
The parallelized perspective shear-warp
algorithm for volume rendering

J€uurgen P. Schulze *, Ulrich Lang

High Performance Computing Center Stuttgart (HLRS), Allmandring 30, 70550 Stuttgart, Germany

Received 22 April 2002; accepted 30 November 2002

Abstract

The shear-warp algorithm for volume rendering is among the fastest volume rendering

algorithms. It is an object-order algorithm, based on the idea of the factorization of the view

matrix into a 3D shear and a 2D warp component. Thus, the compositing can be done in

sheared object space, which allows the algorithm to take advantage of data locality. Although

the idea of a perspective projection shear-warp algorithm is not new, it is not widely used so

far. That may be because it is slower than the parallel projection algorithm and often slower

than hardware supported approaches.

In this paper, we present a new parallelized version of the perspective shear-warp algo-

rithm. The parallelized algorithm was designed for distributed memory machines using

MPI. The new algorithm takes advantage of the idea that the warp can be done in most com-

puters� graphics hardware very fast, so that the remote parallel computer only needs to do the

compositing. Our algorithm uses this idea to do the compositing on the remote machine,

which transfers the resulting 2D intermediate image to the display machine. Even though

the display machine can be a mid range PC or laptop computer, it can be used to display com-

plex volumetric data, provided there is a network connection to a high performance parallel

computer. Furthermore, remote rendering could be used to drive virtual environments, which

typically require perspective projection and high frame rates for stereo projection and multiple

screens.

� 2002 Elsevier Science B.V. All rights reserved.

Keywords: Volume rendering; Shear-warp algorithm; Remote computing

*Corresponding author.

E-mail addresses: schulze@hlrs.de (J.P. Schulze), lang@hlrs.de (U. Lang).

0167-8191/02/$ - see front matter � 2002 Elsevier Science B.V. All rights reserved.

doi:10.1016/S0167-8191(02)00250-8

www.elsevier.com/locate/parco

Parallel Computing 29 (2003) 339–354

mail to: schulze@hlrs.de

1. Introduction

Although interactive volume rendering today is mostly done with specialized

computer graphics hardware, which is usually high end graphics equipment with

fast 3D texturing and large texture memory, this technique has its limitations. In
today�s PC graphics cards, a maximum size of 128 megabytes (MB) is available

for texture data. Larger volumes have to be swapped in and out of texture memory,

which affects interactivity. But for software based volume rendering approaches,

single workstations are not fast enough to display large volume datasets interac-

tively.

Another bottleneck of the texture based approach is the pixel fill rate. It is cur-

rently not high enough to reach interactive frame rates on a 10242 pixels screen. Dis-

play screens of this resolution are quite common in virtual environments, which
are the motivation for the developments presented in this paper. In many installa-

tions, a large visualization machine drives multiple display screens with stereoscopic

images to create the effect of immersion. The two most widely used approaches to

drive virtual reality environments are high-end multi-pipe graphics machines or net-

worked PCs. Networked PCs suffer from the same limitations for volume rendering

as single graphics workstations, and the current high-end hardware does not provide

enough additional functionality to justify its cost, at least in the field of volume ren-

dering.
In the recent past, clusters of off-the-shelf PCs have gained importance in the field

of parallel computing. These clusters are usually linked with Fast Ethernet or My-

rinet, both of which provide high bandwidth and low latency. Many clusters are

competitive to massively parallel machines. Due to their lower price, they do not

need to be installed in central places, but they can be located where they are used,

for instance in a department of a university. This de-centralization of parallel com-

puting power increases the possibilities of getting interactive compute time on a par-

allel architecture for volume rendering.
The availability of large enough numbers of interactive nodes on parallel comput-

ers makes it worthwhile to think about using them for volume rendering in connec-

tion with a visualization machine which provides the functionality of driving

multiple displays in stereo. The shear-warp algorithm is a very fast algorithm, which

does not need special graphics hardware, and it was shown that it scales well on par-

allel computers for the case of parallel projection [5].

The shear-warp algorithm processes volume data arranged on regular grids. Its

idea is to factorize the viewing matrix into a 3D shear and scale, and a 2D warp com-
ponent. It was proved that the projection can be done before the warp [11]. After

applying the shear and scale matrices, the volume slices are projected and compos-

ited to a 2D sheared image. The shear step enables the algorithm to operate in object

space with high memory locality, which optimizes the usage of RAM caching mecha-

nisms and other hardware accelerations. Since the warp can be performed in two

dimensions, the computational complexity is decreased considerably, compared to

a 3D operation.

340 J.P. Schulze, U. Lang / Parallel Computing 29 (2003) 339–354

2. Previous work

The fastest implementation of the parallel projection shear-warp volume render-

ing algorithm was done by Lacroute [6]. He also derived the perspective projection

algorithm, but never presented an implementation. This was done later on in [11].
Algorithms based on the shear-warp factorization have often been compared to

hardware accelerated volume rendering techniques, such as general purpose graphics

boards with texturing acceleration [1], or specialized volume rendering hardware

[4,7,8]. In [7] the idea of a texture hardware supported warp is applied to the parallel

projection shear-warp algorithm.

Although on single processor machines the shear-warp algorithm is usually slower

than hardware supported solutions, the good scalability of the shear-warp algorithm

allows it to be competitive on multi-processor machines. The first parallelization of
the parallel projection algorithm was presented in [5].

Standard PC graphics hardware can be used for volume rendering directly. Even

for the case that only 2D texturing hardware is available, Rezk-Salama et al. [10] des-

cribe an approach to generate high quality volume images. Westermann and Ertl [13]

describe improvements for texture based volume rendering. Compared to the shear-

warp approach described in this paper, these approaches require specific OpenGL

extensions which are not part of the OpenGL standard, or they are limited by the

size of the texture memory. Furthermore, all of them lack the flexibility of a soft-
ware-only approach, like an arbitrary number of light sources or clipping planes.

A previous development for volume rendering on a parallel computer is VFleet

[12], which uses a raycasting renderer and a compositing tree, but it does not offer

shear-warp rendering. One of the most recent developments in the field of using clus-

ters for visualization is the WireGL [2] library, which acts as an OpenGL driver to an

application but distributes the data which is to be displayed among a cluster of PCs.

Chromium [3] implemented an improved handling of the large amount of data that

has to be transferred for each frame before it can be displayed . For volume rendering,
it allows the distribution of the volume dataset among all cluster nodes, each node

rendering only its assigned partition. The drawback of this approach is that it requires

a cluster of PCs with graphics cards, while for the volume rendering approach pre-

sented in this paper a PC cluster without graphics hardware, or a massively parallel

high performance computer can be used. The latter systems are typically acquired

for science and engineering simulations, but not necessarily volume rendering.

3. The rendering system

The development of the parallelized perspective projection shear-warp algorithm

is based on our work in [11]. We used the object oriented Virvo volume renderer

which was well suited as a framework for the required parallel processing extensions.

Especially useful was the plug-in mechanism, which allowed us to add a remote ren-

derer to the existing local rendering algorithms.

J.P. Schulze, U. Lang / Parallel Computing 29 (2003) 339–354 341

The parallel extensions had to be done in two areas: first, the perspective projec-

tion algorithm had to be parallelized, and second, a new remote renderer had to be

written, which runs on a parallel machine and communicates with the local display

machine via a network connection (see Fig. 1). The network connection is esta-

blished between the renderer plugin and the root node of the parallel computer.

3.1. The parallelized shear-warp algorithm

In [5], Lacroute parallelizes both the compositing and the warp. The compositing

is parallelized by partitioning the object space into sections of intermediate image

scanlines, which are distributed among the available processors. Additionally, dy-

namic task stealing is supported for better load balancing. The warp is parallelized

using static interleaved partitions without dynamic approaches.

Our algorithm only parallelizes the compositing, but not the warp. This is be-

cause, as shown in [11], the warp can be done very efficiently in graphics hardware,
even if only 2D texturing is supported. If 2D texturing acceleration is not supported

by the display computer, the warp can still be done fast for small output images, but

the overall performance degrades considerably for large output images. In this case

the warp could be done on the parallel computer and the final image could be sent

to the display machine.

The compositing was parallelized by partitioning the intermediate image into sec-

tions of scanlines, similar to Lacroute�s approach, but without task stealing. The idea

is illustrated in Fig. 2. Each process is assigned an equally sized section of the inter-
mediate image. If the scanlines cannot be distributed evenly, the root node is the first

to be assigned less lines than the other nodes, because it has to do the additional work

of collecting all rendered sections and sending the result to the display machine.

For perspective projection, the compositing is more expensive than for parallel

projection, because every intermediate image scanline does not only require data from

two voxel lines, like in the case of parallel projection. It needs to look at multiple voxel

lines, depending on the degree of the perspective. In extreme cases, an entire voxel

slice from the back of the volume has to be processed to compute a single intermediate

Fig. 1. Remote rendering system components.

342 J.P. Schulze, U. Lang / Parallel Computing 29 (2003) 339–354

image pixel. In general, the further away the slice that is currently processed, the more

voxels have to be accumulated for an intermediate image pixel. This does not neces-

sarily affect rendering speed, because less pixels have to be drawn per slice.
This feature of the perspective projection, and the fact that shear-warp rendering

requires the storage of three datasets in memory, one for each principal axis, pre-

vents the distribution of the volume data on distributed memory machines. Each

node must have a copy of the entire volume dataset. If a large number of nodes is

available, but there is not enough memory on each node to store the volume data,

the available nodes could be split into three parts and get one volume dataset for

each principal axis. Although the maximum usable volume size would be three times

as high, this also means that only one-third of the nodes can be used for rendering at
a time.

3.2. The plug-in

Since the intermediate image generation is de-coupled from the actual drawing of

the final image, the rendering plug-in for the existing volume rendering software is

fairly simple. All it has to do is pass the current view matrix to the remote renderer,

wait for the intermediate image, and warp the image to the screen. Additionally, all
changes of image generation parameters have to be passed to the remote renderer,

which includes, for instance, transfer functions, interpolation mode, and image qua-

lity.

The rendering plug-in does not have to know anything about the compositing, but

it requires the respective warp matrix for every intermediate image it receives.

3.3. The remote renderer

At startup, the remote renderer must first receive the volume data. Depending on

the volume size and the network connection, this may take a few seconds. Then the

Fig. 2. Intermediate image task distribution with sections of the same size.

J.P. Schulze, U. Lang / Parallel Computing 29 (2003) 339–354 343

three run length encoded (RLE) versions of the volume data (one for each principal

axis) are generated and stored on each node. After that, the remote renderer is ready

to receive commands from the renderer plug-in.

The following pseudo-code shows the flow of control for the root node and the

other nodes in the parallel algorithm. The root node both distributes the commands
and collects the resulting intermediate image sections. The reception is done by an

MPI_Recv() command with the memory address for the destination of the sections,

so no additional copying is necessary. When all sections have arrived at the root

node, the intermediate image is RLE encoded and transferred to the renderer

plug-in, along with the respective warp matrix.

procedure rootNodeRenderingLoop()

{
Receive the view matrix from the plug-in().

Compute the appropriate section partitioning().

Pass the section partition parameters to the other nodes.

Render self-assigned section.

Receive the rendered sections from the other nodes.

Encode the intermediate image.

Transfer the intermediate image to the plug-in.

}

procedure otherNodesRenderingLoop()

{

Receive section parameters from the root node.

Render the section.

Transfer the rendered section to the root node.

}

The remote renderer is a batch mode program with no direct user interaction after

startup. This is an important requirement, because the renderer should run on as

many different platforms as possible, even if there was no X Window support. In ad-

dition to the number of processes which is passed to the MPI startup tool, the remote

renderer expects two command line parameters: the port number and the display

host address for the socket connection. Everything else is transferred from the dis-

play host.

3.4. Data transfer

All data communication between the renderer plug-in and the remote renderer is

done with one bidirectional TCP socket connection. It is established at startup and

lasts until the application is closed. The TCP connection turned out to be fast en-

ough for our purposes, because the bottleneck is the compositing on the remote ma-

chine.

344 J.P. Schulze, U. Lang / Parallel Computing 29 (2003) 339–354

When the parallel projection shear-warp algorithm is used, the intermediate image

pixels are usually mapped 1:1 to voxels. This can be done because the slices are only

sheared and not scaled. In the case of perspective projection, the additional scaling

makes the slices smaller the further back they are. Thus, we use more than one pixel

per voxel for the front volume slice. This ensures that the smaller slices map to
enough pixels on the image, so that enough detail can be retained.

For this reason, the intermediate images for perspective projection are larger than

for parallel projection. Furthermore, we constrain the intermediate image size

to edge lengths of powers of two, so the warp can be done without resizing the

image––this is a 2D texturing hardware requirement. Typical 10242 pixel RGBA im-

ages require 4 MB of memory. An interactive frame rate of 10 frames per second

would require a data transfer rate of 40 MB per second, which is far beyond the

bandwidth of Fast Ethernet (100 Mbit/s).
Fortunately, the intermediate image usually contains large transparent regions,

which can efficiently be RLE encoded. We implemented two RLE algorithms: the

first algorithm encodes the entire intermediate image, the second encodes only the

rectangular window which was actually touched in the compositing step (see Fig.

3). It turned out that for large window sizes the first algorithm is faster, but in

most cases the second algorithm is faster. You will find some performance numbers

in Section 4.3.

An important issue with the compression algorithm was to make sure that no
memory is unnecessarily copied, allocated or de-allocated in the process of encoding

and decoding. This goal was reached by not reallocating memory space when the in-

termediate image size remains the same or decreases. A reallocation is done only for

images larger than the allocated space. Furthermore, the intermediate image data

is stored only once, so just a pointer to it is passed among the functions that work

with it.

Fig. 3. Encoding of actually used intermediate image window.

J.P. Schulze, U. Lang / Parallel Computing 29 (2003) 339–354 345

3.5. Overall algorithm

The overall message flow for the rendering of one frame is shown in Fig. 4. It is

important to note that the display computer does not have to keep the volume data

in memory. When the volume is transferred to the remote renderer upon startup, this

can be done directly from disk.

3.6. Rendering front-end

Fig. 5 shows a picture of the desktop front-end. Various parameters can be set in

the application. The most important are image quality (i.e., intermediate image size),

Fig. 4. The remote rendering message flow.

Fig. 5. The rendering front-end with the engine dataset.

346 J.P. Schulze, U. Lang / Parallel Computing 29 (2003) 339–354

interpolation mode (bilinear or nearest neighbor), and the color and opacity transfer

functions.

The front-end is a hybrid C++ and Java application using the Java native inter-

face. The user interface was entirely programmed in Java, using the Swing widget li-

brary. Everything else like rendering, network communication, and file handling was
written in C++. The rendering window is a Java canvas of which the C++ part

knows the OpenGL handle so it can draw on it. The input device handling is done

by Java routines that call the appropriate C++ routines if the action happened in the

OpenGL canvas.

4. Results

The parallelized perspective projection rendering algorithm was tested on the fol-

lowing three parallel machines:

• An SGI Onyx2 with 16 195MHz R10000 processors and 16 GB of shared memory.

• A SUN Fire 6800 node with 24 UltraSparc III 750 MHz processors and 96 GB of

shared memory. Up to eight processors are available for interactive use.

• A cluster of 32 Linux PCs with 64 Pentium 4 Xeon processors at 2.4 GHz and

Myrinet links.

Apparently, for the shared memory machines the algorithm could have been writ-

ten in OpenMP or with thread support. But since the program had to run on any

distributed architecture, we use MPI.

The display machine is an SGI Onyx2 with 4 R10000 processors at 250 MHz, 4

GB RAM and Infinite Reality 2 graphics. It is linked to the above Onyx2 by a

1 Gbit/s Ethernet connection and to the PC cluster by a 100 Mbit/s Ethernet. Both

Onyxes and the PC cluster are located in the same building at HLRS. The SUN is
located about 100 km away in the city of Ulm, and it is connected to the display

machine by a 100 Mbit/s Ethernet.

The dataset which was used to test the performance of the parallelized algorithm

is the General Electric CT engine (see dataset in Fig. 5). It was used in two different

sizes: ‘‘large’’ is a 256� 256� 110 voxels version, ‘‘small’’ is a 128� 128� 55 voxels

downsampled version. The opacity transfer function was set to a linear ramp from

zero to full opacity. The image generation was performed in 24 bit RGB color space.

Whenever the large engine was used, the intermediate image size was 10242, for the
small engine it was 5122 pixels. The intermediate image was transferred using RLE

encoding for the actually used window only.

For all tests the volume was rotated 180� about its vertical axis in 90 steps of 2�.

4.1. Overall rendering performance

In the following three subsections, the rendering performance of our multi-pro-

cessing test platforms is displayed. For each graph the remote renderer was executed

J.P. Schulze, U. Lang / Parallel Computing 29 (2003) 339–354 347

with different numbers of processes, each process running on a separate CPU. The

initialization of the MPI environment ensured that each process could run exclu-

sively on its own processor. The length of the bars reflects the average rendering time

per frame needed for the above described 180� rotation. The sections of the bars dis-
play how the total rendering time was distributed to specific tasks. The idle time of
the renderers is for the most part the time the display machine needed to decode the

intermediate image, transfer it to texture memory, and display it on the screen. Dur-

ing this time the renderer waits for the next view matrix. In all three performance

tests, image decoding took about 29 milliseconds (ms) and drawing took 16 ms

for each frame. Idle times that occur due to processes waiting during compositing

are included in the total compositing time. In each of the three performance tests

the large engine dataset was used.

4.1.1. SUN Fire

Fig. 6 shows the rendering performance of the SUN Fire. The compositing step

takes most of the total time, while image encoding and image transfer both account

only for very little time: encoding takes 9.9 ms and the transfer takes 11.1 ms.

4.1.2. Onyx2

Fig. 7 shows the rendering performance of the SGI Onyx2 system. Due to the fast

network connection to the display machine, the image transfer takes only 1.7 ms in
all the tests and is hardly visible in the diagram. Image encoding takes 29.2 ms.

4.1.3. PC cluster

The rendering performance of the PC cluster is displayed in Fig. 8. It differs sig-

nificantly from the previous two machines. The PC cluster�s computing power makes

it the fastest tested machine with a minimum rendering time of 132 ms per frame.

Image encoding took 3.0 ms, the image transfer accounts for 31.4 ms. The rather

Fig. 6. SUN Fire rendering performance.

348 J.P. Schulze, U. Lang / Parallel Computing 29 (2003) 339–354

slow transfer is due to the endianness adaptation that is required between the PCs

and the SGI.

4.2. Compositing

Section 4.1 showed that the compositing is the most time consuming rendering

step. This is why it was parallelized. Its performance can be judged by comparing

the times of the total compositing, i.e. the time it takes before all processes are done

with compositing, with the average compositing time of the processes. With perfect

load balancing these values would be equal. Fig. 9, which reflects the performance
of the Onyx2, shows that the numbers are not equal. The solid line shows the total

compositing time, and the dotted line shows the average time it actually took the

Fig. 7. SGI Onyx2 rendering performance.

Fig. 8. PC cluster rendering performance.

J.P. Schulze, U. Lang / Parallel Computing 29 (2003) 339–354 349

processes to composite their sub-tasks. The space between the lines reflects the im-

provement that would be possible by optimum load balancing.

4.3. Transferring the intermediate image

The comparison of the (non-parallelized) RLE-encoding, transfer, and decoding

times for the three implemented encoding types (see Fig. 10) shows the great advan-

tage of window encoding, where only the part of the image that was actually compo-
sited is RLE encoded. In the test, the encoding was done on the SUN Fire, then the

image was transferred to the SGI Onyx2, where it was decoded. For this test, the large

engine dataset was used and the intermediate image size was 10242 pixels.

Fig. 9. Total compositing vs. average section compositing.

Fig. 10. RLE intermediate image encoding graph.

350 J.P. Schulze, U. Lang / Parallel Computing 29 (2003) 339–354

4.4. Shear-warp vs. 3D texture hardware

In [11] we showed that the rendering speed of the shear-warp algorithm is almost

independent of the output image size, when the warp is done in texture hardware.

However, the 3D texturing hardware volume rendering approach is highly depen-
dent on the output image size due to its pixel fill rate limitation. In Fig. 11, the ren-

dering times for output image sizes from 3002 to 9002 pixels are shown for both

algorithms, using the small engine dataset. The texture hardware algorithm was used

on the Onyx, the perspective shear-warp algorithm was used for the compositing on

the SUN Fire using four processors, and the Onyx did the warp. The graph shows

that for an image size of 9002 pixels, both algorithms are about equally fast.

4.5. Discussion

In this section, the performance numbers from the previous section are discussed,

and ideas on how to further improve the performance are given.

4.5.1. Performance comparison

The fastest rendering rates achieved by each system are listed in Table 1. The PC

cluster is fastest with 8.4 images per second. The image transfer rates are similar for

the two machines which are linked to the display computer by 100 Mbit/s con-
nections with firewalls in-between. The direct gigabit connection between the two

Onyxes pays off, it allows the shortest transfer time in the test. The PC cluster�s
Pentium4 processors are so much faster than the other two architectures that the

compositing is not the dominant factor in the rendering process anymore. Here

Fig. 11. Texture hardware vs. shear-warp algorithm.

J.P. Schulze, U. Lang / Parallel Computing 29 (2003) 339–354 351

image transfer and idle time, although roughly the same for the SUN Fire, are the

most time consuming parts.

4.5.2. Latency hiding

A comparison of the performance numbers of the three tested systems shows that

for the SUN and the SGI, the compositing time dominates, while the PC cluster

spends a large fraction of the time transferring the intermediate image to the display

machine and waiting for the display machine to send a new view matrix.
While the image transfer time could be reduced by a faster network connection,

the idle time can be used to begin the computation of the next image: as soon as,

the display computer receives the intermediate image, it sends the view matrix

for the next image to the rendering system. This pipelining approach leads to effec-

tive latency hiding, and it was implemented for optional use. However, for the per-

formance tests in this paper, no pipelining was used in order to show the actual time

usage of the system.

4.5.3. Image decoding time

A significant part of the rendering processes� idle time results in the display ma-

chine decoding the intermediate image. The decoding is not parallelized, since it usu-

ally does not run on a parallel computer. Our Onyx decodes with a 250 MHz R10000

processor, which is easily outperformed by current PCs. In another test we used a

Windows PC as the display computer. It contains a Pentium4 at 1.4 GHz, and a

3Dlabs Wildcat II 5110 graphics board.

With this PC, the intermediate image decoding time went down from 28 ms on the
Onyx to now 6.8 ms. Looking at the overall performance, it is remarkable that the

idle time grew, as it can be seen in Fig. 12. Obviously the compositing and image en-

coding times did not change compared to the previous test in Section 4.1.1.

Looking at the performance numbers, it can be seen that the time it takes to draw

the intermediate image with texture hardware, which was 17 ms on the Onyx, in-

creased to 81 ms on the PC. This is due to the lower speed of the image transfer

to texture memory on the Wildcat.

4.5.4. RLE encoding

Section 4.3 showed that RLE encoding of only the actually used part of the inter-

mediate image before transfer results in the best overall image transfer performance.

Interestingly, RLE encoding and decoding the entire image takes about as long as

transferring the image unencoded.

Table 1

Maximum rendering speed of the tested machines

Machine Number of processes Images per second

SUN Fire 6 3.5

SGI Onyx2 14 2.7

PC cluster 16 8.4

352 J.P. Schulze, U. Lang / Parallel Computing 29 (2003) 339–354

The adaptive window approach is generally so much faster than the other two
that it can be used for all intermediate image transfers. Only in cases of extreme pers-

pectives, the overhead introduced by skipping parts of the scanlines can become

high enough that the other encoding schemes can be faster. However, perspectives

like these occur only rarely in real-life applications.

5. Conclusion and future work

We developed an implementation of the perspective projection shear-warp algo-

rithm for parallel computers using MPI. Any architecture which supports MPI

can be used as a platform for the remote renderer. The remote rendering process

scales well for up to 12 processors in our experiments, depending on the hardware

used. The remotely rendered volume images can be displayed on any graphics capa-

ble computer. If 2D graphics hardware is available on the display machine, the warp

will be very fast. The transfer speed of the remotely computed intermediate image

was optimized.
Lacroute�s work [6] showed that dynamic load balancing improves the perfor-

mance significantly for larger numbers of processors in the case of parallel projec-

tion, so this will be done for perspective projection in the future. Furthermore,

although not critical for rendering but potentially well parallelizable, some other ren-

dering steps like intermediate image compression and de-compression should be ad-

dressed for parallelization. Also, parallel image transfer with more than one socket

connection could improve the overall performance.

Another goal is to integrate the remote rendering algorithm into our virtual reality
environment. The challenge is to efficiently place the socket communication in the

rendering pipeline. Our virtual reality renderer COVER [9] is based on SGI

Performer. Since we are using a four pipe Onyx2 for rendering, there are four draw

Fig. 12. Windows PC as display machine, PC cluster renders.

J.P. Schulze, U. Lang / Parallel Computing 29 (2003) 339–354 353

processes. A first test showed that we can open four sockets to remote rendering pro-

cesses, each of which can consist of multiple MPI processes. This promises that we can

achieve high scalability, for instance by routing the communication across multiple

Gigabit Ethernet connections in parallel.

Acknowledgements

This work has been funded by the collaborative research center (SFB) 382 of the

German Research Council (DFG).

References

[1] K. Akeley, Reality engine graphics, in: ACM SIGGRAPH 93 Proceedings, 1993, pp. 109–116.

[2] G. Humphreys, M. Eldridge, I. Buck, G. Stoll, M. Everett, P. Hanrahan, WireGL: a scalable graphics

system for clusters, in: ACM SIGGRAPH 2001 Proceedings, 2001.

[3] G. Humphreys, M. Houston, R. Ng, R. Frank, S. Ahern, P.D. Kirchner, J.T. Klosowski, Chromium:

a stream-processing framework for interactive rendering on clusters, in: ACM SIGGRAPH 2002

Proceedings, 2002.

[4] G. Knittel, W. Strasser, Vizard––visualization accelerator for real-time display, in: Proceedings of

SIGGRAPH/Eurographics Workshop on Graphics Hardware, ACM Press, 1997, pp. 139–147.

[5] P. Lacroute, Real-time volume rendering on shared memory multiprocessors using the shear-warp

factorization, in: IEEE Parallel Rendering Symposium �95 Proceedings, 1995, pp. 15–22.

[6] P. Lacroute, M. Levoy, Fast volume rendering using a shear-warp factorization of the viewing

transformation, in: ACM SIGGRAPH �94 Proceedings, 1994, pp. 451–457.

[7] H. Pfister, J. Hardenbergh, J. Knittel, H. Lauer, L. Seiler, The VolumePro Real-Time Ray-Casting

System, in: ACM SIGGRAPH �99 Proceedings, 1999, pp. 251–260.

[8] H. Pfister, A. Kaufman, Cube-4––a scalable architecture for real-time volume rendering, in: ACM/

IEEE Symposium on Volume Visualization �96, 1996, pp. 47–54.
[9] D. Rantzau, K. Frank, U. Lang, D. Rainer, U. Woessner, COVISE in the CUBE: an environment for

analyzing large and complex simulation data, in: Proceedings of 2nd Workshop on Immersive

Projection Technology (IPTW �98), Ames, Iowa, 1998.

[10] C. Rezk-Salama, K. Engel, M. Bauer, G. Greiner, T. Ertl, Interactive volume rendering on standard

PC graphics hardware using multi-textures and multi-stage rasterization, in: Proceedings of

Eurographics/SIGGRAPH Workshop on Graphics Hardware 2000 (HWWS00), 2000.

[11] J.P. Schulze, R. Niemeier, U. Lang, The perspective shear-warp algorithm in a virtual environment,

in: IEEE Visualization �01 Proceedings, 2001, pp. 207–213.

[12] J. Welling, VFleet, Available at: http://www.psc.edu/Packages/VFleet_Home/

[13] R. Westermann, T. Ertl, Efficiently using graphics hardware in volume rendering applications, in:

ACM SIGGRAPH �98 Proceedings, 1998, pp. 169–179.

354 J.P. Schulze, U. Lang / Parallel Computing 29 (2003) 339–354

http://www.psc.edu/Packages/VFleet_Home/

	The parallelized perspective shear-warp algorithm for volume rendering
	Introduction
	Previous work
	The rendering system
	The parallelized shear-warp algorithm
	The plug-in
	The remote renderer
	Data transfer
	Overall algorithm
	Rendering front-end

	Results
	Overall rendering performance
	SUN Fire
	Onyx2
	PC cluster

	Compositing
	Transferring the intermediate image
	Shear-warp vs. 3D texture hardware
	Discussion
	Performance comparison
	Latency hiding
	Image decoding time
	RLE encoding

	Conclusion and future work
	Acknowledgements
	References

