and it is implemented entirely in OSG, which eases

complexity by leveraging OSG’s state management

facilities. The critical downside of this technique is

that it uses addition and subtraction. Consider a pixel

in the framebuffer (𝑅𝑠 , 𝐺𝑠 , 𝐵𝑠). We want to reduce (or

increase) the brightness of this pixel. So, we subtract a

constant from all three components. (𝑅𝑠 − 𝑐, 𝐺𝑠 −

𝑐, 𝐵𝑠 − 𝑐). We have reduced the brightness of the

pixel, but we have changed its hue, distorting the

color. This technique has a tendency to saturate the

image earlier than scaling. Visual results were very

poor, so this implementation had to be scrapped.

Two other techniques we researched, but did not test,

were using the accumulation buffer, and using

multitexturing. The accumulation buffer suffers from

the same problem as blending in that it does not

support multiplication. Multitexturing lets you

combine textures in many different ways, including

modulation (multiplication). The logical steps in a

multitexturing approach would be as follows:

1. Copy the framebuffer to a 2D texture

2. Draw the hotspot pattern to an auxillary

buffer, then copy it to a 2D texture. This step

could be performed only once during

initialization.

3. Map the texture from 1) to a screen aligned

rectangle

4. Map the texture from 2) to the same rectangle,

specifying the GL_MODULATE function as the

texture combiner.

The benefit of using this approach would be that you

could use built-in OpenGL functionality without

having to write a shader. The downside is that you

lose the generality and flexibility of the shader. This

technique is likely to have worse performance than the

custom shader technique because the computational

work of multiplying each pixel in the first texture by

each pixel in the second is still being performed by the

fragment shader, but with the additional overhead that

comes with the generality of the built-in fragment

shader.

5.2 Final Implementation

Since we want our post processing code to be the last

thing in the rendering cycle, we do it right before the

front and back buffers are swapped. In Covise, this

corresponds to the

CoVRPlugin::preSwapBuffers() callback. The

logical steps in post-processing are:

1. Copy the back color buffer to a 2D texture.

2. Enable the fragment shader with the following

data as uniforms

a. The texture containing the scene

created in 1). (tex)

b. The screen coordinates of the hotspot

(hotspot)

c. The distance from the hotspot to the

point on the screen farthest from the

hotspot (max_dist). The farthest

point from the hotspot will be the

darkest point on the screen, so this is

the point we wish to normalize

against.

3. Draw a screen-aligned rectangle with the

texture mapped to it.

The rest of the work goes on in the fragment shader.

The fragment shader receives as input the rasterized

scene, the hotspot location in screen coordinates, and

the distance against which to normalize. The logical

steps in the shader are:

1. Compute distance from the current fragment

coordinate to the hotspot.

2. Compute the correction factor by the ratio of

this distance to the longest distance. When the

fragment coordinate is equal to the hotspot

location, the ratio is 0. When the fragment

coordinate is the farthest point from the

hotspot, the ratio is 1.

3. Get the RGB pixel values for the current

fragment coordinate by doing a lookup in the

texture. Since the rectangle being shaded is

screen-aligned, the texture coordinate is the

current pixel position.

4. Scale the RGB pixel values by the correction

factor calculated in 2)

The largest bottleneck in this implementation is

copying the screen buffer to the texture. Each pixel

has to travel through the rendering pipeline twice. A

possible way to avoid the copy operation would be to

use Nvidia’s non-standardized Framebuffer Object

extension. The scene could be rendered directly to a

texture, eliminating the need to copy the frame buffer

to a texture.

6. Visual Results

The hotspot mitigation plugin produces a noticeable

improvement in brightness homogeneity in the cave.

The largest improvement comes from better matching

of brightness at the edges where screens meet. Since

the algorithm compensates for the fact that the hot

spot location is dependent on the position of the user

in the cave, the image remains homogenous as the

user walks around. Most images displayed in the cave

are somewhat darker than the worst-case white

background, so we can actually increase the

brightness of the image while mitigating the hotspot

effect at the same time. With bright images there is the

danger of saturation, but this can easily be fixed by

reducing the gain, which is configurable at runtime

from the Covise UI. The user can adjust the

gain/attenuation while standing in the cave until the

image looks homogenous. See Appendix A for visual

results.

Figure 12. Implementation diagram.

Distortion by Hot

Spotting

Perceived Image
Original Image

from framebuffer Correction by post

processing

Figure 13. Quantification of results. We will use spread as a percentage of dynamic range to quantify the homogeneity. Ideal is 0%. Left:

before correction: 57%. Right: after correction: 29%.

7. Performance

Performance is an important requirement. The cave is used for computationally intensive scientific visualization,

so we don’t want to tax the CPU and GPU any more than we have to. The measurable performance benchmark is

frames per second. We hypothesize the algorithm takes constant time per frame. We measure the frame rate of

Optimal Correcting Function Hot Spotting Effect

Dynamic

Range

Spread

= 57%

Dynamic

Range

Spread

= 29%

several applications with and without compensation, and calculate how much time the algorithm adds to the

rendering of each frame.

Table 1. Frame rate of typical cave applications with and without hot spot mitigation.

Plugin
compensation off

(fps)
time per

frame
compensation on

(fps)
time per

frame
difference

(ms)

None 148.4 6.74 125 8.00 1.2615

PanoView360 44.7 22.37 43.4 23.04 0.6701

Calit2 Model 32.5 30.77 31.6 31.65 0.8763

PDB Viewer
(hemoglobin) 40.2 24.88 37.6 26.60 1.7201

Average (ms) 1.132

The algorithm adds about 1ms to each frame. This translates into a reduction of about 1-3 fps in typical cave

applications. This is an acceptable hit as long as the frame rate stays above 30 fps. Below 30 fps, the image looks

choppy.

8. Related Work

US Patent “Graphics System having a super-sampled

sample buffer with hot spot correction” outlines an

architecture for a hardware graphics pipeline and its

potential applications. One of the applications

described is hot spot correction. Intensity scaling

values would be loaded into a buffer and multiplied

per-pixel against the frame buffer to do brightness

normalization, and could be updated as the user moves

around. This is similar to the multitexturing approach

described in section 5.1 Alternative Implementations.

The authors describe their idea but do not present an

implementation or results. There are a number of

standalone hardware devices that apply a ramp

function to the edges of images for blending in tiled

display walls [Inova]. Nvidia holds a patent for Per-

Pixel Output Luminosity Compensation

[USPatent7336277], where the brightness of the

image could be modulated per-pixel by texture

blending. The patent mentions using the technique to

correct for keystone distortion and edge smoothing,

but does not provide a mechanism to update the

compensation in real time as the user moves around.

In “LAM: Luminance Attenuation Map for

Photometric Uniformity in Projection Based

Displays,” Aditi Majumder implements hot spot

mitigation by scaling the brightness of the image by

an attenuation map generated by taking a picture of

the screen. However, it does not provide a mechanism

to update the map in real time based on the position of

the user. The main contribution of this paper is to use

head tracking to dynamically compute the correction

factors in a GLSL shader, which is portable over any

hardware that supports OpenGL. The technique is

applied as a post-processing step in the OpenGL

pipeline and does not require modifications to existing

applications. This paper provides a concrete

implementation on commercially available hardware

with good performance and presents results for a

virtual reality environment.

9. Conclusions and Further Work

The StarCAVE presents a unique opportunity to

combat the common problem of hot spotting because

we know the position of the user at all times and we

have high performance, programmable graphics

hardware. Our implementation produces noticeably

smoother images, and is being used daily by

researchers in the Cave.

The greatest area for improvement is in the correcting

function. Right now it is implemented as a simple

linear falloff, but from the empirical data and

analytical models of light transmission we see the

intensity profile is much smoother. A possible

technique for basing the correcting function off the

empirical data would be to load the empirical data into

a 1D texture, then define an appropriate function to

map distance values to indices in the texture, and use

the texture as a lookup table. Also, we see from the

analytical model of light transmission that the

intensity of transmitted light depends on the angle of

incidence and the scattering angle. Therefore, instead

of the correction factor being a function of distance

from the hotspot to the current pixel, it should be a

function of the angle of incidence from the projector

to the current pixel, and from the current pixel to the

viewer’s position. We believe it is possible to

implement both of these improvements without

affecting performance too much. Using two variables

(angle of incidence and angle of scattering) to

determine the correction factor would require a two

dimensional lookup table, and one would have to

strike a balance between accuracy and texture memory

consumption. Future implementations could use the

Nvidia Framebuffer Objects extension to render the

scene directly to a texture, eliminating the

performance-limiting copy-to-texture step.

10. Acknowledgements

I would like to thank Jurgen Schulze for advising me

on the project, Tom DeFanti and Kaust for funding the

project, Andrew Prudeholme for devising the hot spot

position calculation method, Greg Dawe for figure 2

and CAD models of the cave, and Calit2 for providing

me the opportunity to do this project. This publication

is based in part on work supported by Award No. US

2008-107, made by King Abdullah University of

Science and Technology (KAUST).

References

1. A. Theodorou, “Image post-processing with shaders” Retrieved April 3, 2009, from

http://encelo.netsons.org/blog/2008/03/13/image-post-processing-with-shaders/

2. Anonymous, “Real-Time Fog using Post-processing in OpenGL,” Retrieved April 3, 2009, from

http://cs.gmu.edu/~jchen/cs662/fog.pdf

3. Covise. http://www.hlrs.de/organization/av/vis/covise/

4. D. Eliyahu, M. Rosenbluh, I. Freund, “Angular intensity and polarization dependence of diffuse

transmission through random media,” J. Opt. Soc. Am. A 10, 477-491 (1993)

5. D. Shreiner et al, (2008). OpenGL Programming Guide (6
th
 ed.). New York: Addison-Wesley.

6. Immersive Visualization Lab wiki.

http://ivl.calit2.net/wiki/index.php/COVISE_and_OpenCOVER_support

7. S. Green, “The OpenGL Framebuffer Object Extension,” Retrieved April 3, 2009, from

http://http.download.nvidia.com/developer/presentations/2005/GDC/OpenGL_Day/OpenGL_FrameBuffe

r_Object.pdf

8. T. DeFanti et al, “The StarCAVE, a third-generation CAVE and virtual reality OptIPortal,” Future

Generation Computer Systems, Volume 25, Issue 2, February 2009, Pages 169-178, ISSN 0167-739X,

DOI: 10.1016/j.future.2008.07.015. (http://www.sciencedirect.com/science/article/B6V06-4T7F5J5-

1/2/03c791cd37872aae20833196e41ec097)

9. Takahashi, K. (2000). “Fresnel lens sheet for rear projection screen.” U.S. Patent No. 6052226.

10. Stone, M. C. 2001. Color and Brightness Appearance Issues in Tiled Displays. IEEE Computer Graphics

Applications 21, 5 (Sep. 2001), 58-66.

http://encelo.netsons.org/blog/2008/03/13/image-post-processing-with-shaders/
http://cs.gmu.edu/~jchen/cs662/fog.pdf
http://www.hlrs.de/organization/av/vis/covise/
http://ivl.calit2.net/wiki/index.php/COVISE_and_OpenCOVER_support
http://http.download.nvidia.com/developer/presentations/2005/GDC/OpenGL_Day/OpenGL_FrameBuffer_Object.pdf
http://http.download.nvidia.com/developer/presentations/2005/GDC/OpenGL_Day/OpenGL_FrameBuffer_Object.pdf
http://www.sciencedirect.com/science/article/B6V06-4T7F5J5-1/2/03c791cd37872aae20833196e41ec097
http://www.sciencedirect.com/science/article/B6V06-4T7F5J5-1/2/03c791cd37872aae20833196e41ec097

Appendix A. Visual Results

Original image (left), distorted image (center), corrected image (right). While subtle, the improvement is most noticeable when standing in the cave and

enabling/disabling the hotspot plugin.

Distorted image (left), corrected image (right). The effect is easiest to see when displaying a solid white background.

StarCAVE without hot spot mitigation (left). Notice the discontinuities at the seams. StarCAVE with mitigation (right).

Appendix B. Calculating the Optimal Correcting Function

To put things on a sound mathematical footing, let’s first examine the inputs, outputs, and functions involved.

𝑙𝑒𝑡 𝑓 𝑥, 𝑦 = 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑖𝑚𝑎𝑔𝑒, 𝑔 𝑥, 𝑦 = 𝑑𝑖𝑠𝑡𝑜𝑟𝑡𝑖𝑛𝑔 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛

𝑙𝑒𝑡 𝑕 𝑥, 𝑦 = 𝑝𝑒𝑟𝑐𝑒𝑖𝑣𝑒𝑑 𝑑𝑖𝑠𝑡𝑜𝑟𝑡𝑒𝑑 𝑖𝑚𝑎𝑔𝑒, 𝑗 𝑥, 𝑦 = 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑛𝑔 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛

𝑙𝑒𝑡 𝑘 𝑥, 𝑦 = 𝑝𝑒𝑟𝑐𝑒𝑖𝑣𝑒𝑑 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 𝑖𝑚𝑎𝑔𝑒

We know the original image 𝑓 𝑥, 𝑦 because it’s the thing we’re trying to render, and we know the perceived

distorted image 𝑔(𝑥, 𝑦) because we can take a picture of the screen with a camera. We want to find 𝑗(𝑥, 𝑦), the

correcting function. We can write the perceived distorted image as a product of the original image and the

distorting function.

𝑕 𝑥, 𝑦 = 𝑓 𝑥, 𝑦 𝑔 𝑥, 𝑦

We can write the perceived corrected image as:

𝑘 𝑥, 𝑦 = 𝑓 𝑥, 𝑦 𝑗 𝑥, 𝑦 𝑔 𝑥, 𝑦

We want to find the correcting function 𝑗(𝑥, 𝑦) such that the perceived corrected image is equal to the original

image, 𝑘 𝑥, 𝑦 = 𝑓(𝑥, 𝑦). Substituting and solving yields

𝑗 𝑥, 𝑦 =
1

𝑔 𝑥, 𝑦

It makes sense that the correcting function is the inverse of the distorting function. Now we have to find the

distorting function 𝑔(𝑥, 𝑦). To do this, we set the input 𝑓 𝑥, 𝑦 = 1 and the expression for 𝑔(𝑥, 𝑦) becomes

𝑔 𝑥, 𝑦 =
𝑕 𝑥, 𝑦

𝑓 𝑥, 𝑦
=

𝑕 𝑥, 𝑦

1
= 𝑕(𝑥, 𝑦)

So to find the correcting function 𝑗(𝑥, 𝑦), we set the input 𝑓(𝑥, 𝑦) equal to 1 (by rendering a white background)

and take a picture of the screen. To extract the 1-dimensional brightness profile, we hold the y-coordinate constant

and sweep over the x values. The correcting function is the inverse of this curve.

𝑗 𝑥, 𝑦 =
1

𝑕 𝑥, 𝑦

Appendix C. Fragment Shader Code Listing

//max bound for the alpha value

uniform float max_alpha;

//minimum bound for the alpha value

uniform float min_alpha;

//texture that contains the framebuffer

uniform sampler2D tex;

//location of the hotspot in unit coordinates

uniform vec2 hotspot;

//longest distance from hotspot to other point

uniform float max_dist;

//constant scale factor to do inter-screen normalization

uniform vec4 rgba_scale;

void main()

{

 float dist = distance(gl_FragCoord, hotspot);

 float ratio = dist / max_dist;

 float j = ratio * (max_alpha - min_alpha) + min_alpha;

 vec4 texel = texture2D(tex, gl_TexCoord[0].st);

 //we don't want to modify the alpha channel across the hotspot normalization

 vec4 new_frag_color = texel * j;

 new_frag_color.a = texel.a;

 gl_FragColor = new_frag_color * rgba_scale;

}

	Abstract
	1. Introduction
	2. Strategy
	3. Characterization of Hot Spots
	4. Design of the Correcting Function
	5. Implementation
	5.1 Alternative Implementations
	5.2 Final Implementation

	6. Visual Results
	7. Performance
	8. Related Work
	9. Conclusions and Further Work
	10. Acknowledgements
	References
	Appendix A. Visual Results
	/ /
	/ /
	Appendix B. Calculating the Optimal Correcting Function
	Appendix C. Fragment Shader Code Listing

