
The Perspective Shear-Warp Algorithm In A Virtual Environment

Jürgen P. Schulze∗ Roland Niemeier† Ulrich Lang∗

∗High Performance Computing Center Stuttgart (HLRS)

†science + computing ag

Abstract

Since the original paper of Lacroute and Levoy [9], where the shear-
warp factorization was also shown for perspective projections, a lot
of work has been carried out using the shear-warp factorization with
parallel projections. However, none of it has proved or improved
the algorithm for the perspective projection. Also in Lacroute’s
Volpack library, the perspective shear-warp volume rendering al-
gorithm is missing.

This paper reports on an implementation of the perspective
shear-warp algorithm, which includes enhancements for its appli-
cation in immersive virtual environments. Furthermore, a mathe-
matical proof for the correctness of the permutation of projection
and warp is provided, so far a basic assumption of the shear-warp
perspective projection.

CR Categories: I.3.3 [Computer Graphics]: Picture/Image
Generation—Display Algorithms; I.3.7 [Computer Graphics]:
Three-Dimensional Graphics and Realism—Virtual Reality

Keywords: Volume Rendering, Perspective Shear-Warp, Virtual
Environments

1 INTRODUCTION

The algorithms based on the shear-warp factorization, especially
the one developed by Lacroute [9], are among the fastest volume
rendering algorithms. They have often been compared to hardware
accelerated volume rendering techniques, such as general purpose
graphics boards with texturing acceleration [1], or specialized vol-
ume rendering hardware [6, 11, 10].

Although on single processor machines the shear-warp algorithm
is usually slower than hardware supported solutions, the shear-
warp’s good scalability allows it to be competitive on multiproces-
sor machines [8]. So far, volume rendering in virtual environments
(VE) with multiple screens is dominated by texturing hardware ap-
proaches. Due to the necessary high resolution of about10002 pix-
els per stereo screen, the image quality is limited by the pixel fill
rate. Thus, it degrades considerably when the volume object fills

∗Allmandring 30, 70550 Stuttgart, Germany
Email: {schulze|lang}@hlrs.de
†Hagellocher Weg 73, 72070 Tübingen, Germany
Email: roland@science-computing.de

a significant part of the screens, because subsampling algorithms
need to be applied to maintain an interactive frame rate. In con-
trast, shear-warp rendering speed does not depend on the output
image size. At comparable output image quality in a10002 win-
dow, our PC system (see section 4) renders a643 data set at 2.2
frames per second (fps) using the shear-warp algorithm, compared
to 1.3 fps with texture hardware acceleration.

Many extensions, like stereo rendering [5], parallel algo-
rithms [8], clipping planes [16], and performance improvements [4]
have been added to the shear-warp algorithm for parallel projec-
tions. However, only a few implementations or enhancements of
the shear-warp algorithm for perspective projections were reported,
e.g., an improvement of the warp [2], and none of them address the
compositing.

Perspective volume rendering has well known advantages.
Depth information perceived by perspective projection is impor-
tant, e.g., for radiation therapy planning. Also for immersive virtual
environments a restriction to parallel projection algorithms gener-
ates depth ambiguities. For CAVE-like environments [3], or for
any other non-flat multi-projection environments, perspective pro-
jection is a requirement.

The shear-warp algorithm processes volume data arranged on
cartesian grids. It is based on the idea of factorizing the viewing
matrix into a shear and a 2D warp component, with the projection
done in between. After applying the shear matrix, the volume slices
are projected and composited to a 2D sheared image. The shear step
enables the algorithm to operate in object space with high memory
locality, which optimizes the usage of RAM caching mechanisms.
The warp being performed in 2D space by generating the final im-
age from the intermediate image, decreases the computational com-
plexity considerably, compared to a 3D operation.

Lacroute’s shear-warp thesis [7] adds some ideas to further in-
crease rendering speed. Both the volume data and the intermediate
image data are run-length encoded (RLE) to minimize the number
of memory accesses, to save storage space, and to further increase
memory locality. The RLE encoded volume data are stored in mem-
ory three times, once for each principal coordinate axis. Shading is
performed by precomputing a normal vector for each volume el-
ement (voxel) and assigning colors using a look-up table. A fast
classification can be done by using an octree based algorithm in-
stead of RLE encoding.

This paper introduces the first application of the perspective
shear-warp algorithm in a VE. The mathematical foundation of the
factorization is proved and an implementation is presented. The
implementation features some developments which were necessary
for the algorithm to be used in a VE, such as a clipping plane, ad-
justable rendering quality, usage of texturing hardware for the warp,
and limited concurrent display of polygons. The implementation
was integrated into the VIRVO system [13], which allows its direct
comparison to texture based algorithms. VIRVO provides both a
system independent Java GUI for work on the desktop and a plu-
gin for COVER, which is the virtual reality rendering subsystem of
the visualization software COVISE [12]. The virtual environment
development was done in the CUBE, the University of Stuttgart’s
4-sided CAVE-like device, located at the High Performance Com-

vis01
Presented at IEEE Visualization 2001
October 21 - October 26, 2001
San Diego Paradise Point Resort, San Diego



puting Center (HLRS).
In section 2, we describe the mathematical background of the

shear-warp algorithm. Section 3 addresses specific implementation
requirements for the algorithm when used in VEs. Section 4 pro-
vides performance numbers and a comparison of the shear-warp
algorithm to texture hardware based techniques.

2 THE PERSPECTIVE SHEAR-WARP

In this section, the factorization for the perspective viewing trans-
formation is reviewed in brief. It basically follows Lacroute’s
derivation [7]. Furthermore, the permutation of projection and warp
is proved. Finally, warp performance of the parallel and the per-
spective algorithm is compared.

2.1 Conventions

Lacroute uses four different coordinate systems in his derivation.
We think that for an easier understanding of the algorithm, six co-
ordinate systems are to be distinguished. These are listed in table
1, which also assigns a unique single character identifier to each of
them. Additionally, the coordinate systems are illustrated in figure
1.

Table 1: Coordinate systems.
o object space actual coordinate system of the

volume data set
s standard object

space
coordinate system after permu-
tation of object space coordi-
nate axes

d deformed space 3D coordinates after shear
i intermediate image

space
2D coordinates within interme-
diate image

w world coordinate
space

3D world coordinates

v viewport space 2D output window coordinates

In the following, transition matrices between coordinate systems
carry the names of the corresponding source and destination coor-
dinate systems, e.g., the transition from coordinate systemo to w
would be namedMow. The inverse matrix(Mow)−1 would be
Mwo. Vector elements are namedx, y, z, w.

2.2 Prerequisites

The goal of the factorization is to obtain the shear matrixMoi and
the warp matrixM iv so that the viewing matrix is:

Mov = M iv ∗Moi

The camera parameters define the projection from world coor-
dinates to viewport spaceMwv, so the transformation from object
space to world coordinates is:

Mow = Mvw ∗Mov

2.3 Factorization

This section briefly explains the required computation steps for the
factorization of the perspective viewing matrix.

First of all, the object space eye positioneo has to be found:

Figure 1: Coordinate systems illustrated.

eo = Mwo ∗

 0
0
−1
0

 (1)

Then the slice order and the main principal viewing axis can be
determined. The main principal viewing axis determines the per-
mutation matrixMos, which is needed for the adaptation of the co-
ordinate system to the three principal viewing axis aligned data sets.
Slice order and permutation matrix allow the compositing step to
always process the slices front-to-back with memory-aligned voxel
data.

The standard object space eye position is:

es = Mos ∗ eo

Now we can compute the shear to deformed space:

Msd =


1 0 − es

x
es

z
0

0 1 − es
y

es
z

0

0 0 1 0

0 0 − es
w

es
z

1


The sheared object is scaled to the size of the intermediate im-

age by the scaling matrixMscale. The scaling factor depends on
the object- and voxel-space volume dimensions, and on the slice
order. Section 3.1 will show how to modify this matrix to control
compositing speed.



The deformed and scaled object is projected to the intermediate
image by:

Mdi =

 1 0 0 width
2

0 1 0 height
2

0 0 0 0
0 0 0 1


Width andheight are the dimensions of the intermediate im-

age in pixels. The object is always projected to the middle of the
intermediate image. The size of the image is set large enough to suit
a reasonable viewing range. If this range is exceeded, the scaling
matrix is adjusted so that the object fits.

The above adds up to the overall shear matrix:

Moi = Mdi ∗Mscale ∗Msd ∗Mos

The warp matrix follows from the goal ofMov = M iv ∗ Moi,
incorporating the above equations or their inverses, respectively:

M iv = Mwv ∗Mow ∗Mso ∗Mds ∗ (Mscale)−1 ∗M id

2.4 Permutation Of Projection And Warp

Although the permutation of the projection and the warp step is a
basic premise for the perspective projection shear-warp algorithm,
it has not been proved before. Our proof computes the two viewing
matrices and then compares their components.

Let P be the projection matrix:

P =

 1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1


AssumeW is a general warp matrix:

W =

 w00 w01 w02 w03

w10 w11 w12 w13

w20 w21 w22 w23

w30 w31 w32 w33


S is the shear matrix:

S =

 1 0 ex,z 0
0 1 ey,z 0
0 0 1 0
0 0 ew,z 1


where

ex,z = −eo
x

eo
z
; ey,z = −

eo
y

eo
z
; ew,z = −eo

w

eo
z

The viewing matrix is:

Mov = P ∗W ∗ S (2)

For the shear-warp algorithm, the following matrix is used as the
viewing matrix, with the projection applied before the warp:

V = W ∗ P ∗ S

Comparing the substantial elements of the matricesMov andV
results in potential differences only in the first and second row of
the third column:

Mov
02 = w00 ∗ ex,z + w01 ∗ ey,z + w02 + w03 ∗ ew,z

Mov
12 = w10 ∗ ex,z + w11 ∗ ey,z + w12 + w13 ∗ ew,z

and
V02 = w00 ∗ ex,z + w01 ∗ ey,z + w03 ∗ ew,z

V12 = w10 ∗ ex,z + w11 ∗ ey,z + w13 ∗ ew,z

For leading to identical results, it is sufficient that

w02 = 0 (3)

w12 = 0 (4)

where from (2):

w02 = Mov
00 ∗ ex,z + Mov

01 ∗ ey,z + Mov
02 + Mov

03 ∗ ew,z (5)

w12 = Mov
10 ∗ ex,z + Mov

11 ∗ ey,z + Mov
12 + Mov

13 ∗ ew,z (6)

Multiplying (5) and (6) byeo
z gives:

w02 ∗ eo
z = Mov

00 ∗ eo
x + Mov

01 ∗ eo
y + Mov

02 ∗ eo
z + Mov

03 ∗ eo
w

w12 ∗ eo
z = Mov

10 ∗ eo
x + Mov

11 ∗ eo
y + Mov

12 ∗ eo
z + Mov

13 ∗ eo
w

Because of (1), multiplied byMow from the left side, it follows
that:

Mov
00 ∗ eo

x + Mov
01 ∗ eo

y + Mov
02 ∗ eo

z + Mov
03 ∗ eo

w = 0

Mov
10 ∗ eo

x + Mov
11 ∗ eo

y + Mov
12 ∗ eo

z + Mov
13 ∗ eo

w = 0

independently ofeo
z, which proves (3) and (4).

Therefore, the projection and the warp matrices can be permuted.

2.5 Warp Complexity Comparison

Both the perspective and the parallel projection shear-warp algo-
rithms spend most of their time in the compositing and the warp.
The slightly greater number of matrix computations for the factor-
ization in the perspective algorithm can be neglected.

In the case of parallel projection, the warp is an affine operation
compared to the perspective projection warp, which is non-affine.

Let Wpar describe the general parallel projection warp matrix.
Constant elements are listed as their values,arc represents variable
elements:

Wpar =

(
a00 a01 a02

a10 a11 a12

0 0 1

)
Multiplying Wpar by a vector(x, y, 1)T requires 4 multiplica-

tions and 4 additions, adding up to 8 floating point operations.
Wper describes the general perspective projection warp matrix:

Wper =

(
a00 a01 a02

a10 a11 a12

a20 a21 a22

)
In this case a multiplication with a vector(x, y, 1)T requires 6

multiplications, 6 additions, and 2 divisions, which add up to 14
floating point operations.

From this it follows that the perspective warp takes almost twice
as long as the parallel warp on a system which has equal execution
times for the mentioned operations.

3 ALGORITHMIC ISSUES

The application of the perspective shear-warp in virtual environ-
ments raises several issues which had to be solved. They are ad-
dressed in the following sub-sections.



3.1 Compositing

Keeping the frame rate close to constant is one of the requirements
to establish and to sustain immersion in a VE. For the same rea-
sons, it is crucial for the frame rate not to drop below a certain
value, which is usually in the range of 5 to 10 frames per second,
depending on the application. For the shear-warp algorithm, one
way to increase rendering speed is to reduce the sampling rate.

When using texture hardware accelerated volume rendering
techniques, a constant frame rate can be accomplished, e.g., by
reducing the number of textures drawn [14], which leads to a re-
duction of the sampling rate in one dimension. Care has to be taken
for the opacity correction of the remaining volume slices.

Using the shear-warp algorithm, the following approaches can
be applied to increase rendering speed by a reduced sampling rate:

• Reduction of the number of slices drawn: In the composit-
ing step, a certain number of slices are skipped, just as in the
above described texture based approach. Also, the opacity
values need to be corrected, which does not even slow down
the rendering process, since the shear-warp algorithm already
uses a look-up table for the mapping of RGBA to scalar val-
ues. The disadvantage is that the voxels of the skipped slices
do not contribute to the final image. Furthermore, stepwise
changes in the number of slices drawn are irritating to the user,
which was shown in [13].

• Reduction of the intermediate image size: Drawing a smaller
intermediate image than the optimum 1:1 pixel to voxel ratio
for the first slice requires less voxels to be composited, so that
rendering speed increases. The resulting image looks blurred
due to the reduced intermediate image size, but due to a foot-
print based interpolation, no original data values are ignored.

Due to its smooth variability in the range of image pixels, we
implemented the second solution for runtime frame rate adaption.
Using this technique, there are no abrupt changes in image qual-
ity which could disturb the effect of immersion. Furthermore, if
rendering hardware permits, rendering quality can arbitrarily be in-
creased by enlarging the intermediate image. Figure 2 shows the
effect of different intermediate image sizes on a 128x128x55 en-
gine data set (for data source see section 6).

Figure 2: Intermediate image size:20002 (left) and2502 (right).

Algorithmically, the adaption was implemented by modifying
the parameters of matrixMscale (see section 2.3), thus directly af-
fecting the size of the intermediate image. The fact that also a mag-
nification of the intermediate image is allowed requires the com-
positing to provide not only footprint based resampling, but also
bilinear resampling for the case that there are multiple pixels to be
drawn for each voxel in a slice.

3.2 Warp

Section 2.5 derived the higher complexity of the perspective warp
compared to the parallel warp. Since the warp matrix is not affine
anymore in the case of perspective projection, the warp accounts
for a more substantial part of the total rendering time, compared to
the parallel warp.

Considering that the warp applies a transformation matrix to
2D data, it can be performed by 2D texturing hardware, just as
the parallel projection warp is performed by Pfister’s VolumePro
board [10]: The OpenGL model/view matrix is set to the warp ma-
trix, the OpenGL projection matrix is set to the identity matrix. In
this case the warp matrix is not inverted, while the software warp
uses its inverse to get pixel values from the intermediate image. The
texturing hardware can perform the warp very fast, bilinear interpo-
lation is added at no cost, and the final image size practically does
not affect rendering speed. Furthermore, only the intermediate im-
age has to be transferred to the graphics hardware, instead of the
final image, which usually is the larger one for VE applications. On
a typical SGI Onyx2 system the rendering time share of the warp
is less than 2% using this method (see section 4), so that the warp
time can be neglected when determining overall rendering speed.

Using texture mapping hardware for the warp does not break
with our idea of a software based rendering algorithm. The advan-
tages of the shear-warp algorithm, like easy parallelization and lim-
itation of the volume size to fit to main memory instead of graphics
hardware memory, still persist.

3.3 Clipping Plane

For users working with volume rendering, it is nice to have one or
more arbitrarily located clipping planes to look inside of objects,
if adjusting the opacity transfer function does not suffice. Textur-
ing hardware based volume rendering makes use of the hardware
accelerated clipping planes provided by OpenGL.

Shear-warp based algorithms cannot make use of the OpenGL
clipping planes because they composite a 2D image with no depth
information. Thus, the clipping planes have to be introduced in
the compositing step. Yen et al. [16] extract thin slabs out of the
volume, but the core of their approach can be applied to arbitrarily
oriented clipping planes similarly: The compositing loops have to
be limited to the intersections of the clipping plane. This technique
can be applied similarly to both the parallel and the perspective
projection algorithm. For an example see figure 3.

Figure 3: Engine data set: complete (left) and clipped (right).

3.4 Viewing Angle

Lacroute describes that if there is more than one principal view-
ing axis, the volume has to be subdivided into up to six separately



rendered pyramidal sub-volumes. This would impose a major per-
formance degradation on the implementation, because several sub-
volumes would have to be rendered and assembled seamlessly.

We examined this issue for the special case of a CAVE-like en-
vironment. Due to the specific geometry of the setup, all viewing
rays deviate less than 90 degrees from the corresponding projection
axis (see figure 4). The case of approaching 90 degrees, when im-
age distortion would become a problem, is the case of being very
close to a wall. That is not the case in typical VE situations with
a tracked presenter surrounded by a non-tracked audience. Com-
ing close to a wall is typically correlated with a viewing direction
nearly perpendicular to a wall. As also discussed in the region of
interest related literature (e.g., [15]), the edges of the field of view
outside the region of interest can be displayed rather coarsely.

Figure 4: Multiple principal viewing axes.

3.5 Viewpoint

In a VE, the user needs to be free in choosing his position to look
at the scene, and he can always only see things which are located
within the viewing frustum. For the volume location, three cases
may occur:

1. The volume is located entirely in front of the viewer.

2. The volume is located entirely behind the viewer.

3. A part of the volume is located in front of and another part is
behind the viewer.

In order to find the appropriate case, a bounding box check needs
to be done on the volume boundaries. In the first case, no further
action is necessary, because the viewing frustum clipping is per-
formed by the 2D warp. In the second case, the volume simply
is not drawn at all. For dealing with the third case, we set a clip-
ping plane directly in front of the user’s eye point, at the location of
the viewing frustum near plane, with its normal facing to the user.
Thus, the user can see the data set from inside.

3.6 Concurrent Display Of Polygons

The current implementation of the perspective projection algorithm
provides two techniques to warp the intermediate image to the
screen:

• Computing the final 2D image using a pure software algo-
rithm and pasting it to the viewport.

• Having the 2D texturing hardware perform the warp.

The first alternative does not allow for automatic object ordering;
the programmer can only choose to draw the final image at a certain
point of time during rendering of the scene. Since depth sorting
the polygons is usually prohibitive due to their large number, the
programmer’s only choice is to draw the volume before or after the
polygons.

The second alternative automatically provides a reasonable so-
lution because the warp matrix transforms the intermediate image
into 3D space, which corresponds roughly with the correct volume
position. Thus, due to the Z buffer, the hardware draws the scene’s
polygons to the correct depth, relative to the volume. Only for poly-
gons intersecting the volume, the result is not correct. Section 5
mentions an approach to overcome this drawback.

4 RESULTS

For the measurements of computation times, the following two sys-
tems were used:

• PC: A single processor PC with a 1.4 GHz Pentium 4, running
Windows 2000, and equipped with a 3Dlabs Wildcat II 5110
graphics board.

• Onyx2: An SGI Onyx2 with 4 IR2 pipes and 14 R10000/195
MHz processors running IRIX 6.5. The tests used only one
processor and were done on the monitor in mono mode.

In all tests, bilinear interpolation was used. It was rendered in
RGB colors, the alpha values were defined by a linearly increasing
opacity ramp.

4.1 Rendering Time

Figure 5 shows the rendering times (compositing and warp) for dif-
ferent intermediate image sizes using the adaptive perspective pro-
jection algorithm, which was described in section 3.1. This test
was done on the PC with an output image size of3002 pixels and
a 64x64x27 voxels engine data set. Jumps occur at intermediate
image edge lengths of 512 and 1024 pixels because the texturing
hardware, which is used for the warp, requires image sizes which
are powers of two.

Figure 5: Rendering speed relative to intermediate image size.

4.2 Perspective Vs. Parallel Projection

Table 2 shows the ratio between the computation times of the per-
spective and the parallel projection algorithm. The output window



size was3002 pixels, and the texture based warp was used. Again,
the engine data set was rendered. It can be seen that, in this exam-
ple, the perspective projection is about 45% slower than the parallel
projection.

Table 2: Perspective vs. parallel projection.
PC Onyx2

Perspective : parallel projection 1.43 1.46

4.3 Software Vs. Texture Based Warp

In table 3 the computation times of the two warp implementations
for the perspective algorithm are given for different output image
sizes and a10242 intermediate image. On both systems, the soft-
ware warp is faster than the texture based warp for small images
due to texturing hardware overhead.

Table 3: Software vs. texture based warp.
Warp type Output image size PC [ms] Onyx2 [ms]
Software 2562 20 32
Texture 2562 30 68

Software 5122 60 108
Texture 5122 30 68

4.4 Compositing Vs. Warp

In table 4 the computation time ratio between compositing and warp
of the perspective algorithm is shown for both the software based
and the texture based warp algorithm. The Brainsmall data set was
used (see section 6), the intermediate image size was10242. The
table demonstrates that using texturing hardware the warp only ac-
counts for 2 to 5% of the total rendering time, and that it is indepen-
dent of the window size. In contrast, the computation time of the
software based warp may get into the range of compositing time for
large output image sizes.

Table 4: Compositing vs. warp.
Warp type Output image size PC Onyx2
Software 2562 92.1 9.71
Texture 2562 17.5 50.1

Software 5122 36.8 2.40
Texture 5122 17.5 50.1

4.5 Application To An Immersive VE

Our immersive VE, the CUBE (see figure 6) at the University of
Stuttgart, is driven by the above mentioned Onyx2. Our parallelized
implementation of the algorithm renders the 64x64x27 voxels en-
gine data set at about 10 frames per second.

5 CONCLUSIONS AND FUTURE WORK

We have presented the application of the perspective projection
shear-warp algorithm to virtual environments. We have mathemat-
ically proved an important basis for the algorithm, and we have
discussed implementation issues.

Figure 6: Shear-warp rendering in the CUBE.

A further improvement of our perspective projection algorithm
would first of all mean to implement all of the features described
by Lacroute: a look-up table based shading technique, shadows,
and a min-max octree. In order to increase rendering speed, the
compositing step needs to be parallelized for multi-processor ma-
chines.

An interesting approach to improve stereo rendering speed is
given in [5], where similarities are utilized to render the stereo im-
ages. This could be adapted to the perspective projection shear-
warp algorithm.

An important development would be to integrate the shear-warp
algorithm with polygon-based techniques. In order to achieve a cor-
rect concurrent display for opaque polygons, the polygons would
have to be rendered first. Then an inversely warped Z buffer could
be used to limit the viewing rays in the shear-warp’s compositing
step.

6 ACKNOWLEDGMENTS

This work has been supported by the Deutsche Forschungsge-
meinschaft within the SFB 382. The integration of the shear-
warp algorithm into COVER was developed in collaboration with
Uwe Wössner of the HLRS. The engine data set can be found at
http://wwwvis.informatik.uni-stuttgart.de/˜engel/index3.html. The
Stanford Brainsmall data set is part of the VolPack volume render-
ing library at http://www-graphics.stanford.edu/software/volpack/.

References

[1] K. Akeley. RealityEngine Graphics. ACM Computer Graph-
ics (SIGGRAPH ’93 Proceedings), pp. 109–116, 1993.

[2] B. Chen, F. Dachille, and A.E. Kaufman.Forward Image
Warping. IEEE Visualization ’99 Proceedings, IEEE Com-
puter Society Press, pp. 89–86, 1999.

[3] C. Cruz-Neira, D. J. Sandin, and T. A. DeFanti.Surround-
Screen Projection-Based Virtual Reality: The Design and Im-
plementation of the CAVE. Computer Graphics(SIGGRAPH
’93 Proceedings), pp. 135–142, 1993.

[4] B. Csebfalvi.Fast Volume Rotation using Binary Shear-Warp
Factorization. Eurographics Data Visualization ’99 Proceed-
ings, pp. 145–154, 1999.

[5] T. He and A. Kaufman.Fast Stereo Volume Rendering. IEEE
Visualization ’96 Proceedings, 1996.



[6] G. Knittel and W. Strasser. Vizard - Visualization Ac-
celerator for Real-Time Display. Proceedings of SIG-
GRAPH/Eurographics Workshop on Graphics Hardware,
ACM Press, pp. 139–147, 1997.

[7] P. Lacroute.Fast Volume Rendering Using a Shear-Warp Fac-
torization of the Viewing Transformation. Doctoral Disserta-
tion, Stanford University, 1995.

[8] P. Lacroute.Real-Time Volume Rendering on Shared Memory
Multiprocessors Using the Shear-Warp Factorization. IEEE
Parallel Rendering Symposium ’95 Proceedings, pp. 15–22,
1995.

[9] P. Lacroute and M. Levoy. Fast Volume Rendering Using
a Shear-Warp Factorization of the Viewing Transformation.
Computer Graphics Vol. 28 (SIGGRAPH ’94 Proceedings),
pp. 451–457, 1994.

[10] H. Pfister, J. Hardenbergh, J. Knittel, H. Lauer, and L. Seiler.
The VolumePro Real-Time Ray-Casting System. Computer
Graphics (SIGGRAPH ’99 Proceedings), ACM Press, pp.
251–260, 1999.

[11] H. Pfister and A. Kaufman.Cube-4 - A Scalable Architecture
for Real-Time Volume Rendering. ACM/IEEE Symposium on
Volume Visualization ’96, pp. 47–54, 1996.

[12] D. Rantzau, K. Frank, U. Lang, D. Rainer, and U. Woessner.
COVISE in the CUBE: An Environment for Analyzing Large
and Complex Simulation Data. Proc. 2nd Workshop on Im-
mersive Projection Technology (IPTW), 1998.

[13] J. Schulze-Doebold, U. Woessner, S.P. Walz, and U. Lang.
Volume Rendering in a Virtual Environment. Proceedings of
5th IPTW and Eurographics Virtual Environments, Springer
Verlag, 2001.

[14] M. Weiler, R. Westermann, C. Hansen, K. Zimmermann, and
T. Ertl. Level-Of-Detail Volume Rendering via 3D Textures.
IEEE Volume Visualization 2000 Proceedings, 2000.

[15] R. Westermann, L. Kobbelt, and T. Ertl.Real-time Explo-
ration of Regular Volume Data by Adaptive Reconstruction of
Iso-Surfaces. The Visual Computer, Vol. 15, pp. 100–111,
1999.

[16] S.Y. Yen, S. Napel, and G.D. Rubin.Fast Sliding Thin Slab
Volume Visualization. Symposium on Volume Visualization
’96 Proceedings, ACM Press, pp. 79–86, 1996.




