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Abstract
The shear-warp volume rendering algorithm is one of the fastest algorithms for volume rendering, but it achieves
this rendering speed only by sacrificing interpolation between the slices of the volume data. Unfortunately, this
restriction to bilinear interpolation within the slices severely compromises the resulting image quality. This pa-
per presents the implementation of pre-integrated volume rendering in the shear-warp algorithm for parallel
projection to overcome this drawback. A pre-integrated lookup table is used during compositing to perform a
substantially improved interpolation between the voxels in two adjacent slices.
We discuss the design and implementation of our extension of the shear-warp algorithm in detail. We also clarify
the concept of opacity and color correction, and derive the required sampling rate of volume rendering with post-
classification. Furthermore, the modified algorithm is compared to the traditional shear-warp rendering approach
in terms of rendering speed and image quality.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image Generation
– Display Algorithms; I.4.10 [Image Processing and Computer Vision]: Image Representation – Volumetric.

1. Introduction

Although the shear-warp volume rendering algorithm
achieves a high rendering performance, it is still not widely
used for interactive volume rendering. The most important
competitor is probably texture-based volume rendering; see
for example 3. This approach is very efficient as long as the
graphics hardware provides the required functionality. But
even then, this approach has several disadvantages: the ren-
dering speed is limited by the pixel fill-rate, shading im-
poses a serious performance hit, and for interactive render-
ing the entire volume dataset has to fit into texture memory.
The shear-warp algorithm, on the other hand, is a software-
based volume rendering algorithm, which traverses the vol-
ume data in object order. Therefore, it is extremely flexible,
allows run-length encoding of the volume data, and supports
efficient cache usage.

Pre-integrated volume rendering provides an efficient way
to interpolate in-between slices of the volume data with
some loss in rendering performance. Pre-integration is based
on the pre-computation of a lookup table, which supplies

RGBA values for every possible pair of scalar values. With
the help of this table, pre-integrated volume rendering is able
to interpolate linearly between the slices, instead of assum-
ing a constant scalar value between the slices (as in the orig-
inal shear-warp algorithm). Thus, pre-integration achieves
significantly improved results, in particular for nonlinear
transfer functions. Pre-integrated volume rendering is, there-
fore, a perfect complement to the shear-warp algorithm.

Before we present our new algorithm, we reference prior
work and discuss the underlying theoretical background in
Section 2. In particular, we address the employed optical
model, opacity and color correction, the required volume
sampling rate for standard volume rendering, and the orig-
inal shear-warp algorithm. In Section 3, we discuss the de-
tails of our algorithm and its implementation. Performance
results and comparisons of image quality of several variants
of our algorithm are presented in Section 4.
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2. Theoretical Background

In this section, we address the mathematical foundations of
our new pre-integrated volume rendering algorithm.

2.1. Volume Rendering Integral

The basic task of any volume renderer is an approximate
evaluation of the volume rendering integral for each pixel,
i.e., the integration of attenuated colors along each view-
ing ray. Although the numerical evaluation of this integral
is well-known, it is briefly recapitulated here in order to in-
troduce our nomenclature and to remind the reader of the
employed approximations.

We specify colors and extinction coefficients for each
scalar value s of the volume data by transfer functions c(s)
and τ(s). The color emitted from one point of the volume
is determined by τ(s)c(s); thus, the volume rendering inte-
gral for the intensity I along a viewing ray parametrized by
x from 0 to D is given by

I =

∫ D

0
τ(s(x))c(s(x))exp

(

−
∫ x

0
τ(s(x′))dx′

)

dx.

d
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Figure 1: Sampling of s(x) along a viewing ray.

The volume rendering integral can be approximated by a
Riemann sum of n equal ray segments of length d := D/n.
This evaluation assumes that s(x) is approximately constant
for each ray segment (see also Figure 1):

I ≈
n−1

∑
i=0

τ(s(i d))c(s(i d))d exp

(

−
i−1

∑
j=0

τ(s( j d))d

)

≈
n−1

∑
i=0

τ(s(i d))c(s(i d))d
i−1

∏
j=0

exp (−τ(s( j d))d)

≈
n−1

∑
i=0

ci

i−1

∏
j=0

(

1−α j
)

with the opacity αi of the i-th ray segment, which is defined
by

αi := 1− exp

(

−
∫ (i+1)d

i d
τ (s(x))dx

)

≈ 1− exp (−τ (s(i d))d)

≈ τ (s(i d))d.

The (premultiplied) color ci emitted in the i-th ray segment
is defined by

ci :=
∫ (i+1)d

i d
τ(s(x))c(s(x))exp

(

−
∫ x

i d
τ(s(x′))dx′

)

dx.

Neglecting the self-attenuation within the ray segment, ci

may be approximated by

ci ≈
∫ (i+1)d

i d
τ (s(x))c (s(x))dx

≈ τ (s(i d))c (s(i d))d

≈ αic (s(i d)) .

Therefore, a front-to-back compositing algorithm (which
is usually employed in the shear-warp algorithm) imple-
ments the equations

α̂i = 1− (1− α̂i−1)(1−αi)

= α̂i−1 +(1− α̂i−1)αi,

ĉi = ĉi−1 +(1− α̂i−1)ci

for the accumulated opacity α̂i and color ĉi of the i-th ray
segment.

2.2. Opacity and Color Correction

Some volume rendering algorithms, for example the non-
perspective shear-warp algorithm or 2D texture-based vol-
ume rendering (see 3), evaluate the volume rendering inte-
gral with equally spaced samples, i.e., a constant distance d
between samples. Thus, the opacities αi and colors ci may
be precomputed for a constant d.

viewing rays

volume
slicesd

(a)

viewing rays

volume
slicesd

(b)

Figure 2: Different distances between samples depending on
the viewing direction.

However, the distance d still depends on the viewing di-
rection as illustrated in Figure 2. Thus, it is necessary to cor-
rect the precomputed opacities and colors. While the opacity
correction is well-known (see for example 8), the correction
of colors appears to be less common. Therefore, both correc-
tions are briefly derived here.

Assuming that an opacity αi has been computed for a con-
stant scalar s and the sample distance d, the corrected opacity
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α′

i for a different sample distance d′ may be computed by

α′

i = 1− exp
(

−τ(s)d′
)

= 1− exp

(

−τ(s)d d′

d

)

= 1− exp(−τ(s)d)d′/d

= 1− (1−αi)
d′/d .

As suggested by Lacroute in 8, this correction can be effi-
ciently implemented by a lookup table for α′

i as a function
of α.

The premultiplied color ci has to be corrected correspond-
ingly since it is proportional to αi:

c′i = ci
α′

i

αi
.

A more rigorous derivation of this result can be given by
evaluating ci for a constant scalar s:

ci =
∫ (i+1)d

i d
τ(s)c(s)exp

(

−
∫ x

i d
τ(s)dx′

)

dx

=

∫ (i+1)d

i d
τ(s)c(s)exp (−τ(s)(x− i d))dx

= [−c(s)exp(−τ(s)(x− i d))]
(i+1)d
i d

= c(s) (1− exp(−τ(s)d)) .

With αi and α′

i from above, the corrected color c′i for d′ is

c′i = c(s)
(

1− exp
(

−τ(s)d′
))

= c(s)α′

i = c(s)αi
α′

i

αi
= ci

α′

i

αi
.

For a physical interpretation of this color correction the
cases of very low and very high opacity are of particular in-
terest: For a very low opacity the self-attenuation may be ne-
glected; thus, the color emission is proportional to the length
of the ray segment. On the other hand, for a very high opac-
ity the color cannot depend on the length of the ray segment
since the light from its far end is blocked and, therefore, can-
not influence the integrated color. Both cases are correctly
described by the color correction given above.

Note that this color correction is perfectly consistent with
the special case of d′/d = 1/2 discussed by Sweeney and
Mueller in 20 since the correction factor (called λ in 20) is
given by

α′

i

αi
=

1− (1−αi)
1/2

αi
=

1−
√

1−αi

1− (1−αi)
=

1
1 +

√
1−αi

.

2.3. Volume Sampling Rate

The discrete approximation of the volume rendering integral
will converge to the correct result only for high sampling
rates 1/d. Unfortunately, nonlinear transfer functions may
considerably increase the sampling rate required for a cor-
rect evaluation of the volume rendering integral as this sam-
pling rate depends on the product of the Nyquist frequencies

of the scalar field and the transfer functions as mentioned
(but not proved) by Engel et al. in 3.

The actual sampling rate required for an accurate evalua-
tion may be estimated by the sampling rate required for an
accurate reconstruction of the functions τ(s(x)) and c(s(x)).
This sampling rate may be obtained by comparison with a
frequency-modulated signal sfm(t) (see Section 6.4 in 19):

sfm(t) := Acos(2π fct +(∆ f / fm) sin(2π fmt))

with the amplitude A, the carrier frequency fc, the maxi-
mum deviation ∆ f from fc, and the modulation frequency
fm (which is the maximum frequency of the modulation sig-
nal if it is not a single frequency tone). With the help of the
identity

cos(a + x sin(b)) =
∞

∑
k=−∞

cos(a + k b)Jk(x)

(with the Bessel function Jk of the first kind of order k), the
modulated signal may be written as

sfm(t) = A
∞

∑
k=−∞

Jk (∆ f / fm)cos (2π fct + 2π fmkt) .

The spectrum of sfm(t) may be obtained directly from this
representation: Apart from the carrier frequency fc, there is
an infinite number of sidebands at frequencies fc ± fmk with
k ∈ N. Thus, the modulated signal is not bandwidth-limited
and there is no maximum frequency. However, according to
an approximation by Carson (known as “Carson’s rule”), the
actually required bandwidth (for more than 98 % of the sig-
nal power) is 2(∆ f + fm), i.e., contributions of sidebands
outside the interval [ fc−(∆ f + fm), fc +(∆ f + fm)] are neg-
ligible.

In order to apply this result to the problem of determin-
ing an appropriate sampling frequency along a viewing ray,
some additional symbols have to be introduced. Let U(S) de-
note a continuous transfer function for scalar values S∈ [0,1]
with Nyquist frequency fU. (A discontinuous transfer func-
tion could be approximated with extremely high frequen-
cies.) In order to define values U(S) for S 6∈ [0,1], let U(S) be
a symmetric function with period 2, i.e., U(S) = U(−S) and
U(S) = U(S + 2k) for k ∈ N. Furthermore, let S(t) denote a
scalar field with Nyquist frequency fS. Thus, the problem is
to determine an appropriate sampling frequency for U(S(t)).
This problem can be simplified with the help of a Fourier co-
sine series:

U(S(t)) =
∞

∑
k=0

ak cos(π k S(t)).

As the appropriate sampling rate for this sum corresponds to
the maximum of the sampling rates for the individual sum-
mands, it is possible to restrict the following considerations
to the summand with the maximum k with ak 6= 0. This kmax

corresponds to a maximum frequency kmax/2, which is given
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by half the Nyquist frequency fU, i.e.

kmax/2 = fU/2.

Thus, U(S(t)) can be specialized to the form

Acos(π kmax S(t)) = Acos ((2π fU/2)S(t)) ,

with A = akmax . This function is already close to a frequency-
modulated signal, where S(t) corresponds to the modula-
tion signal. As mentioned above, it is common to replace
an arbitrary modulation signal by a single-frequency tone
of the maximum frequency for the purpose of estimating
an appropriate sampling rate. Thus, S(t) is replaced by
sin ((2π fS/2) t). The new form of U(S(t)) is:

Ũ(S̃(t)) = Acos((2π fU/2) sin ((2π fS/2) t)) .

In order to apply Carson’s rule, Ũ(S̃(t)) has to be matched
to sfm(t), which is defined by

sfm(t) := Acos(2π fct +(∆ f / fm) sin(2π fmt)) .

For this purpose, fm should be identified with half the
Nyquist frequency fS of the scalar field, and fc has to be
0 as there is no “carrier frequency” for the transfer function.
Thus, ∆ f / fm should be identified with 2π fU/2.

According to Carson’s rule, the required frequencies for
this signal ( fc = 0) are in the interval [0,∆ f + fm] corre-
sponding to [0,2π fU fS/4 + fS/2]. For fU fS � fS this in-
terval is given by [0,π fU fS/2], i.e., the required sampling
frequency is π fU fS. While Carson’s rule is a well-known ap-
proximation in signal theory, it has—to our knowledge—not
been applied to volume rendering before.

Because of this result, it is by no means sufficient to
sample the volume rendering integral with the Nyquist fre-
quency fS of the scalar field if non-linear transfer functions
are employed. Artifacts resulting from this kind of under-
sampling are frequently observed unless they are avoided by
very smooth transfer functions, i.e., transfer functions with a
small Nyquist frequency fU.

2.4. Pre-Integrated Volume Rendering

Pre-integrated volume rendering overcomes the necessity for
extremely high sampling rates by splitting the numerical
evaluation of the volume rendering integral into two inte-
grations: one for the continuous scalar field s(x) and one for
the transfer functions τ(s) and c(s); thus, the problematic
product of Nyquist frequencies is avoided.

Pre-integration is similar to a method published by Max et
al. in 10, which was reinvented and generalized for hardware-
accelerated tetrahedra projection by Röttger et al. in 16. How-
ever, the name “pre-integrated volume rendering” was first
used by Engel et al. in 3 within the context of texture-based
volume rendering. The basic concept of pre-integration may
be applied to many other volume rendering algorithms; for
example, Knittel demonstrated pre-integrated ray casting in

7. More applications and improvements of pre-integrated
volume rendering may be found in 2, 4, 5, 11, 13, 15, 21.

d

s f =sHi dL
sb=sHHi+1L dLsHxL

xi d Hi+1Ld
x

Figure 3: Piecewise linear interpolation of samples of s(x)
for pre-integrated volume rendering.

For the purpose of pre-integrated volume rendering, the
scalar function s(x) is approximated by a piecewise linear
scalar function as illustrated in Figure 3. The volume ren-
dering integral for this piecewise linear scalar function is
efficiently computed by one table lookup for each ray seg-
ment. The three arguments of this table lookup for the i-th
ray segment from i d to (i + 1)d are the scalar value at the
start (front) of the segment s f := s(i d), the scalar value the
end (back) of the segment sb := s((i + 1)d)), and the length
of the segment d (see Figure 3). If d is constant for all seg-
ments and all viewing rays, the table lookup does, of course,
not depend on it and a two-dimensional table is sufficient.

More precisely spoken, the opacity αi of the i-th segment
is approximated by

αi = 1− exp

(

−
∫ (i+1)d

i d
τ(s(x))dx

)

≈ 1− exp

(

−
∫ 1

0
τ
(

(1−ω)s f + ωsb

)

ddω
)

.

Thus, αi is a function of s f , sb, and d, if the latter is not
constant.

The (premultiplied) colors ci are approximated corre-
spondingly:

ci ≈
∫ 1

0
τ
(

(1−ω)s f + ωsb

)

c
(

(1−ω)s f + ωsb

)

× exp

(

−
∫ ω

0
τ
(

(1−ω′)s f + ω′sb

)

ddω′

)

ddω.

Analogously to αi, ci is a function of s f , sb, and d.

Apart from these approximations for αi and ci there are
no further modifications of the evaluation of the volume ren-
dering integral; i.e., the compositing algorithm from above
may be employed for pre-integrated volume rendering, too.
In particular, the opacity correction of Section 2.2 also ap-
plies to pre-integrated rendering and the color correction of
Section 2.2 is an appropriate approximation in this case.
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(a) (b)

Figure 4: (a) Standard and (b) factorized viewing transformation.

Note, however, that the pre-integration always supplies
premultiplied colors ci; thus, a subsequent multiplication
with αi has to be avoided.

The computation of the pre-integrated lookup tables for
αi and ci is rather expensive as two integrals have to be eval-
uated numerically for a sufficient number of combinations
of values for s f , sb, and d. Moreover, these tables have to
be recalculated whenever the transfer functions τ(s) or c(s)
are modified; thus, an evaluation at interactive rates is highly
desirable. Fortunately, there are several ways of accelerating
the computation of these lookup tables, which are discussed
in detail in 3. They allow us to perform the calculation of the
two-dimensional lookup tables for constant d at interactive
rates.

One remarkable feature of pre-integrated volume render-
ing is the possibility to render closed isosurfaces even with
very low sampling rates by specifying sharp peaks in the
transfer function τ(s); see 16 and 3 for details.

In summary, pre-integrated volume rendering allows us to
evaluate the volume rendering integral without the need to
increase the sampling rate for any nonlinear transfer func-
tion. Therefore, it has the potential to improve the accuracy
(by less undersampling) and the performance (by fewer sam-
pling operations) of a volume renderer at the same time.

For an accurate evaluation of the volume rendering in-
tegral, the actual sampling rate should be well above the
Nyquist frequency of the scalar volume data since pre-
integration uses a linear interpolation between samples in-
stead of an ideal reconstruction filter. In practice, however,
sampling rates close to this Nyquist frequency appear to re-
sult in a sufficient image quality for most data sets.

It should be noted that pre-integrated volume rendering
will usually generate slightly different colors and opacities
compared to many other volume rendering algorithms even
for very smooth transfer functions; for example, because
the approximation 1− exp(τ(s)d) ≈ τ(s)d is never needed
for pre-integrated volume rendering. These approximations
should not matter for high sampling rates 1/d; however,
many volume rendering implementations perform the com-

positing of colors with fixed-point arithmetic, resulting in
considerable color alterations for high sampling rates.

2.5. Shear-Warp

Since the original presentation of the shear-warp algorithm
by Lacroute 8, 9, there have been a number of publications on
this algorithm. Work was done in fields like stereo rendering
6, fast slab rendering 22, and fast rotation 1. The algorithm
was implemented in volume rendering hardware 14, and it
was compared to other volume rendering algorithms in 12.
In 18, the algorithm was extended to perspective projection,
and then parallelized in 17. In 20, several extensions for im-
proved image quality were described. However, the use of
pre-integration within the shear-warp algorithm has not pre-
viously been published.

The general viewing transformation V consists of a view
matrix M and a projection P, such that V = P × M. The
shear-warp algorithm is based on the idea of a factorization
of the view matrix M into a shear component S and a warp
component W with M = W × S. Lacroute’s idea 9 is to do
the warp after the projection, such that it becomes a two-
dimensional operation, which is fast to compute. Thus, the
final shear-warp viewing transformation becomes:

V = W ×P×S.

This factorization allows us to perform the compositing
in object space. Therefore, the memory cache can work effi-
ciently because of frequent cache hits. The final warp is an
affine two-dimensional transformation, which can be done
on the processor efficiently, or even faster by using 2D tex-
turing hardware. Figure 4 depicts the factorization into shear
and warp. In Figure 4a, the projection of the volume to the
image plane is done traditionally, while in Figure 4b the vol-
ume slices are first sheared, then projected onto an interme-
diate image, and finally warped to the actual image plane.

In Lacroute’s implementation, the compositing of the vol-
ume slices to the intermediate image is done slice by slice
and from front to back, with bilinear interpolation within
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each slice and pre-interpolated classification. The interme-
diate image is aligned with the volume slices, i.e., the front
voxels occupy one pixel per voxel. Opacity correction and
early ray termination are performed for the compositing.
Run-length encoding of the volume data is employed to save
memory and to speed up the compositing process. In the
warp, bilinear interpolation is used for the projection to the
final image.

In summary, the most important features of the shear-warp
algorithm are: efficient compositing; flexibility to incorpo-
rate shading, shadows, and arbitrary compositing models;
and independence of the compositing from the output image
size. A disadvantage is that the warp introduces additional
blurring because of the necessary resampling.

3. Shear-Warp with Pre-Integration

This section discusses our extension of the shear-warp al-
gorithm with pre-integration and the implementation issues
that we encountered. The following topics are addressed:
slab rendering, buffer slices to avoid redundant computa-
tions, the pre-integration table lookup, and rasterization dif-
ferences between our new and the standard shear-warp algo-
rithm.

3.1. Slab Rendering

As described in Section 2.4, pre-integrated volume rendering
computes the color of ray segments instead of point samples
on viewing rays. Thus, our variant of the shear-warp algo-
rithm has to render slabs between adjacent slices instead of
individual slices; see Figure 5. More specifically spoken, we
still traverse the slices of the volume data in front-to-back or-
der but render the slab in front of a slice instead of the slice
itself.

s f
sb

front slice
back slice

Figure 5: A viewing ray through a slab between two slices.
The scalar values of the volume data on the front slice and
the back slice are denoted by s f and sb, respectively.

As each slab between two slices is rendered with the help
of the scalar values s f and sb on these slices, the bilinearly
interpolated scalar values are used twice, once for each ad-
jacent slab. Instead of computing the same bilinear interpo-
lation for each slab, we employ a buffer slice, which is dis-
cussed next.

3.2. Buffer Slice

The buffer slice stores interpolated scalar values of the back
slice as floating point numbers, such that these values can be
reused for the front slice of the next slab. For the implemen-
tation of the buffer slice, we experimented with two slightly
different approaches. The first option is to store two buffer
slices in memory, each with the size of the volume slices that
are rendered to the intermediate image (slice-sized buffer
slices; see Figure 6a). Two buffer slices are required in order
not to overwrite buffered values before they are needed for
the pre-integration table lookup. Thus, two blocks of mem-
ory have to be allocated, and the size of the two buffer slices
has to be adapted whenever the size of the displayed slices
changes. Depending on the volume size, this may happen
whenever the principal viewing axis changes. In the case
of cubic volumes, the size of the buffer slices is always the
same because the slices that are rendered to the intermediate
image are of the same size for each principal axis. In order
not to allocate and de-allocate memory whenever the prin-
cipal axis changes, we decided to allocate memory for the
buffer slices only once and use the size of the largest slices.

(a) (b)

Figure 6: (a) Slice-sized and (b) intermediate image-sized
buffer slices.

The second approach is to create a single buffer slice,
which has the same size as the intermediate image (inter-
mediate image-sized buffer slice; see Figure 6b). In this case
only one slice is needed because a scalar value is always
buffered right after the scalar value buffered previously at
the same position has been read. This approach requires to
change the size of the buffer slice whenever the size of the in-
termediate image changes, i.e., for every change of the view-
point. This size is easily computed because our implementa-
tion of the shear-warp algorithm is based on the same idea
for the allocation of the memory for the intermediate image.
In order to prevent frequent memory allocation, we can fol-
low the same approach as for the slice-sized buffer slices by
allocating memory for the largest intermediate image size.

With the approaches described above, there is no dif-
ference in the frequency of memory allocation, but there
is a difference in the size of the allocated memory. Let
vx and vy be the width and height of the slices in vox-
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els, respectively. Then, in the case of the parallel projec-
tion shear-warp algorithm, the intermediate image consists
of (2× vx)× (2× vy) pixels in the worst case, i.e., when the
viewer looks along the diagonal of the object. The intermedi-
ate image-sized buffer slice requires almost as many floating
point (float) elements as there are intermediate image pixels,
i.e., (2× vx)× (2× vy) = 4× vx × vy floats. (Strictly speak-
ing, it requires one row and one column less.)

The two slice-sized buffer slices require 2× vx × vy floats
(again, the correct value is one row and one column less).
Thus, the slice-sized buffer slices require almost exactly half
the amount of memory compared to the intermediate image-
sized slice buffer.

We did not implement a pre-integrated perspective shear-
warp algorithm, but similar considerations as for parallel
projection apply. The intermediate image-sized buffer slice
can be used in an analogous way. However, the slice-sized
buffer slices vary with the size of the volume slices that are
composited to the intermediate image. As we allocate mem-
ory only for the front slice, and change the size of the buffer
slice by changing its size variables, there is no memory allo-
cation penalty to the slice-sized buffer slice approach.

3.3. Pre-Integration Table Lookup

The pre-integration table is recomputed whenever the trans-
fer function changes. We compute only a two-dimensional
pre-integration table for a constant distance d, because the
computation of a three-dimensional table is significantly
more expensive and the image quality is hardly improved.
Compared to using a two-dimensional table and opacity
correction, the images generated with a three-dimensional
lookup were slightly brighter in our experiments.

The bilinear interpolation that is performed to determine
the scalar values s f and sb for the lookup in the pre-
integration table generates floating point numbers. Thus,
the lookup in the pre-integration table should bilinearly in-
terpolate the tabulated colors and opacities. This is rather
expensive, since it adds another bilinear interpolation for
the composition of each voxel. Therefore, we experimented
with nearest-neighbor interpolation for the pre-integration
lookup, and with lookup tables larger than 256 entries, which
we usually use. We found that for typical transfer func-
tions, no difference is visible in the resulting images. Thus,
it is sufficient to use nearest-neighbor interpolation for the
lookup and gain a few percent of rendering speed (see Sec-
tion 4).

3.4. Rasterization

A fundamental difference in rendering between the tradi-
tional approach with bilinear interpolation compared to pre-
integration is the number of slices that are actually ren-
dered: traditionally, one slice is rendered for each slice that is

present in the volume dataset in the principal viewing direc-
tion. Since the pre-integration approach requires two volume
slices and renders the slab in-between them, one slice less
has to be rasterized with this approach. However, for typical
volume sizes starting with about 100 slices this effect can be
neglected.

4. Results

After we had integrated all the discussed improvements in
our implementation of the shear-warp algorithm for parallel
projection, we performed speed tests of the algorithm with
different combinations of extensions and compared the re-
sulting image quality.

4.1. Rendering Performance

The rendering performance tests were performed on a PC
with a 1.7 GHz Pentium 4 processor, 256 MB RAM, and an
ATI Radeon 7500 graphics card. The output image size was
5122. We used the following datasets for the performance
tests: the General Electric CT Engine, the UNC’s MR Brain,
and Stefan Röttger’s Bonsai tree. The opacity transfer func-
tion was set to a linear ramp from zero to full opacity, which
extended over the entire data range. In the case of the pre-
integrated shear-warp, the transfer function does not affect
rendering performance in any other way than for the tradi-
tional shear-warp, e.g., via early ray termination. We applied
an automatic performance measurement procedure, which
rotated the volume by 180 degrees in steps of 2 degrees about
its vertical axis. The average rendering times per displayed
frame are listed in Table 1.

In the table, the first three columns specify the dataset,
its size, and the percentage of transparent voxels it con-
tains. The fourth column shows the performance of the
standard shear-warp algorithm without pre-integration and
without opacity correction. The remaining columns list the
times that are achieved with different combinations of exten-
sions. Three types of extensions are distinguished: lookup in
the pre-integration table, opacity correction (including color
correction), and slice buffers. Opacity correction was imple-
mented as described by Lacroute in 8. The first four columns
of the pre-integrated rendering tests are results from render-
ing with nearest-neighbor lookup in the pre-integration ta-
ble, for the last four columns this lookup is improved by
bilinear interpolation between the table values. The abbre-
viations used for the further classification of the table are
as follows: OC: opacity correction enabled, NC: no opacity
correction, SB: two slice-sized buffer slices, and IB: one in-
termediate image-sized buffer slice. In all the performance
tests, the intermediate image was warped by the 2D textur-
ing hardware, as mentioned in Section 2.5.

The times indicate that the pre-integrated shear-warp al-
gorithm achieves a performance which is between 34% and
88% of the speed of the standard shear-warp, depending on
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Pre-Integration
Nearest Neighbor Lookup Bilinear Lookup

NC OC NC OC

Dataset Size [voxels] Transparent Standard SB IB SB IB SB IB SB IB

Engine 1282 ×55 28.0 % 0.26 0.30 0.30 0.34 0.34 0.36 0.36 0.40 0.40
Brainsmall 1282 ×84 13.3 % 0.43 0.49 0.49 0.56 0.57 0.58 0.59 0.66 0.66
Bonsai 1283 79.5 % 0.23 0.56 0.57 0.60 0.60 0.65 0.65 0.69 0.69

Table 1: Rendering performance in seconds per frame. The abbreviated rendering parameters are: NC: no opacity correction,
OC: opacity correction, SB: slice-sized buffer slices, IB: intermediate image-sized buffer slice.

the dataset. Pre-integration is fastest with nearest-neighbor
interpolation in the pre-integration lookup table, no opacity
correction, and slice-sized buffer slices. Slice-sized buffer
slices are slightly faster than intermediate image-sized buffer
slices because the computation of the location within the
buffer slices is simpler, but the performance difference is
less than 1% and the resulting images are identical. In the
performance tests, opacity correction accounts for 6-13% of
the rendering time if enabled, bilinear interpolation in the
pre-integration lookup table results in 14-20% performance
penalty.

4.2. Image Quality

A number of images, which result from different combi-
nations of rendering parameters are presented on the color
page. The images were rendered with the same datasets and
output image resolution as in the performance tests, but we
selected different transfer functions in order to emphasize
the differences of the applied algorithms. The inset in the
top right corner of every image shows a magnification of the
region highlighted by a black square.

In Figure 7, the Engine dataset is depicted using three dif-
ferent settings. Figure 7a was created by the standard shear-
warp algorithm without any of the extensions presented in
this paper. For Figure 7b, we used the pre-integrated render-
ing algorithm with nearest-neighbor interpolation in the pre-
integration table and no opacity correction. Figure 7c was
computed using the same settings, except that opacity cor-
rection was enabled. The difference between the standard
algorithm and pre-integration is clearly visible: the engine’s
features are depicted much smoother and show more detail
with pre-integration. The impact of opacity correction can
clearly be seen by comparing Figures 7b and 7c: the semi-
transparent engine block is more opaque in Figure 7c.

For the creation of the images of the Brain dataset in Fig-
ure 8, the same pre-integration settings were applied as for
the Engine. Here, the subtle details on the cheek, which is
enlarged in the inset, can only be seen with pre-integration.
Again, opacity correction makes a difference, but due to the

nature of the selected transfer function, it can not be seen as
clearly as in the previous example.

The images of Figure 9 depict the Bonsai dataset. They
were rendered using the same pre-integration settings as be-
fore. Pre-integration accounts for significantly less staircas-
ing artifacts on the flower pot than the standard algorithm,
as can be seen very well in the inset. Furthermore, the color
difference between the standard and the pre-integrated algo-
rithm, as was mentioned in Section 2.4, is clearly visible,
especially in the leaves.

In Figure 10, texturing hardware was employed for ren-
dering the Bonsai dataset with the same transfer functions,
the same viewpoint, and the same volume resolution as for
the shear-warp. In Figure 10a, 128 image plane aligned tex-
tured polygons were rendered, which is the same amount of
slices as were composited for the shear-warp algorithm. The
texturing hardware’s capability of performing trilinear inter-
polation while compositing and sampling at image resolu-
tion result in a clearer image than the shear-warp can achieve
even with pre-integration. However, staircasing artifacts are
obvious in the resulting image. For Figure 10b, 256 textures
were rendered. This reduces the staircasing artifacts signifi-
cantly, but they are still noticeable, even more clearly than in
the images rendered by the pre-integrated shear-warp algo-
rithm. Figure 10c demonstrates that 1024 textured polygons
result in an image of high quality.

5. Conclusions and Future Work

We have presented the integration of the pre-integrated vol-
ume rendering approach into the shear-warp algorithm. Pre-
integration imposes a noticeable performance hit on the stan-
dard shear-warp algorithm, but it results in substantially im-
proved image quality. Staircasing artifacts are reduced and
color transitions are more accurate.

In the future, we are planning to integrate shading, which
is essential for the rendering of iso-surfaces. Also, pre-
integration can be incorporated into the perspective projec-
tion shear-warp algorithm analogously to the case of par-
allel projection; however, the scaling of the slices slightly

c© The Eurographics Association 2003.



Schulze et al. / Integrating Pre-Integration Into The Shear-Warp Algorithm

increases the complexity of this approach. The image qual-
ity of our algorithm could be further improved by sampling
at (or above) the Nyquist frequency of the scalar volume
data. This could be accomplished by adapting the approach
of Sweeney and Mueller 20.
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(a) (b) (c)

Figure 7: The Engine dataset: (a) standard shear-warp, (b) pre-integrated shear-warp without opacity correction and (c)
pre-integrated shear-warp with opacity correction.

(a) (b) (c)

Figure 8: The Brain dataset: (a) standard shear-warp, (b) pre-integrated shear-warp without opacity correction and (c) pre-
integrated shear-warp with opacity correction.

(a) (b) (c)

Figure 9: The Bonsai dataset: (a) standard shear-warp, (b) pre-integrated shear-warp without opacity correction and (c) pre-
integrated shear-warp with opacity correction.

(a) (b) (c)

Figure 10: The Bonsai dataset rendered with 3D texturing hardware support using different numbers of textured polygons: (a)
128 polygons, (b) 256 polygons, (c) 1024 polygons.
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