
Interactive Volume Rendering
in Virtual Environments

Von der Fakultät Informatik, Elektrotechnik und
Informationstechnik der Universität Stuttgart
zur Erlangung der Würde eines Doktors der

Naturwissenschaften (Dr. rer. nat.) genehmigte Abhandlung

Vorgelegt von

Jürgen Peter Schulze-Döbold

aus Dortmund

Hauptberichter: Prof. Dr. T. Ertl
1. Mitberichter: Prof. Dr. R. Rühle
2. Mitberichter: Prof. Dr. C. Hansen

Tag der mündlichen Prüfung: 8. August 2003

Institut für Visualisierung und Interaktive Systeme der
Universität Stuttgart

2003

c© 2003 Jürgen Peter Schulze-Döbold

All Rights Reserved

Abstract

This dissertation is about the interactive visualization of volume data in virtual environ-
ments. Only data on regular grids will be discussed. Research was conducted on three
major topics: visualization algorithms, user interfaces, and parallelization of the visual-
ization algorithms.

Because the shear-warp algorithm is a very fast CPU-based volume rendering algorithm,
it was investigated how it could be adapted to the characteristics of virtual environments.
This required the support of perspective projection, as well as specific developments for
interactive work, for instance a variable frame rate or the application of clipping planes.
Another issue was the improvement of image quality by the utilization of pre-integration
for the compositing.

Concerning the user interface, a transfer function editor was created, which was tailored
to the conditions of virtual environments. It should be usable as intuitively as possible,
even with imprecise input devices or low display resolutions. Further research was done
in the field of direct interaction, for instance a detail probe was developed which is useful
to look inside of a dataset. In order to run the user interface on a variety of output devices,
a device independent menu and widget system was developed.

The shear-warp algorithm was accelerated by a parallelization which is based on MPI. For
the actual volume rendering, a remote parallel computer can be employed, which needs to
be linked to the display computer via a network connection. Because the image transfer
turned out to be the bottleneck of this solution, it is compressed before being transferred.

Furthermore, it will be described how all the above developments were combined to a
volume rendering system, and how they were integrated into an existing visualization
toolkit.

3

Kurzfassung

Diese Dissertation befasst sich mit der interaktiven Visualisierung von Volumendaten in
virtuellen Umgebungen. Es werden ausschließlich Daten auf regulären Gittern behandelt.
Forschungsarbeiten wurden in drei Themengebieten durchgeführt: Visualisierungsalgo-
rithmen, Benutzerschnittstellen und Beschleunigung der Darstellung durch Parallelisie-
rung.

Da der Shear-Warp-Algorithmus einer der schnellsten CPU-basierten Algorithmen zur
Volumenvisualisierung ist, wurde untersucht, wie er an die Gegebenheiten von virtuellen
Umgebungen angepasst werden kann. Dazu wurde zum einen die perspektivische Projek-
tion ermöglicht, zum anderen wurden spezielle Entwicklungen für interaktives Arbeiten
durchgeführt, wie beispielsweise eine wählbare Bildberechnungsdauer oder die Unterstüt-
zung von Schnittflächen. Ein weiterer Punkt war die Erhöhung der Darstellungsqualität
durch die Einbindung von Vorintegration bei der Bildberechnung.

Im Bereich der Benutzerschnittstellen wurde an einem für virtuelle Umgebungen geeigne-
ten Transferfunktionseditor gearbeitet. Er sollte möglichst intuitiv zu benutzen und auch
mit ungenauen Eingabegeräten oder niedrigen Bildschirmauflösungen noch bedienbar
sein. Weitere Aktivitäten fanden im Bereich der direkten Interaktion statt, beispielsweise
die Unterstützung einer Lupenfunktion, um das Innere eines Datensatzes zu betrachten.
Um diese Benutzerschnittstelle auf verschiedenen Ausgabegeräten einsetzen zu können,
wurde eine geräteunabhängige Bibliothek von Menüelementen erstellt.

Eine Beschleunigung des perspektivischen Shear-Warp-Algorithmus konnte erreicht wer-
den, indem die Bilderstellung mit MPI parallelisiert wurde. Dabei kann ein Parallelrech-
ner eingesetzt werden, der örtlich vom Visualisierungsrechner getrennt und durch eine
Netzwerkverbindung angebunden ist. Da sich die Übertragung des berechneten Bildes als
Flaschenhals herausstellte, wird es vor der Übertragung komprimiert.

Im Anschluss wird erläutert, wie die Einzelergebnisse zu einem Gesamtsystem zur Volu-
menvisualisierung kombiniert und in ein bestehendes Visualisierungssystem eingebunden
wurden.

4

Contents

1 Introduction 15
1.1 Motivation . 15
1.2 Contributions . 16
1.3 Master’s Theses and Semester Projects 17
1.4 Structure . 17

2 Foundations 19
2.1 Volume Rendering . 19

2.1.1 Ray Casting . 21
2.1.2 Splatting . 22
2.1.3 Shear-Warp . 22
2.1.4 Texture Mapping . 23
2.1.5 Special Purpose Hardware . 25
2.1.6 Ray Casting on Graphics Hardware 26
2.1.7 Fourier Volume Rendering . 27
2.1.8 Compression Domain Volume Rendering 27

2.2 Virtual Reality . 28
2.2.1 Input Devices . 28
2.2.2 Display Devices . 31

2.3 Parallel Computing . 35
2.3.1 Hardware . 35
2.3.2 Programming Models . 36

2.4 Visualization Software . 37
2.4.1 Programming Interfaces . 37
2.4.2 Visualization Frameworks . 38

3 Rendering Methods 41
3.1 Texture Hardware . 41

3.1.1 Optimizations for Virtual Environments 42
3.2 The Perspective Shear-Warp Algorithm 43

3.2.1 The Perspective Algorithm . 44
3.2.2 Algorithmic Issues . 50
3.2.3 Results . 55

3.3 The Pre-Integrated Shear-Warp Algorithm 57
3.3.1 Shear-Warp With Pre-Integration 58

5

6 CONTENTS

3.3.2 Results . 61

4 Interaction Methods 67
4.1 Device Independent VR User Interface 67

4.1.1 Basis . 68
4.1.2 Extensions . 69

4.2 Interaction Elements for Volume Rendering 72
4.2.1 First Approach . 73
4.2.2 First Evaluation . 78
4.2.3 Solving the Usability Issues . 82
4.2.4 Second Evaluation . 84

5 Parallelization and Distribution Methods 89
5.1 The Parallelized Perspective Shear-Warp 89
5.2 Previous Work . 90
5.3 The Rendering System . 91

5.3.1 The Parallelized Shear-Warp Algorithm 91
5.3.2 The Renderer Plug-In . 93
5.3.3 The Remote Renderer . 93
5.3.4 Data Transfer . 94
5.3.5 Overall Algorithm . 95

5.4 Results . 95
5.4.1 Overall Rendering Performance 97
5.4.2 Compositing . 98
5.4.3 Intermediate Image Transfer . 99
5.4.4 Shear-Warp vs. 3D Texture Hardware 99
5.4.5 Discussion . 99

6 Volume Visualization System 103
6.1 Development Environment . 103
6.2 Integration in Visualization Framework 104
6.3 Data Formats . 105

6.3.1 Basis . 105
6.3.2 Contributions . 106
6.3.3 Integration . 106

6.4 File Handling . 106
6.4.1 Basis . 106
6.4.2 Contributions . 107
6.4.3 Integration . 108

6.5 Rendering and Interaction . 110
6.5.1 Basis . 111
6.5.2 Contributions . 111
6.5.3 Integration . 112

CONTENTS 7

7 Conclusions 117
7.1 Interactive Volume Rendering . 118

7.1.1 Local Rendering with Texturing Hardware 118
7.1.2 Local Rendering with the Shear-Warp Algorithm 118
7.1.3 Remote Rendering on a Parallel Computer 120

7.2 Relevance Analysis . 120
7.2.1 User Interface . 120
7.2.2 Volume Rendering Concept . 121
7.2.3 Remote Volume Rendering . 121

7.3 Future Work . 122

Color Plates 123

References 128

Summary 138

German Summary: Zusammenfassung 147

Curriculum Vitae 156

8 CONTENTS

List of Figures

1.1 Structure of the dissertation with chapter numbers. 18

2.1 Opacity and color transfer functions. 20
2.2 Casting rays through an object. 22
2.3 Shear-warp with orthogonal projection. 23
2.4 Shear-warp with perspective projection. 24
2.5 Texturing modes: (a) object aligned and (b) viewport aligned slices. . . . 24
2.6 3D texturing with concentric shells. 25
2.7 Piecewise linear interpolation of samples of s(x) for pre-integrated vol-

ume rendering. 26
2.8 (a) 5DT data glove (b) Immersion CyberForce. 29
2.9 Mechanical tracking devices: (a) Phantom (b) Space Mouse. 29
2.10 (a) Flock of Birds, (b) Wireless Motionstar, (c) ART hand tracker. 30
2.11 Stereo glasses: (a) active, (b) passive. 31
2.12 (a) Dresden 3D display, (b) 5DT HMD, (c) Fakespace BOOM. 32
2.13 (a) ImmersaDesk, (b) Responsive Workbench, (c) Holobench. 33
2.14 Power walls: (a) wide screen, (b) high resolution. 34
2.15 Curved screen: (a) overlapping images, (b) Panoram at EVL. 34
2.16 (a) CAVE setup at EVL, (b) CUBE at HLRS. 35
2.17 COVISE user interface with Open Inventor renderer. 39
2.18 (a) AVS, (b) Amira. 39
2.19 (a) OpenDX, (b) EnSight. 40

3.1 Sampling planes in texture hardware supported algorithm. 42
3.2 Coordinate systems illustrated. 46
3.3 Intermediate image size: (a) 20482 and (b) 2562. (See also Color Plate 1

on page 123.) . 52
3.4 Engine dataset: (a) complete, (b) clipped. (See also Color Plate 2 on page

123.) . 53
3.5 Multiple principal viewing axes. 54
3.6 Viewpoint-object relations. 55
3.7 Rendering speed relative to intermediate image size. 56
3.8 A viewing ray through the volume, traversing slices and slabs. The scalar

data values of the volume dataset on the front slice and the back slice are
denoted by s f and sb, respectively. 59

9

10 LIST OF FIGURES

3.9 (a) Slice-aligned and (b) intermediate image aligned buffer slices. 60
3.10 Opacity and color correction due to different viewing directions. 61
3.11 The Engine dataset: (a) standard shear-warp, (b) pre-integrated shear-

warp without opacity correction and (c) pre-integrated shear-warp with
opacity correction. (See also Color Plate 3 on page 124.) 63

3.12 The Brain dataset: (a) standard shear-warp, (b) pre-integrated shear-warp
without opacity correction and (c) pre-integrated shear-warp with opacity
correction. (See also Color Plate 4 on page 124.) 65

3.13 The Bonsai dataset: (a) standard shear-warp, (b) pre-integrated shear-
warp without opacity correction and (c) pre-integrated shear-warp with
opacity correction. (See also Color Plate 5 on page 124.) 65

3.14 The Bonsai dataset rendered with 3D texturing hardware support using
different numbers of textured polygons: (a) 128 polygons, (b) 256 poly-
gons, (c) 1024 polygons. (See also Color Plate 6 on page 125.) 65

4.1 Basic menu widgets: label, push button, check box, radio button, slider,
rotary knob, sub-menu. 68

4.2 Layers of VRUI+. 69
4.3 VRSG class diagram. 70
4.4 VRUI+ with Cosmo 3D. 71
4.5 New widgets: (a) tab, (b) choice. 71
4.6 Dialog window: (a) front view, (b) side view, extruded. 72
4.7 Widget layout: (a) left, (b) centered, (c) right, (d) larger spacing. 72
4.8 Transfer function editor. 74
4.9 First version of the volume menu. 75
4.10 Lambda dataset: (a) with tri-linear density interpolation, (b) with nearest-

neighbor interpolation. 76
4.11 Lambda dataset: (a) adaptive mode, (b) high quality mode. 76
4.12 Lambda dataset: (a) regular display, (b) probe mode. 77
4.13 Lambda dataset: (a) no clipping, (b) clipping. 77
4.14 Time steps of a statistical finite elements simulation. 78
4.15 The skull of the Visible Human in the CAVE. (See also Color Plate 7 on

page 125.) . 79
4.16 Volume rendered temperature distribution in a polygonal car cabin. (See

also Color Plate 8 on page 126.) . 80
4.17 The improved transfer function editor. 83
4.18 The improved volume menu. 83
4.19 Lambda dataset: (a) no clipping, (b) regular clipping, (c) opaque clipping. 84
4.20 The visible human knee. 85
4.21 Scenario #2: to find the needle. 85

5.1 Remote rendering system components. 91
5.2 Intermediate image task distribution with sections of the same size. 92
5.3 Encoding of actually used intermediate image window. 95
5.4 The remote rendering data flow. 96

LIST OF FIGURES 11

5.5 Parallel rendering platforms: (a) SGI Onyx2, (b) SUN Fire 6800, (c)
Fujitsu-Siemens PC Cluster. 96

5.6 SUN Fire rendering performance. 97
5.7 SGI Onyx2 rendering performance. 98
5.8 PC cluster rendering performance. 99
5.9 Total compositing vs. average section compositing. 100
5.10 Intermediate image run length encoding graph. 101
5.11 Texture hardware vs. shear-warp algorithm. 102
5.12 Windows PC is display machine, PC cluster renders. 102

6.1 The rendering front-end VShell. (See also Color Plate 9 on page 126.) . . 104
6.2 The class hierarchy of VShell. 105
6.3 ReadVolume: (a) map, (b) preferences. 109
6.4 WriteVolume: (a) map, (b) preferences. 110
6.5 (a) COVISE map with GenDat module for volume rendering, (b) Gen-

Dat parameters. 112
6.6 (a) color editor, (b) output in renderer window. 113
6.7 Preferences window with volume quality control wheel. 114
6.8 The perspective shear-warp algorithm in the CUBE. (See also Color Plate

10 on page 127.) . 114

7.1 Flowchart of an interactive volume rendering system. The numbers in
brackets denote the sections in which the respective processes are discussed.119

7.2 Flowchart for the decision on the rendering method. 120
1 Intermediate image size: (a) 20482 and (b) 2562. (See also Figure 3.3 on

page 52.) . 123
2 Engine dataset: (a) complete, (b) clipped. (See also Figure 3.4 on page 53.) 123
3 The Engine dataset: (a) standard shear-warp, (b) pre-integrated shear-

warp without opacity correction and (c) pre-integrated shear-warp with
opacity correction. (See also Figure 3.11 on page 63.) 124

4 The Brain dataset: (a) standard shear-warp, (b) pre-integrated shear-warp
without opacity correction and (c) pre-integrated shear-warp with opacity
correction. (See also Figure 3.12 on page 65.) 124

5 The Bonsai dataset: (a) standard shear-warp, (b) pre-integrated shear-
warp without opacity correction and (c) pre-integrated shear-warp with
opacity correction. (See also Figure 3.13 on page 65.) 124

6 The Bonsai dataset rendered with 3D texturing hardware support using
different numbers of textured polygons: (a) 128 polygons, (b) 256 poly-
gons, (c) 1024 polygons. (See also Figure 3.14 on page 65.) 125

7 The skull of the Visible Human in the CAVE. (See also Figure 4.15 on
page 79.) . 125

8 Volume rendered temperature distribution in a polygonal car cabin. (See
also Figure 4.16 on page 80.) . 126

9 The rendering front-end VShell. (See also Figure 6.1 on page 104.) 126

12 LIST OF FIGURES

10 The perspective shear-warp algorithm in the CUBE. (See also Figure 6.8
on page 114.) . 127

List of Tables

3.1 Coordinate systems definition. 45
3.2 Perspective vs. orthogonal projection. 56
3.3 Software vs. texture based warp. 57
3.4 Cost of compositing and warp. 57
3.5 Rendering performance in seconds per frame. The abbreviated rendering

parameters are: NL: nearest neighbor lookup, BL: bilinear lookup, NC:
no opacity correction, OC: opacity correction. 62

4.1 Self-Rated experience on a Likert-Scale from 1 (low) to 5 (high). 81

5.1 Maximum rendering speed of the tested machines. 100

6.1 XVF file header. 107
6.2 Sample ASCII volume file with 3×2×2 voxels. 108
6.3 File types supported by ReadVolume. 109
6.4 File types supported by the module WriteVolume. 110

13

14 LIST OF TABLES

Chapter 1

Introduction

Volumetric datasets are generally characterized by a set of values at certain positions in
three-space without connectivity information. This dissertation will deal exclusively with
volumetric datasets consisting of scalar data values on regular grids. The goal of this
dissertation is to improve both the quality of the visualization and the usability of the
interaction methods. The greatest realism of any type of visualization can be achieved
in immersive virtual environments with interactive graphics. Therefore, only interactive
rendering methods suitable for immersive visualization with stereo imaging will be con-
sidered. This dissertation will address corresponding volume rendering algorithms, ap-
propriate user interfaces, and parallelization issues. Finally, all the developed volume
rendering methods will be integrated into an existing visualization framework.

1.1 Motivation

Only after the appearance of multi-pipe graphics computers was it possible to drive virtual
environments consisting of multiple synchronized screens delivering stereo images. When
the research for this dissertation began in 1999, there was no volume rendering library
available which would run in a virtual environment driven by a multi-pipe SGI Onyx2
and which could be used in conjunction with SGI’s OpenGL Performer. A straightforward
implementation using 3D texturing hardware acceleration was the first step towards the
goal of real-time volume rendering in virtual environments. Soon it showed that volume
rendering requires a transfer function editor and several options for interaction so that
users can explore volumetric datasets.

The computing center of the University of Stuttgart did not only have the Cube, which is
a 4-sided CAVE-like virtual reality device, but also high-speed network connections to a
variety of parallel computers like a Cray T3E, a NEC SX-5, and a SUN Fire cluster. This
was a great opportunity to find out if CPU-based volume rendering on a remote parallel
computer, displaying the visualization result on a local computer, can catch on with the
latest graphics hardware based approaches. It initiated the research in remote volume
rendering using the shear-warp algorithm.

15

16 CHAPTER 1: CONTRIBUTIONS

1.2 Contributions

Parts of the research presented in this dissertation were carried out in collaboration with
other researchers. In these cases, the collaborators will be mentioned in the respective
sections. However, it will be reported only on those parts of the joint work that were
decisively carried out by the author of this thesis.

The major scientific contributions of this dissertation are summarized in the following list:

• The perspective shear-warp algorithm: Since Lacroute’s shear-warp algorithm
[53] is a very fast CPU-based volume rendering algorithm, and due to its good scal-
ability on parallel computers, it was expected to be well suited for interactive virtual
environments. However, due to stereo projection and non-flat projection screens,
it could not be used because existing implementations could only do orthogonal
projection. Therefore, the algorithm was extended to perspective projection and
adapted to some specific requirements of virtual environments. This work was pub-
lished in [84] and can be found in Section 3.2 of this dissertation.

• Remote rendering in virtual environments: In order to take advantage of the
scalability of the perspective shear-warp algorithm on parallel computers, it was
parallelized. The parallelized version of the algorithm runs on all types of parallel
computers which support MPI. The parallel computer composites the intermediate
image and transfers it to the display machine in a compressed form. The warp
is then done on the display machine, supported by texturing hardware if present.
These achievements were published in [82] and [83], and in this dissertation they
will be discussed in Chapter 5.

• Device independent user interface for virtual environments: There are a number
of different types of output devices for virtual environments, each of which having
specific requirements for its user interface. Furthermore, there are many different
input devices that can be used for interaction with the environments. In order to
enable the development of interactive applications running independently of both
input and output devices, a new device independent widget library was designed
and implemented. It was published in [30], and it will be described in Section 4.1.

• User interface for volume rendering in virtual environments: Virtual environ-
ments have different characteristics than desktop computers with respect to the user
interface. Therefore, no existing desktop interface for volume rendering in virtual
reality could be used. In particular, the transfer function editor had to be redesigned.
But also a number of interaction elements that would traditionally be activated from
a menu can be invoked by direct interaction methods when three dimensional input
devices are available. A volume rendering user interface was developed, which ex-
ploits the specific characteristics of virtual environments, and it was evaluated in
two user studies. This work was published in [85] and [108], and it can be found in
Section 4.2.

17

• Shear-warp with pre-integration: Pre-integration is a technique which has pre-
viously been applied successfully to texture hardware supported volume rendering
[26]. It allows more exact rendering results than the traditional linear interpolation
between voxels. Pre-integration can also be applied to the shear-warp algorithm,
which is described in Section 3.3. The results were published in [81].

1.3 Master’s Theses and Semester Projects

In the process of the research activities for this dissertation, the author advised on the
following master’s theses and semester projects:

• Pablo Gußmann [33], Erstellung eines verteilten, synchronisierten und koopera-
tiven Renderers (Creation of a distributed, synchronized, and cooperative renderer),
Diplomarbeit (Master’s Thesis), 2000

• Marc Schreier [79], An Audio Server for Virtual Reality Applications, Master’s The-
sis, 2002

• Frank Föhl [30], Geräte- und szenengraphunabhängige grafische Benutzungsele-
mente für Virtual Realtiy-Anwendungen (Device and scene graph independent gra-
phical user elements for virtual reality applications), Diplomarbeit (Master’s The-
sis), 2002

• Sven Wergandt [99], Selektion, Extraktion und Aufbearbeitung von Volumendaten
auf Multiprozessor-Systemen (Selection, extraction, and processing of volume data
on multi-processor systems), Studienarbeit (Semester Project), 2002

1.4 Structure

The structure of this dissertation is depicted in Figure 1.1. After an introductory section,
the first chapter gives a motivation for the work that was carried out, and it summarizes
its scientific contributions.

Chapter 2 reports on the current state of technology in the fields that are addressed in the
subsequent chapters. This chapter addresses four major topics: volume rendering meth-
ods, interaction methods in virtual reality, parallelization and distribution methods, and
visualization systems. The four main chapters of the dissertation, in which new develop-
ments are described, will represent these four topics.

Chapters 3 to 5 report on the three main areas in which research was done. In Figure 1.1,
these chapters are depicted in one row to indicate that they do not depend on each other.

The results from research in the field of volume rendering techniques are presented in
Chapter 3. Two volume rendering algorithms will be addressed: graphics hardware sup-
ported rendering with texture mapping and CPU based rendering using the shear-warp

18 CHAPTER 1: STRUCTURE

��� �����	
����

������

��� ���������

������

��� �	�	������	������

���������������

��� ����	���	����

 !���"

#�� $��
�������

%�� &����	�����

'�� �������
����

Figure 1.1: Structure of the dissertation with chapter numbers.

algorithm. Two major extensions of the shear-warp algorithm will be presented: the
support of perspective projection with optimizations for virtual environments, and the
enhancement of rendering quality with pre-integration.

Chapter 4 describes the interaction elements which had to be developed to allow volume
rendering in interactive virtual environments. As a basis for all interaction elements, a
flexible and device independent 3D widget library was created. It was used to create a
volume rendering user interface, allowing a variety of functionalities like transfer function
editing or clipping planes.

Chapter 5 addresses topics related to the integration of remote parallel computers into
the volume rendering system. These are mainly the parallelization of the shear-warp
algorithm, and the issues that arise with the transfer of rendered images from a remote
parallel computer to the display computer.

All the developments from the previous three chapters were integrated into an existing
visualization framework. The problems that had to be solved to achieve this and the
resulting system will be described in Chapter 6.

Chapter 7 concludes the dissertation, discusses the scientific relevance of its achievements,
and suggests topics for future work.

Chapter 2

Foundations

This chapter gives the information which is required for an understanding of the following
chapters. Four topics will be addressed, which correspond with the four main chapters of
this dissertation: volume rendering techniques, virtual reality, parallel computing, and
visualization software.

2.1 Volume Rendering

Volume rendering is the technique of visualizing three dimensional arrays of data. These
arrays can either be acquired by scanning real objects, or they can result from simulations
or other computational methods. In the medical field, volume data is typically acquired
by magnetic resonance imaging (MRI) or computed tomography (CT) scanners. MRI
scanners generate data fields of specific characteristics resulting from polarizing the spin
of the hydrogen electrons. CT scanners measure the x-ray absorbation of parts of the
human body. CT scanners are not only used in the medical field, but also by the metal
manufacturing industry, for instance to quality check parts used for the construction of
machinery. Another field in which real world data is scanned is the oil and gas industry.
In order to find oil reservoirs underneath the ocean, special purpose ships emit ultrasonic
waves and record their reflectance patterns. This way, several terabytes of data can be
acquired of a submarine region. With the latest microscope technologies, biologists can
take slice images of tiny objects, or even structures inside of a cell. Some of these tech-
nologies use non-destructive techniques, so that sequences of three-dimensional datasets
can be generated.

There is a large number of fields in which volume datasets are generated artificially. For
instance, the pressure inside of the cylinder of a combustion engine can be simulated,
which results in a volumetric array of data. Another example is a simulation of the tem-
perature distribution in a car cabin, which allows engineers to find out how fast a car heats
up on cold winter mornings, or how well the air conditioning distributes the cool air.

The visualization of volumetric data can be approached by two intrinsically different
ways: either the data is converted to traditional visual elements, i.e., polygons, or the

19

20 CHAPTER 2: VOLUME RENDERING

data is displayed directly with a direct volume rendering approach. The traditional ap-
proaches of indirect volume rendering are either to extract iso-surfaces from the dataset,
or to compute a cutting plane, both of which can be displayed with traditional surface
rendering techniques. Cutting planes are a simple way to get an impression of a dataset,
but because they are two-dimensional, it is difficult to perceive complex 3D structures
with them. Iso-surfaces are typically computed with the marching cubes algorithm by
Lorensen and Cline [58]. This algorithm is based on a list of all possible intersections of
a plane with a volume element (voxel), which depends on its own and its neighbors’ data
values with respect to the iso-surface value. This approach is useful if the dataset consists
of homogeneous or gradually changing data regions, for instance of temperature or pres-
sure. However, particularly with scanned data, it is often difficult to create meaningful
iso-surfaces because statistical noise and insufficient sampling rates result in iso-surfaces
that contain millions of polygons. In these cases, sophisticated mesh reduction techniques
are required to reduce the number of polygons, so that they can be displayed by the graph-
ics hardware.

Direct volume rendering can create a spatial display of the dataset even if the internal
structure is unknown to the user. The rendering technique is based on the assignment of
color and opacity to each data value in the volume. This assignment is done with transfer
functions. The design of meaningful transfer functions is crucial for the success of this
method. In Figure 2.1, both types of transfer functions are depicted: the opacity function
is drawn as a line, the color function is represented as a bar above the opacity function.

Figure 2.1: Opacity and color transfer functions.

Transfer functions can be classified according to the number of values they depend on.
Typically, only the data value is used to define the transfer function [7, 35, 60], although
it has long been proposed to additionally use the gradient magnitude [25, 55]. More
sophisticated methods for transfer function assignments also use the second directional
derivative along the gradient direction [43, 44]. A comparison of four of these methods
can be found in [68].

A number of algorithms have been developed for direct volume rendering in the past. All
of them share the idea of approximating the evaluation of the volume rendering integral
[48]. For each viewing ray, it specifies the intensity that results from the integration of

2.1 RAY CASTING 21

all colors c and opacities α that the ray traverses, at all locations x on the ray up to the
maximum distance D. s is the data value at the respective location:

I =
∫ D

0
α(s(x))c(s(x))exp

(
−

∫ x

0
α(s(x′))dx′

)
dx.

Direct volume rendering algorithms differ in the way they apply the transfer functions
when evaluating the above equation. The transfer functions can either be applied before
the interpolation of s from the surrounding scalar values (pre-classification) and interpo-
lating the resulting RGBA values, or after the interpolation of s (post-classification). Only
for linear transfer functions both approaches yield the same results, in the general case
the results differ. Depending on the dataset, one or the other technique should be em-
ployed. If the scalar values in the dataset represent samples of a continuous scalar field,
post-classification should be used. For pre-segmented datasets, in which adjacent scalar
values may describe entirely separate materials, only pre-classification yields the desired
results.

In the following sections, the most commonly used algorithms will be introduced: ray
casting, shear-warp, splatting, texture mapping, and dedicated volume rendering hard-
ware. A comprehensive comparison of the first four approaches can be found in [61].

2.1.1 Ray Casting

General ray casting is based on the idea of shooting rays, which originate in the user’s
eye, through an object, thus computing the colors of the pixels passed by the rays. For
ray casting through volumetric data, each ray is traversed from the location of the eye
until it leaves the dataset, evaluating the discretized volume rendering integral on the way
[25, 55]. Figure 2.2 illustrates how the rays are cast from the eye through the screen
and the object: dark blue voxels in the volume object are the voxels that are traversed
by the algorithm. The blue pixels on the screen represent the pixels that are involved.
Typically, ray casters require the volume data to be located on regular grids, because this
allows a number of algorithmic optimizations. Ray casting is classified as an image order
algorithm, because on the top level loop of the algorithm, it traverses the pixels of the
output image.

In the past, a large number of publications have addressed optimizations of the general
ray casting algorithm for volume rendering. Some of the more significant approaches will
be mentioned here. Levoy [56] presented a method for empty space skipping based on a
pyramid of binary volumes, also known as a complete octree. In the same publication he
presented a method for early ray termination: the incremental compositing of the volume
data along a ray is terminated when an empirical opacity threshold is reached. Danskin
and Hanrahan [21] pre-compute multiple volume pyramids, which are basically pointer-
less octrees [104]. Each pyramid describes the volume dataset with respect to an attribute
like average value, maximum value, or range of homogeneity.

22 CHAPTER 2: VOLUME RENDERING

���(����
����

)���"���	�	���

Figure 2.2: Casting rays through an object.

Yagel and Kaufman [110] presented a template-based optimization approach which takes
advantage of the coherence of the rays, but it only works with orthogonal projection.
Another approach was presented by Yagel and Shi [111]. They create a buffer which
stores the coordinates of the first non-empty voxel visible from a pixel. This allows fast
changes in material properties, and also when the viewing parameters change, these values
serve as an approximation for the new rays. Freund and Sloan [31] implemented a space
leaping approach which is not based on octrees, but on a distance map. For each voxel, it
contains the distance to the first non-empty voxel in its vicinity.

2.1.2 Splatting

Instead of traversing the output image pixels, the splatting algorithm traverses the volume
elements, making it an object order algorithm. First, the color and opacity values of a
voxel are looked up in the transfer functions. Then, the location of the projection of the
voxel’s center on the output image is computed. After that, this pixel’s color value is
blended with the voxel’s color value, weighted by its opacity. Finally, in order to omit
holes in the image due to differences in object and image resolution, the surrounding
voxels are also blended according to a previously computed footprint. The approach of
pre-computing footprints in order to significantly improve rendering speed works only for
the case of orthogonal projection. This algorithm was first described by Westover [103].

2.1.3 Shear-Warp

The shear-warp algorithm can only process volume data located on regular grids. It is
based on the idea of factorizing the viewing matrix V into a shear S and a 2D warp com-
ponent W , and doing the projection P after the shear:

2.1 TEXTURE MAPPING 23

V = W ×P×S

Figure 2.3 illustrates this approach. After applying the shear matrix, the volume slices are
projected and composited to a 2D sheared image. The shear step enables the algorithm
to perform a ray casting in object space with high memory locality, which optimizes the
usage of RAM caching mechanisms. The warp being performed in 2D space by generat-
ing the final image from the intermediate image, decreases the computational complexity
considerably, compared to a 3D operation.

������	��)��*�����	!�

)���"��

���
��

���	����

���
��

�"	���

(�	��

*	�(

�����"���	���

�"	��

(��+�
����

���	����)��*�����	!�

Figure 2.3: Shear-warp with orthogonal projection.

Lacroute’s dissertation about the shear-warp algorithm [51] adds some ideas to further
increase rendering speed. Both the volume data and the intermediate image are run length
encoded (RLE) to minimize the number of memory accesses, to save storage space, and to
further increase memory locality. The run length encoded volume data is stored in mem-
ory three times, once for each principal coordinate axis. Shading is performed by precom-
puting a normal vector for each volume element and assigning colors using a lookup table.
A fast classification can be done by using an octree based algorithm instead of run length
encoding, because the RLE volume has to be recomputed on every change of the transfer
functions. Lacroute implemented pre-classification: the transfer functions are applied to
the original scalar values, the classified values are interpolated (see Section 2.1).

Lacroute also worked on the perspective shear-warp algorithm. In his dissertation, he
presented the main ideas for the transition from orthogonal to perspective projection: the
volume slices do not only have to be sheared, but also scaled, before they are composited
to the intermediate image. This process is illustrated in Figure 2.4.

2.1.4 Texture Mapping

Providing that the graphics hardware has built-in acceleration for 2D texture mapping,
or even 3D texturing, it can be used for direct volume rendering. In both cases, the vol-
ume data is first transferred to texture memory. Then, for every frame, the volume is
reconstructed with textured slices, rasterized from back to front with blending enabled.

24 CHAPTER 2: VOLUME RENDERING

)���"��

���
��

)��*�����	!�

���	����	���

�
	�������
��

�"	���

(�	��

*	�(

�����"���	���

�"	��

(��+�
����

)��*�����	!�

Figure 2.4: Shear-warp with perspective projection.

If only 2D texturing acceleration is available, three sets of textures have to be stored in
texture memory, one for each principal axis. When a frame is rendered, it is determined
which of the three sets is to be used. The slices have to be aligned with the sides of the
volume dataset.

(a) (b)

Figure 2.5: Texturing modes: (a) object aligned and (b) viewport aligned slices.

When 3D texturing is available, the volume data needs to be stored in texture memory
only once. Furthermore, the slices can be aligned with the viewport, which minimizes the
artifacts. Figure 2.5 shows the two different slicing techniques.

The number of textured slices that can be drawn at interactive frame rates depends mainly
on the number of pixels the volume occupies on screen. This is due to the pixel fill rate
being the limiting factor for this technique.

Another issue with this approach is that it generates artifacts with perspective projection,
because different viewing rays cover different distances between the slices. This issue
can be solved by rendering concentric shells, as proposed by LaMar et al. [54] (see Figure
2.6). In their publication, they introduce a multiresolution technique, which is based on

2.1 SPECIAL PURPOSE HARDWARE 25

changing the distances between the shells according to their distance to the viewer. This
notion was refined and extended by Weiler et al. [97], who worked with planar slices
again.

A significant image quality improvement was achieved with pre-integration, which was
first published in the context of texture based volume rendering by Engel et al. [26]. This
approach is based on the computation of the color of ray segments instead of single point
samples on the viewing rays.

As depicted in Figure 2.7, the scalar function s(x) is approximated by a piecewise linear
function. The volume rendering integral for this function can be efficiently computed by
one table lookup for each ray segment. The three arguments of this table lookup for the i-
th ray segment from id to (i+1)d are the data value at the start of the segment s f := s(i d),
the data value at the end of the segment sb := s((i+1)d), and the length of the segment d.

Figure 2.6: 3D texturing with concentric shells.

Pre-integrated rendering allows a better approximation of the volume rendering integral
without increasing the sampling rate for nonlinear transfer functions. It improves accuracy
because there is less undersampling, and it improves performance because fewer sampling
operations have to be processed.

2.1.5 Special Purpose Hardware

Although a number of volume rendering hardware designs have been proposed, only a
few of them have actually been implemented. Günther et al. [32] created VIRIM, which
consists of four VME boards and applies a ray casting algorithm, but it supports only
orthogonal projection. The VIZARD system also implements ray casting, but it is based
on a PCI card with an FPGA. It was developed by Knittel and Straßer [47], and it can do
perspective projection. Both of these systems were developed as prototypes.

The VolumePro card by Pfister et al. [66] is a PCI card which is commercially available.
It is based on the earlier developments for Cube-4 [67]. VolumePro applies the shear-
warp algorithm, and it can only do orthogonal projection. In more recent versions of

26 CHAPTER 2: VOLUME RENDERING

d

s f �s�i d�

sb�s��i�1� d�

s�x�

xi d �i�1�d

x

Figure 2.7: Piecewise linear interpolation of samples of s(x) for pre-integrated volume
rendering.

this hardware, a perspective projection mode was added. VolumePro creates only the
intermediate image, the warp is done by a general purpose graphics card, which also needs
to be present in the system. Due to the usage of hardware accelerated texture mapping,
the warp is very fast.

None of the above hardware solutions allow the concurrent display of volume data with
overlapping polygonal representations.

2.1.6 Ray Casting on Graphics Hardware

The fast development of commodity graphics hardware towards complex and fully pro-
grammable graphics processing units (GPU) allows the implementation of more and more
sophisticated rendering algorithms directly on the GPU. One of the most important works
in this field was presented by Purcell et al. [69]. They describe how ray tracing can be
mapped to new GPU designs by taking advantage of parallel fragment units and high
bandwidth to texture memory. The data stream generated during rasterization is fed to the
programmable fragment processors, which process the data in parallel.

Krüger and Westermann [49] extend this idea to volume ray casting. Their implemen-
tation includes early ray termination and empty-space skipping. For datasets with either
large empty or large opaque regions, which is when their optimizations can be applied
efficiently, their approach is more than three times faster than traditional 3D texture map-
ping.

Another important and recent approach for volume rendering taking advantage of pro-
grammable graphics hardware has been presented by Röttger et al. [76]. They merge
several previously published GPU-based techniques, which are based on the 3D texture

2.1 FOURIER VOLUME RENDERING 27

mapping approach, into one implementation: pre-integration, volumetric clipping, and
advanced lighting. Furthermore, they increase the rendering quality by using the pixel
shader for efficient oversampling.

The observation that the computing power of GPUs currently increases much faster than
that of CPUs will most likely have a significant impact on future volume rendering algo-
rithms. However, today most of the users of volume rendering software do not have the
type of graphics hardware installed which is required for GPU-based ray casting.

2.1.7 Fourier Volume Rendering

Traditionally, volume rendering is done in Euclidean space. However, the approach in-
troduced by Malzbender [59] and extended by Totsuka and Levoy [92] works in the fre-
quency domain by using the Fourier projection slice theorem. This theorem is also used
by Computed Tomography, where it converts the raw data from the scanning device to a
volumetric data structure. Malzbender’s approach inverts this process.

In a preprocessing step the volume dataset is transformed into the frequency domain. In
the rendering stage this representation is sampled on a 2D slice, which is inversely Fourier
transformed to result in the spatial projection of the original dataset. An advantage of this
approach is that the actual rendering works on a 2D slice in frequency space and is thus
much faster, as opposed to rendering a 3D data space in the traditional approach. A
major disadvantage of Fourier volume rendering is that it is limited to maximum intensity
projection.

2.1.8 Compression Domain Volume Rendering

Compression domain volume rendering algorithms work on volume data stored in a com-
pressed format. Ideally the data remains compressed even in the integration process. The
shear-warp algorithm with run length encoding is an example for a compression domain
volume rendering approach, albeit a very simple one. Its advantage is that the compres-
sion is lossless.

A more sophisticated compression domain volume rendering approach is based on the
wavelet transform of the volume data, which was first introduced by Muraki [62]. West-
ermann [100] extended this approach to maintain the sparse wavelet representation in the
integration process. The disadvantage of the wavelet approach is that the compression is
lossy, which is unacceptable for instance in the medical field.

Guthe and Straßer [34] presented an algorithm to render animated volume datasets using
3D wavelet transforms. Their approach allows to render large animated datasets on com-
modity PCs in real-time, which could not be displayed otherwise. However, the wavelet
compression is lossy again.

Recently Schneider and Westermann [78] published a novel compression domain ap-
proach, which is based on vector quantization. The algorithm runs on current graphics
chips using programmable hardware. The dataset remains compressed, even during inte-
gration. However, rendering is restricted to nearest neighbor interpolation.

28 CHAPTER 2: VIRTUAL REALITY

2.2 Virtual Reality

In the media, the term “virtual reality” is used in many different contexts. It is applied to
anything that has to do with computer generated worlds. In the context of this dissertation,
the meaning of virtual reality will be limited to the abstract concept of three dimensional
computer generated worlds, which are perceived by the user in true 3D with separate
images for both eyes. The term “virtual environment” will be used when talking about
actual implementations of 3D worlds, comprising both the virtual world generated by a
computer, and the actual hardware that delivers the images. “Immersive” virtual environ-
ments make the users feel as if they were part of the virtual world. This requires screens
providing a large field of view, back projection to avoid shadows, and head tracking to
generate correct stereo images.

In this section, the most commonly used virtual reality input and display devices will be
discussed, which are used in today’s virtual environments.

2.2.1 Input Devices

Input devices for virtual reality enable the user to navigate in a virtual world and give
commands to the software. The major difference between the devices is the number of
degrees of freedom, which influences how flexible the user can work with them.

2.2.1.1 Desktop Mouse

The desktop mouse consists of two or three buttons and a sensor to determine relative
movement in two dimensions. Thus, it provides basically two degrees of freedom, which
can be enhanced by interpreting mouse movements differently, depending on which but-
tons were pressed. For instance, the user could translate an object horizontally and ver-
tically by moving the mouse while one button is pressed, and the translation could be
in depth when the mouse is moved while another button is pressed. However, intuitive
3D movements are not possible with this device. In virtual reality systems, the mouse is
typically used only as a backup device or for testing in the software development process.

2.2.1.2 Data Glove

Being one of the first virtual reality devices, the data glove (Figure 2.8a) soon turned
out to be quite cumbersome to use, compared to its competitor, the wand. Although it
theoretically allows more intuitive and precise action than many other devices, it would
require force feedback to fully take advantage of its potential. Force feedback data gloves
(see Figure 2.8b) have been developed, but they are even more cumbersome to use because
of the additional structures that are involved.

2.2 INPUT DEVICES 29

(a) (b)

Figure 2.8: (a) 5DT data glove (b) Immersion CyberForce.

2.2.1.3 Mechanical Tracking Systems

The SensAble Phantom (see Figure 2.9a) is both a mechanical tracking and a force feed-
back device. It consists of a robot-like arm structure with up to six degrees of freedom,
depending on the model, and a button. While moving the Phantom’s arm, the software
computes the precise location and orientation of the user’s hand. When used with the
appropriate software, the Phantom can issue a force on the user’s hand, which allows to
actually touch virtual objects.

The Phantom is well suited for work at the desktop, because it provides easy access—the
device only needs to be grabbed—and precise tracking. Although there is a large and
expensive version of the Phantom which can be fixed to the ceiling, it is usually not used
for tracking in CAVEs or in front of large projection screens which require great freedom
of movement.

(a) (b)

Figure 2.9: Mechanical tracking devices: (a) Phantom (b) Space Mouse.

The Space Mouse was originally conceived by the German Aerospace Research Establish-
ment (DLR), and is today distributed by Logitech (see Figure 2.9b). An array of buttons
attached to the device can be programmed by the software to trigger events. In contrast
to the Phantom, which processes movements in absolute coordinates, the Space Mouse
can only distinguish relative movements. Its advantage is that six degrees of freedom are
manageable in a compact device, which only requires little space on the desk.

30 CHAPTER 2: VIRTUAL REALITY

2.2.1.4 Electromagnetical Tracking Systems

An electromagnetical tracking system consists of movable devices which the users hold
in their hands (wand) or wear on the head, and a fixed device which emits pulsating
electromagnetic waves in three orthogonal directions. Sensors in the wand and in the other
tracked devices receive the waves and send the measured signal strength to the tracking
computer, from which it can compute location and orientation of the sensors. The most
popular systems are the Ascension Flock of Birds (see Figure 2.10a) and Motionstar, and
the Polhemus FASTRAK.

A disadvantage of electromagnetical tracking systems is that they are sensitive to any kind
of metal that is located in the range of the emitter, because it distorts the magnetic field.
Metal walls, tables, or stabilizing structures for displays may cause problems. Further-
more, there are currently no entirely wireless tracked devices for these systems. There is
the wireless Motionstar, but it requires a bulky transmitter which has to be carried by the
user and which has cable connections to all sensors (see Figure 2.10b). It is typically put
in a backpack which the users have to put on before they can use it.

(a) (b) (c)

Figure 2.10: (a) Flock of Birds, (b) Wireless Motionstar, (c) ART hand tracker.

2.2.1.5 Optical Tracking Systems

Optical tracking systems consist of wireless tracking devices with optical markers at-
tached and at least two cameras filming the area of interaction. The tracker by ART has
a complex structure of sticks and balls attached to the tracked devices (see Figure 2.10c).
The balls are made of infrared reflecting material, and they are filmed by infrared sensi-
tive cameras with infrared lights. A computer compares the reflection patterns from all
available cameras and computes the location of the tracked devices.

The great advantage of optical tracking systems is their extremely high accuracy, which
is in the sub-millimeter range. Furthermore, the tracked devices are wireless. A disad-
vantage is that for virtual environments, a large number of cameras is required so that the
sensors can always be seen from at least two cameras.

2.2.1.6 Hybrid Tracking Systems

As an example for hybrid tracking systems, the Intersense IS-600 combines gyroscopic
with ultrasonic methods to track six degrees of freedom. The orientation is measured with

2.2 DISPLAY DEVICES 31

a gyroscope in the sensor, while the translation is measured with ultrasound, which is
emitted by the tracked device and received by four receivers. By combining the informa-
tion of both measurement types, a resolution up to 1.5 millimeters can be reached. The
advantage of this tracking system, compared to electromagnetical tracking is that it is not
influenced by metal objects. Compared to optical tracking, this system is not as exact,
but more reliable when the user moves around frequently, because at least the orientation
sensor does not require intervisibility.

2.2.2 Display Devices

In order to display data so that the user can perceive it three dimensionally, several tech-
niques have been developed. Since many of them are well suited for one goal but less
useful for another, a variety of devices is used in virtual reality centers. They differ mostly
in the field of view occupied by the screen, the number of people that can use the system
at a time, and the stereo mechanism. Two stereo mechanisms have caught on until now:
active stereo by alternately displaying the frames for each eye, and passive stereo by using
polarization filters to distinguish the images. There are two types of polarization: linear
and circular. Linear filters need to be installed in a specific orientation, while circular
filters are orientation independent. Active stereo requires high tech liquid crystal shutter
glasses for every user (see Figure 2.11a), while with passive stereo the users can wear
lightweight and inexpensive glasses with polarization filters (see Figure 2.11b).

(a) (b)

Figure 2.11: Stereo glasses: (a) active, (b) passive.

2.2.2.1 Monitor

Most cathode ray tube (CRT) monitors are capable of generating active stereo images if
they are driven in a way that they alternately receive images for the left and for the right
eye. The user has to wear shutter glasses which need to be triggered by a signal from the
graphics board. Although monitors are too small for an immersive experience and there
is space for only a few people, they are a practical way for developers to view their 3D
structures spatially.

Regular liquid crystal displays are too slow to do active stereo, but they can display passive
stereo images when a striped mask of prisms is put in front of the screen. A particularly

32 CHAPTER 2: VIRTUAL REALITY

sophisticated solution is the Dresden 3D display (see Figure 2.12a). It is an autostereo-
scopic display which is based on a TFT monitor with a prism mask. An eye tracker locates
the user’s eyes and computes the correct position for the prism mask which is then shifted
horizontally. This technique allows the user to see 3D images without glasses, but only
one user is supported at a time.

(a) (b) (c)

Figure 2.12: (a) Dresden 3D display, (b) 5DT HMD, (c) Fakespace BOOM.

2.2.2.2 Head Mounted Display

A head mounted display (HMD) is a helmet which contains two displays which project
images through a system of lenses, so that the users’ impression is to sit in front of a
screen which is at a reasonable distance from their eyes (see Figure 2.12b). An arbitrary
type of tracking sensor is attached to the helmet. Early HMDs employed CRT displays,
but they were heavy and large, so that it was difficult to work with them. Today’s HMDs
use small and lightweight TFT displays, which allow the creation of much more wearable
devices. An important issue with HMDs is their limited resolution. The highest resolution
HMD made was the Sony LDI-100, but its production was discontinued. It could display
800×600 pixels on each screen.

The Fakespace BOOM (Binocular Omni-Orientation Monitor, see Figure 2.12c) is similar
to an HMD, but it is not worn on the head. Instead, it is connected to an arm structure
providing six degrees of freedom, with position and orientation sensors at the joints. Users
can quickly look through the device whenever they need to, without the cumbersome
procedure of putting a helmet on.

2.2.2.3 Workbenches

Multiple types of virtual workbenches have been developed. All of them are characterized
by either CRT or TFT projectors that are mounted on the backside of a screen, so that the
user cannot cast shadows.

The ImmersaDesk was developed in 1994 at the Electronic Visualization Laboratory at the
University of Illinois (EVL) [20]. It is a drafting table format virtual reality display. Its

2.2 DISPLAY DEVICES 33

projection screen is about 1.7 by 1.3 meters wide and installed at an angle of 45 degrees.
The resolution is 1024×768 pixels, which are displayed at 96 Hz.

The Responsive Workbench [50] is a device similar to the ImmersaDesk, but its screen
is horizontal. Thus, it is well suited for tasks that are performed on a virtual table, for
instance surgery simulations.

The TAN Holobench is an L-shaped 3D projection table with two orthogonal projection
surfaces. The two screens are mounted at an angle of 90 degrees. The advantage of this
system is the large field of view, which allows the users to see objects both below and in
front of their eyes.

(a) (b) (c)

Figure 2.13: (a) ImmersaDesk, (b) Responsive Workbench, (c) Holobench.

2.2.2.4 Power Wall

In general, power walls are flat screens which display images from more than one projec-
tor. The original PowerWall was developed at the University of Minnesota in 1994. Its
display was a 2.4×1.8 meter flat screen, rear-projected by a 2 by 2 matrix of CRT projec-
tors, and driven by four SGI RealityEngine2 graphics engines. Each projector provided
a resolution of 1600×1200 pixels, making the entire PowerWall resolution 3200×2400
pixels.

In the automotive industry, power walls are required to display cars in their original sizes
(see Figure 2.14a). A single projector would not achieve a resolution high enough for
design details to be visible. In scientific visualization, the size of the screen is less impor-
tant, but scientists need to see fine detail in the image. Using multiple projectors not only
in a row structure, but in a 2D matrix, allows to increase the resolution while maintaining
the aspect ratio. Figure 2.14b shows the 3×2 projector setup at JPL.

2.2.2.5 Curved Screen

A curved screen is similar to a power wall in that the image is generated by an array
of projectors, but the screen is curved instead of flat. Being curved, the field of view is
greater than with a flat screen of the same size. But since projectors are made to generate

34 CHAPTER 2: VIRTUAL REALITY

(a) (b)

Figure 2.14: Power walls: (a) wide screen, (b) high resolution.

flat images, the generation of a correct image is more difficult, and because they typically
use front projection, they are less immersive. In 3D scenes, the imagery at the edges of
each projected image does not fit, so the images usually overlap, and special edge blending
hardware is used to produce a seamless image (see Figure 2.15a). Figure 2.15b shows the
installation of the Panoram screen at EVL.

(a) (b)

Figure 2.15: Curved screen: (a) overlapping images, (b) Panoram at EVL.

2.2.2.6 CAVE

The CAVE (Cave Automatic Virtual Environment) was developed by Cruz-Neira et al.
[17] at EVL. It consists of three to six projection screens which are assembled as the sides
of a cube (see Figures 2.16a and 2.16b). In order to prevent black areas at the edges of the
screens, the supporting structure has to be installed without obstructing the optical path of
the projectors. Depending on its size, a CAVE can accommodate small groups of people,
but, in contrast to power walls and curved screens, it is not suited for presentations in front
of larger audiences.

The perspective of the image in the CAVE is only correct for the person with head track-
ing. Everybody else will see distortion at the edges of the projection screens, which also
occur with flat screen devices. However, they are worse in the CAVE because straight
lines deviate at the edges.

35

(a) (b)

Figure 2.16: (a) CAVE setup at EVL, (b) CUBE at HLRS.

2.3 Parallel Computing

Chapter 5 of this dissertation will cover parallelization issues. In the following sections,
the related technical terms will be introduced and explained briefly.

2.3.1 Hardware

A classification of parallel computers based on instruction and data streams was created by
Flynn [29]. He distinguishes four types of instructions-to-memory relationships: SISD,
SIMD, MISD, and MIMD. SISD (single instruction single data) is the typical von Neu-
mann PC or workstation computer with one processor. SIMD (single instruction multi-
ple data) is implemented in massively parallel vector computers, and also within current
MPPs (massively parallel processors). MISD (multiple instruction single data) systems
have never been built, they would be able to execute several commands at once on the
same data. MIMD (multiple instruction multiple data) is used in standard parallel com-
puters with shared memory, distributed memory, or hybrid memory structures. All the
parallel computing hardware that was used in the framework of this dissertation belongs
to the MIMD category.

2.3.1.1 Distributed Memory

Distributed memory parallel computers consist of a number of processors, each with its
own memory. In order to access memory of other processors, messages are sent to request
it. Therefore, access to memory on other nodes takes longer than to the local memory. A
typical computer of this category is the Cray T3E, but also a PC cluster of single CPU
nodes. In order to increase the communication speed between the nodes, high speed
network connections like Myrinet are used.

36 CHAPTER 2: PARALLEL COMPUTING

2.3.1.2 Shared Memory

Shared memory parallel computers are typically limited in the number of processors, be-
cause each processor needs to be able to efficiently reach any memory location. As the
number of processors grows, the complexity of the interconnection network increases ex-
ponentially. Shared memory systems can be based on uniform memory access (UMA) or
non-uniform memory access (NUMA). In UMA systems, all the CPUs and the memory
share one interconnection bus. NUMA systems, like the SGI Onyx and Origin series,
contain multiple interconnection buses, each serving a subset of CPUs and memory. Par-
ticularly in NUMA systems it is costly to maintain cache coherence when a processor
writes to a memory location, because the respective cache line has to be invalidated on all
processors working with it.

2.3.1.3 Hybrid Architectures

In a cluster of nodes with multiple CPUs each node has one common memory, which is
shared by all its CPUs. However, the memory of other nodes cannot be accessed directly.
This category of parallel computers uses a hybrid of shared and distributed memory. The
clusters combine the advantages of both architectures, which are the ability to run efficient
shared memory algorithms, and the scalability of distributed memory architectures. This
type of parallel computer is becoming more and more popular. The most powerful com-
puter today is the Earth Simulator, which has a hybrid memory architecture. It consists of
640 nodes, each of which is equipped with eight vector processors.

2.3.2 Programming Models

The two fundamental memory architectures, shared and distributed memory, require spe-
cific approaches for programming. Shared memory architectures are programmed with
threading concepts, distributed memory machines require a message passing concept.

2.3.2.1 Threading

A thread is a lightweight process, which is a process that shares its memory with other
threads. Threading is supported by all of today’s operating systems, but it is not supported
by all higher level programming interfaces. OpenMP is a set of compiler directives, which
provide a simple interface for typical sections in a program that are parallelizable by
threading. With OpenMP, the programmer gives hints to the compiler as to which parts of
a program can be parallelized. The actual parallelization is done by the compiler.

37

2.3.2.2 Message Passing

Communication between processes of distributed memory machines is done by passing
messages over the inter-node connection network. In order to facilitate this process, the
message passing interface (MPI) was developed. It is a programming interface which of-
fers simple commands for data exchange and for synchronization. In contrast to OpenMP,
with MPI the programmer needs to parallelize the code explicitly. This can be a tedious
process, because debugging parallel programs is difficult.

2.4 Visualization Software

In Chapter 6, the developments in the fields of rendering algorithms, user interaction, and
parallel computing will be integrated into a visualization system. For the evaluation of the
new system, the following sections will provide some background information.

2.4.1 Programming Interfaces

Most visualization systems are based on an application programming interface (API) for
the graphics. The simpler the API, the more portable is the visualization system, but the
more difficult it is to implement sophisticated visualization techniques and interaction.

2.4.1.1 Low Level

The most basic graphics APIs are OpenGL and DirectX. OpenGL emerged from IrisGL,
which was developed by SGI, and it became a standard on both Unix and Windows sys-
tems. It is basically the implementation of a complex state machine. OpenGL extensions
can be defined by graphics hardware vendors to support their new features. The ongo-
ing release of new graphics hardware led to a large number of non-standard extensions,
making it difficult to write portable programs.

DirectX, which was created by Microsoft, can only be used on Windows systems. Due
to frequent releases of new versions of DirectX, newer programs do not work with older
versions of DirectX. However, the advantage of this approach is that the API is much less
graphics hardware dependent than OpenGL, because DirectX provides software imple-
mentations for commands which cannot be executed by the hardware.

2.4.1.2 High Level

High level graphics APIs encapsulate low level APIs, and they add high level commands
to facilitate typical visualization tasks. SGI’s OpenGL Performer [75] is an API which
was developed for visual simulation and virtual reality applications. It offers culling,
pipelining, intersection testing, and scene graphs. It is based on OpenGL, but this is trans-
parent to the programmer. In case Performer does not provide a command for a specific

38 CHAPTER 2: VISUALIZATION SOFTWARE

OpenGL function, for instance a new extension, OpenGL commands can be mixed with
Performer commands.

OpenGL Volumizer [94] was also created by SGI. It is an API for direct volume rendering
that uses a tetrahedral description of the volume data, bricking, shading, shadows, and a
multiresolution approach.

OpenGL Optimizer [64] is also an API by SGI which is also based on OpenGL. Its focus
is on the real-time visualization of large and detailed datasets in the CAD field. It offers
the parametric representation of surfaces which allows higher quality images than with
polygonal representations. These surfaces are tesselated at runtime. Optimizer also offers
mesh reduction and optimization methods. Between Optimizer and OpenGL lies the scene
graph API Cosmo3D, which can optionally be used independently of Optimizer.

Java 3D [1] is a scene graph based API for platform independent graphics programming.
Implementations are freely available for all major operating systems. Its basic function-
ality resembles Cosmo3D and OpenGL Performer. It is based on OpenGL or DirectX,
depending on what is installed on the host system. Wakeup criteria can be attached to
several types of events, for instance based on proximity or the collision of geometry. Java
3D also supports tracking devices, provided that a driver is available by the manufacturer.
In addition to graphics routines, Java 3D offers a sophisticated audio engine to generate
spatialized sounds. In the past, Java 3D has not only been used in desktop applications,
but also in virtual environments [88] and even CAVEs [86].

Open Inventor [40] is a strictly object oriented graphics API for interactive 3D applica-
tions. It does not only provide a scene graph, but also a rich set of geometric objects,
such as cubes, polygons, text, materials, cameras, lights, trackballs, handle boxes, and 3D
viewers. Furthermore, it supports some simple selection and interaction techniques.

The Visualization ToolKit (VTK) is an open source, freely available graphics API for
3D computer graphics, image processing, and visualization [96]. VTK supports a wide
variety of visualization algorithms including scalar, vector, tensor, texture, and volumetric
methods, as well as polygon reduction and mesh smoothing. VTK includes a C++ class
library and interface layers for Tcl/Tk, Java, and Python.

2.4.2 Visualization Frameworks

In order to solve visualization tasks in an application field, a visualization framework is
required, which is an application that can be used without programming knowledge. In-
stead of approaching visualization from a graphics hardware point of view, visualization
frameworks focus on the data representation. They can be classified by their usage mod-
els. In modular tools, the user selects reader, filter, and renderer modules and models the
data path between them. Integrated tools provide all functionality within a menu driven
application. They are easier to learn, but less flexible than modular tools.

2.4 VISUALIZATION FRAMEWORKS 39

2.4.2.1 Modular Tools

The majority of the available visualization frameworks is modular. In this section, the
most prominent packages COVISE, AVS, Amira, and OpenDX will be presented briefly.

Figure 2.17: COVISE user interface with Open Inventor renderer.

COVISE [16] is a modular visualization system, which supports collaborative visualiza-
tion both at the desktop and in virtual environments. It was originally developed by the
visualization group of the HLRS [72, 73] and is now also commercially offered by the
company VirCinity. In a visual application builder, the data flow is represented by a net-
work of modules (see Figure 2.17). At the beginning of the data pipeline, reader modules
load geometry data from disk. With this data, filter modules can compute cutting surfaces,
iso surfaces, or streamlines, and sampling modules can convert grid types. At the end of
the pipeline, renderer modules display the resulting data stream. Arbitrary numbers of
reader, filter, and renderer modules can occur in a data flow network. In collaborative
work, the modules of a network can reside on different computers to employ the comput-
ing power of remote supercomputers.

(a) (b)

Figure 2.18: (a) AVS, (b) Amira.

Two types of renderer modules are available. An Open Inventor based renderer is used for
visualization at the desktop, multiple instances of it can be opened at once. The Performer

40 CHAPTER 2: VISUALIZATION SOFTWARE

based renderer COVER was created for visualization in virtual environments. It runs from
within COVISE, or it can be used as a stand-alone renderer. It supports a large number of
tracking systems and screen configurations. It features a plug-in system, which is an API
for creating additional functionality without recompiling the visualization framework. In
COVER, interaction is based on a “laser” beam of finite length that is cast into the direc-
tion in which the input device points.

AVS [5] is a visualization system similar to COVISE. It is also based on modules and a
data flow network, as displayed in the desktop layout in Figure 2.18a. However, it was not
originally designed for collaborative work, and until recently, it did not support interactive
work in virtual environments.

(a) (b)

Figure 2.19: (a) OpenDX, (b) EnSight.

The visualization framework Amira (see Figure 2.18b) emerged from the research activi-
ties at the Department for Scientific Visualization of the Konrad-Zuse-Zentrum for Infor-
mation Technology in Berlin (ZIB). It is distributed by Template Graphics Inc. (TGS).
Amira does not offer collaborative work, but it has virtual reality support, and it runs on
both Unix and Windows systems. It is based on OpenGL and Open Inventor and contains
algorithms for direct volume rendering.

OpenDX [63] is an open source software project, based on the Visualization Data Ex-
plorer, which was originally created by IBM. Similar to the above modular systems, it is
based on a data flow network paradigm (see Figure 2.19a).

2.4.2.2 Integrated Tools

EnSight [27] is an integrated visualization system, which does not work with modules or
data flow networks. Instead, it offers its functionality through menus and icons, as can
be seen in Figure 2.19b. EnSight does not support collaborative work or direct volume
rendering, but it can display data in virtual environments.

Chapter 3

Rendering Methods

This chapter will present the author’s research in the field of rendering algorithms for
virtual environments. Three major topics will be addressed: the well-known algorithm
based on texturing hardware acceleration, the extension of the shear-warp algorithm to
support perspective projection, and the enhancement of image quality by pre-integration
within the compositing stage of the shear-warp algorithm.

3.1 Texture Hardware

The most commonly used approach for volume rendering in virtual environments is to ras-
terize screen aligned slices with data from the volume dataset, as outlined in Figure 3.1.
The rendering of the slices can be done efficiently by taking advantage of hardware accel-
erated 3D texturing, as suggested by Cullip and Neumann [19]. This capability became
possible with the release of SGI’s RealityEngine graphics hardware, which is described
in [2]. An application of this technique to medical data is presented in [12].

Today, 3D texturing acceleration is not only provided by high-end graphics computers, but
also by more recent PC graphics boards. Even if only 2D texturing hardware is available,
Rezk-Salama et al. [74] developed an approach to generate high quality volume images.
Westermann and Ertl [101] describe improvements for texture based volume rendering.

Using 3D texturing, the programmer only needs to compute polygons in the plane of the
slices, which are large enough to cover the worst case volume size at this location. The
intersection of these polygons with the volumetric dataset is then done by the graphics
hardware using trilinear interpolation between the volume samples.

The major drawback of this approach results from the graphics board’s limited pixel fill
rate, which directly affects how many textured polygons can be drawn: the larger the vol-
ume object on the screen, the fewer textured slices can be rasterized for its reconstruction
in the same time. Another disadvantage of this approach is the limitation of the volume
size to the size of the texture memory on the graphics hardware, which is necessary to
prevent slow swapping to main memory.

41

42 CHAPTER 3: TEXTURE HARDWARE

)��*�,�����"

�	"(�����

(�	���

)���"���	�	���

Figure 3.1: Sampling planes in texture hardware supported algorithm.

3.1.1 Optimizations for Virtual Environments

The approach to texture hardware accelerated volume rendering in virtual environments,
which is used in this dissertation, is a hybrid of a slice based algorithm and a simple
multiresolution technique. In virtual environments, the datasets are typically displayed in
stereo at full screen resolution and at interactive frame rates. Because transferring data in
and out of texture memory is expensive, the selected approach requires the dataset to fit
entirely in the memory of the graphics board. With these requirements, the pixel fill rate
remains the limiting factor on the frame rate.

None of the publicly available volume rendering packages could be used for the research
described in this chapter, because either they did not provide multi-pipe support, or they
lacked an API. For VolPack, 3DDataMaster, Amira, TeleInVivo, VoxelView and VTK this
was investigated in [106]. SGI’s OpenGL Volumizer could not be used because it did not
provide multi-pipe support when used with Performer.

For interactive classification, the mapping from data values to RGBA (red, green, blue,
alpha) values has to be done by lookup tables, or otherwise the volume data would have
to be reloaded into texture memory for every change. Depending on the volume size,
reloading would last up to a few seconds, due to the limited data throughput from main to
texture memory, as measurements showed [95]. Two different OpenGL extensions have
been created for rendering textures with indices into lookup tables. They differ in the or-
der of interpolation and lookup (see Section 2.1): GL_EXT_paletted_texture uses
pre-classification, while GL_SGI_texture_color_table implements post-classifi-
cation. The application described below finds out which extension the graphics hardware
supports and uses it, thus giving instant feedback to the user on transfer function modifi-
cations.

In an immersive virtual environment, the frame rate should not drop below 10 frames per
second in order to retain the effect of immersion. On the other hand, more than about 25
frames per second are not required for an optimal perception of motion. Without swapping
texture data and keeping only one instance of the volume dataset in memory, the simplest
multiresolution technique is to draw a variable number of equidistant slices. Because the

43

optimal frame rate depends on both the user and the application, it can be adjusted by
the user from within the virtual environment, and it will be maintained automatically by
the system: after each frame, the drawing time is measured and compared to the selected
value. Depending on the difference, the number of slices to rasterize in the next frame is
computed.

In order to retain the correct overall volume opacity when changing the number of slices,
the algorithm adapts the opacity values in all slices accordingly by using lookup tables for
the opacity values and by re-computing the tables whenever the number of slices changes.
The required opacity correction formula is derived in [97]:

αk = 1− (1−α0)
�k�0

α0 is the opacity as computed by the original transfer function, �0 is the distance between
the texture elements, �k is the distance between the slices, and αk is the new opacity,
which is to be used instead of α0. This approach requires the graphics hardware to support
either the paletted textures or the color index mode extension.

Another issue in virtual environments arises when the projection surface is non-planar.
This is the case in CAVE-like environments, on the holobench, and on curved screens.
For instance, in a CAVE the approach of screen aligned slices applies only to one screen,
while they are not aligned with the other screens. In these cases, two different methods
will be used to determine the normals of the textured slices, depending on the location
of the user’s eyes. Whenever the center of the eyes is outside of the volume boundaries,
the slice normals are made parallel to a line from the volume center to the center of the
eyes. If the user’s eyes are inside of the volume, the normals are made parallel to the
viewing direction. The experiments carried out in the framework of this research showed
that this approach yields the least amount of artifacts. The theoretically optimal approach
of always setting the normals parallel to the viewing direction cannot be applied. This is
because the hardware usually cannot generate enough slices for an image without artifacts,
and when the user’s head moves about, the artifacts change for every frame. This showed
to be irritating for the viewer.

3.2 The Perspective Shear-Warp Algorithm

The volume rendering approach based on hardware accelerated 3D texturing is capable
of delivering high-quality images, but its limitations are particularly apparent in virtual
environments. For interactive frame rates and full screen images, the artifacts become
severe enough to prevent high end applications. Therefore, alternatives are required.

Lacroute [53] presented an optimized algorithm based on the shear-warp factorization,
which is a very fast CPU-based volume rendering algorithm. This algorithm is described
in Section 2.1.3. Although on single processor machines the shear-warp algorithm is usu-
ally slower than hardware supported solutions, the shear-warp’s good scalability allows it
to be competitive on multiprocessor machines [52].

44 CHAPTER 3: THE PERSPECTIVE SHEAR-WARP ALGORITHM

As discussed in Section 3.1, the image quality of algorithms based on texture hardware
acceleration is limited by the pixel fill rate. In contrast, the speed of the shear-warp
algorithm does not depend on the output image size. At comparable output image quality
in a 10002 window, the PC system used for the tests in Section 3.2.3 renders a 643 dataset
at 2.2 frames per second using the shear-warp algorithm, compared to 1.3 frames per
second with texture hardware acceleration.

Many extensions, like stereo rendering [36], parallel algorithms [52], clipping planes
[112], and performance improvements [18] have been added to the shear-warp algorithm
for orthogonal projection. Optimizations for the rendering of time dependent datasets by
the exploitation of time-coherence were published in [4]. Several approaches to enhance
the image quality have been presented in [91]. However, only a few implementations or
enhancements of the shear-warp algorithm for perspective projection were reported, for
instance an improvement of the warp [13]. None of them have addressed the compositing.

Perspective projection is a requirement for many applications. For instance, in radiation
therapy planning, depth information is crucial, and it can only be achieved correctly by
perspective projection. While images generated with “fake” stereo, i.e., drawing an object
twice with a horizontal offset and a slight rotation about the vertical axis, can give some
kind of 3D effect, virtual environments displaying multiple objects in different depths
require perspective projection.

The following subsections will describe the application of the perspective shear-warp al-
gorithm in a virtual environment. The mathematical foundation of the factorization will
be proved and an implementation will be presented. The implementation presented below
is not based on Lacroute’s source code. It was done from scratch because Lacroute’s code
was not flexible enough to integrate the perspective extensions while sharing routines with
the previous algorithm. A number of developments will be presented which were neces-
sary for virtual environments, such as a clipping plane, adaptive rendering speed, usage
of texturing hardware for the warp, and concurrent display with polygonal menu systems.

In Section 3.2.1, the mathematical background of the shear-warp algorithm will be de-
scribed. Section 3.2.2 addresses specific implementation requirements for the algorithm
when used in virtual environments. Section 3.2.3 provides performance numbers and a
comparison of the shear-warp algorithm to texture hardware based approaches.

The research presented in this section was carried out in collaboration with Roland Nie-
meier and Ulrich Lang. It has been published in [84]. Roland Niemeier introduced the
author to Lacroute’s orthogonal and perspective projection shear-warp approaches and
discussed some issues that he expected to appear in the implementation. The enhanced
derivation and the implementation of the perspective algorithm, as well as all its exten-
sions for virtual environments were carried out solely by the author.

3.2.1 The Perspective Algorithm

In this section, the factorization of the perspective viewing transformation will be re-
viewed in brief. It basically follows Lacroute’s derivation [51]. Furthermore, the permu-

3.2 THE PERSPECTIVE ALGORITHM 45

tation of projection and warp will be proved. Finally, warp performance of the orthogonal
and the perspective algorithm will be compared.

3.2.1.1 Conventions

Lacroute uses four different coordinate systems in his derivation. For an easier under-
standing of the algorithm, six coordinate systems will be distinguished in the following
derivation. They are listed in Table 3.1, which also assigns a unique single character
identifier to each of them. Additionally, the coordinate systems are illustrated in Figure
3.2.

Table 3.1: Coordinate systems definition.

o object space actual coordinate system of the vol-
ume dataset

s standard object space coordinate system after permuta-
tion of object space coordinate axes

d deformed space 3D coordinates after shear
i intermediate image space 2D coordinates within intermediate

image
w world coordinate space 3D world coordinates
v viewport space 2D output window coordinates

In the following subsections, transition matrices between coordinate systems carry the
names of the corresponding source and destination coordinate systems. For instance,
the transition from coordinate system o to w would be named Mow. The inverse matrix
(Mow)−1 would be named Mwo. Vector elements are named x,y,z,w.

3.2.1.2 Prerequisites

The goal of the factorization is to obtain a shear matrix Moi and a warp matrix Miv so that
the viewing matrix is:

Mov = Miv ∗Moi

The camera parameters define the projection from world coordinates to viewport space
Mwv, so the transformation from object space to world coordinates is:

Mow = Mvw ∗Mov

46 CHAPTER 3: THE PERSPECTIVE SHEAR-WARP ALGORITHM

Figure 3.2: Coordinate systems illustrated.

3.2.1.3 Factorization

This section briefly explains the required computation steps for the factorization of the
perspective viewing matrix.

First, the object space eye position eo has to be found:

eo = Mwo ∗

0
0
−1
0

 (3.1)

Then the slice order and the principal viewing axis can be determined. The principal view-
ing axis determines the permutation matrix Mos, which is needed for the adaptation of the
coordinate system to the three viewing axis aligned datasets. Slice order and permutation
matrix allow the compositing step to always process the slices front-to-back with memory
aligned voxel data.

3.2 THE PERSPECTIVE ALGORITHM 47

The eye position in standard object space is:

es = Mos ∗ eo

Now the shear to deformed space can be computed:

Msd =

1 0 −es
x

es
z

0

0 1 −es
y

es
z

0
0 0 1 0

0 0 −es
w

es
z

1

The sheared object is scaled to the size of the intermediate image by the scaling matrix
Mscale. The scaling factor depends on the object space and voxel space volume dimen-
sions, and on the slice order. Section 3.2.2.1 will show how to modify this matrix to
control compositing speed.

The deformed and scaled object is projected to the intermediate image by:

Mdi =

1 0 0 width
2

0 1 0 height
2

0 0 0 0
0 0 0 1

Width and height are the dimensions of the intermediate image in pixels. The object is
always projected to the middle of the intermediate image. The size of the image is made
large enough to suit a reasonable viewing range. If this range is exceeded, the scaling
matrix is adjusted so that the object fits.

The above leads to the overall shear matrix:

Moi = Mdi ∗Mscale ∗Msd ∗Mos

The warp matrix follows from the goal of Mov = Miv ∗Moi, incorporating the above equa-
tions and their inverses, respectively:

Miv = Mwv ∗Mow ∗Mso ∗Mds ∗ (Mscale)−1 ∗Mid

48 CHAPTER 3: THE PERSPECTIVE SHEAR-WARP ALGORITHM

3.2.1.4 Permutation of Projection and Warp

Although the permutation of the projection and the warp is a basic premise for the per-
spective projection shear-warp algorithm, it has not been proved before. The new proof,
which will be derived below, computes the two viewing matrices and then compares their
components.

Let P be the projection matrix:

P =

1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1

Let us assume that W is a general warp matrix:

W =

w00 w01 w02 w03
w10 w11 w12 w13

w20 w21 w22 w23

w30 w31 w32 w33

S is the shear matrix:

S =

1 0 ex,z 0
0 1 ey,z 0
0 0 1 0
0 0 ew,z 1

where

ex,z = −eo
x

eo
z

;ey,z = −eo
y

eo
z

;ew,z = −eo
w

eo
z

The viewing matrix is:

Mov = P∗W ∗S (3.2)

For the shear-warp algorithm, the following matrix is used as the viewing matrix, applying
the projection before the warp:

V = W ∗P∗S

Comparing the substantial elements of the matrices Mov and V results in potential differ-
ences only in the first and second row of the third column:

3.2 THE PERSPECTIVE ALGORITHM 49

Mov
02 = w00 ∗ ex,z +w01 ∗ ey,z +w02 +w03 ∗ ew,z

Mov
12 = w10 ∗ ex,z +w11 ∗ ey,z +w12 +w13 ∗ ew,z

and

V02 = w00 ∗ ex,z +w01 ∗ ey,z +w03 ∗ ew,z

V12 = w10 ∗ ex,z +w11 ∗ ey,z +w13 ∗ ew,z

In order to lead to identical results, it is sufficient that

w02 = 0 (3.3)

w12 = 0 (3.4)

where from (3.2):

w02 = Mov
00 ∗ ex,z +Mov

01 ∗ ey,z +Mov
02 +Mov

03 ∗ ew,z (3.5)

w12 = Mov
10 ∗ ex,z +Mov

11 ∗ ey,z +Mov
12 +Mov

13 ∗ ew,z (3.6)

Multiplying (3.5) and (3.6) by eo
z gives:

w02 ∗ eo
z = Mov

00 ∗ eo
x +Mov

01 ∗ eo
y +Mov

02 ∗ eo
z +Mov

03 ∗ eo
w

w12 ∗ eo
z = Mov

10 ∗ eo
x +Mov

11 ∗ eo
y +Mov

12 ∗ eo
z +Mov

13 ∗ eo
w

Because of (3.1), multiplied by Mow from the left side, it follows that:

Mov
00 ∗ eo

x +Mov
01 ∗ eo

y +Mov
02 ∗ eo

z +Mov
03 ∗ eo

w = 0

Mov
10 ∗ eo

x +Mov
11 ∗ eo

y +Mov
12 ∗ eo

z +Mov
13 ∗ eo

w = 0

independently of eo
z , which proves (3.3) and (3.4).

Therefore, the projection and the warp matrices can be permuted.

50 CHAPTER 3: THE PERSPECTIVE SHEAR-WARP ALGORITHM

3.2.1.5 Warp Complexity Comparison

Both the perspective and the orthogonal projection shear-warp algorithms spend most of
their time with compositing and warp. The slightly greater number of matrix computations
for the factorization in the perspective algorithm can be neglected.

In the case of orthogonal projection, the warp is an affine operation compared to the
perspective projection warp, in which it is non-affine.

Let Wpar describe the general orthogonal projection warp matrix. Constant elements are
listed as their values, arc represents variable elements:

Wpar =

 a00 a01 a02

a10 a11 a12

0 0 1

Multiplying Wpar by a vector (x,y,1)T requires 4 multiplications and 4 additions, accu-
mulating to 8 floating point operations.

Wper describes the general perspective projection warp matrix:

Wper =

 a00 a01 a02

a10 a11 a12

a20 a21 a22

In this case a multiplication with a vector (x,y,1)T requires 6 multiplications, 6 additions,
and 2 divisions, which accumulate to 14 floating point operations.

From this it follows that the perspective warp takes almost twice as long as the orthogonal
warp on a system which has equal execution times for the above mentioned operations.

3.2.2 Algorithmic Issues

The application of the perspective shear-warp in virtual environments raises several issues
which had to be solved. They will be addressed in the following subsections.

Just as the algorithm for orthogonal projection, the new algorithm for perspective pro-
jection uses pre-classification. Three stacks of slices are stored in memory, permuted
according to the coordinate axes. The new algorithm does not use run length encoding
because the typical use of virtual environments is to explore previously unknown datasets,
which involves frequent changes of the transfer functions. Changing a transfer function
of a run length encoded dataset requires the recomputation of all three representations
of the volume in memory, which would interrupt the workflow and thus break the effect
of immersion. With non-RLE datasets the transfer functions can be changed without an
additional performance hit.

3.2 ALGORITHMIC ISSUES 51

3.2.2.1 Compositing

Keeping the frame rate close to constant is one of the requirements to establish and to
sustain immersion in a virtual environment. For the same reasons, it is crucial for the
frame rate not to drop below a certain value, which is usually about 10 frames per second,
depending on the application. For the shear-warp algorithm, one way to increase rendering
speed is to reduce the sampling rate.

When using texture hardware accelerated volume rendering techniques, a constant frame
rate can be accomplished by reducing the number of textures drawn (see Section 3.1),
which leads to a reduction of the sampling rate in one dimension. The opacity has to be
corrected to take the different numbers of volume slices into account.

Using the shear-warp algorithm, the following approaches can be applied to increase ren-
dering speed by a reduced sampling rate:

• Reduction of the number of slices drawn. In the compositing step, a certain number
of slices are skipped, just as in the above described texture based approach. Also,
the opacity values need to be corrected, which does not even slow down the ren-
dering process, since the shear-warp algorithm already uses a lookup table for the
mapping of RGBA to scalar data values. The disadvantage is that the voxels of
the skipped slices do not contribute to the final image. Furthermore, step-by-step
changes in the number of slices drawn are irritating to the user.

• Reduction of the intermediate image size. Drawing a smaller intermediate image
than the optimal 1:1 pixel to voxel ratio for the first slice requires less voxels to be
composited, so that rendering speed increases. The resulting image looks blurred
due to the reduced intermediate image size, but because of a footprint-based inter-
polation no original data values are ignored.

Due to its smooth variability in the domain of image pixels, the second solution for run-
time frame rate adaption was implemented. Using this technique, there are no sudden
changes in image quality which could affect immersion. Furthermore, if permitted by the
rendering hardware, rendering quality can arbitrarily be increased by enlarging the inter-
mediate image. Figure 3.3 shows the effect of different intermediate image sizes on the
128×128×55 UNC Engine dataset [24].

Algorithmically, the adaption was implemented by modifying the parameters of the ma-
trix Mscale (see section 3.2.1.3), thus directly affecting the size of the intermediate image.
The fact that also a magnification of the intermediate image is allowed requires the com-
positing to provide not only footprint based resampling, but also bilinear resampling for
the case that there are multiple pixels to be drawn for each voxel in a slice.

52 CHAPTER 3: THE PERSPECTIVE SHEAR-WARP ALGORITHM

(a) (b)

Figure 3.3: Intermediate image size: (a) 20482 and (b) 2562. (See also Color Plate 1 on
page 123.)

3.2.2.2 Warp

Section 3.2.1.5 derived the higher complexity of the perspective warp compared to the
orthogonal warp. Since the warp matrix is not affine in the case of perspective projection,
the warp accounts for a more substantial part of the total rendering time, compared to the
orthogonal warp.

Considering that the warp applies a transformation matrix to 2D data, it can be done by
2D texturing hardware, just as the orthogonal projection warp is carried out by Pfister’s
VolumePro board [66]: the OpenGL model/view matrix is set to the warp matrix, and the
OpenGL projection matrix is set to the identity matrix. In this case the warp matrix is not
inverted, while the software warp uses its inverse to get pixel values from the intermedi-
ate image. The texturing hardware can perform the warp very fast, bilinear interpolation
is added at no cost, and the final image size practically does not affect rendering speed.
Furthermore, only the intermediate image has to be transferred to the graphics hardware,
instead of the final image, which usually is the larger one for applications in virtual en-
vironments. On a typical SGI Onyx2 system the rendering time share of the warp is less
than 2% using this method (see Section 3.2.3), so that the warp time can be neglected
when determining overall rendering speed.

Using texture mapping hardware for the warp does not break with the idea of a software
based rendering algorithm. The advantages of the shear-warp algorithm, like simple par-
allelization and limitation of the volume size to fit to main memory instead of graphics
hardware memory, still persist.

3.2.2.3 Clipping Plane

For users working with volume rendering, it is useful to have one or more arbitrarily
located clipping planes to look inside of objects, if adjusting the opacity transfer function
does not suffice. Texturing hardware based volume rendering makes use of hardware
accelerated clipping planes provided by OpenGL.

3.2 ALGORITHMIC ISSUES 53

Shear-warp based algorithms cannot make use of the OpenGL clipping planes because
they create a 2D image with no depth information. Thus, the clipping planes have to
be introduced in the compositing step. Yen et al. [112] extract thin slabs out of the
volume, but the core of their approach can be applied to arbitrarily oriented clipping planes
similarly: the compositing loops have to be limited to the intersections with the clipping
plane. This technique can be applied similarly to both the orthogonal and the perspective
projection algorithm. For an example, see Figure 3.4.

(a) (b)

Figure 3.4: Engine dataset: (a) complete, (b) clipped. (See also Color Plate 2 on page
123.)

3.2.2.4 Viewing Angle

Lacroute found that if there is more than one principal viewing axis, the volume has
to be subdivided into up to six separately rendered pyramidal sub-volumes. This is the
greatest disadvantage of the perspective projection shear-warp algorithm. It would impose
a significant performance degradation on the implementation described above, because
several sub-volumes would have to be rendered and assembled seamlessly.

This issue was examined for the special case of a CAVE-like environment. Due to the
specific geometry of the setup, all viewing rays deviate less than 90 degrees from the
corresponding projection axis (see Figure 3.5). The case of approaching 90 degrees, when
image distortion would become a problem, is the case of being very close to a wall. This
case does not occur in typical CAVE situations with a tracked presenter surrounded by
a non-tracked audience. Coming close to a wall is typically correlated with a viewing
direction nearly perpendicular to the wall. As also discussed in the region of interest
related literature [102], the edges of the field of view outside of the region of interest can
be displayed rather coarsely.

3.2.2.5 Viewpoint

In a virtual environment, the users need to be free in choosing their position to look at the
scene, and they can always only see things which are located within the viewing frustum.

54 CHAPTER 3: THE PERSPECTIVE SHEAR-WARP ALGORITHM

Figure 3.5: Multiple principal viewing axes.

For the volume location, three cases can occur, which are depicted in Figure 3.6:

1. The volume is located entirely in front of the viewer.

2. The volume is located entirely behind the viewer.

3. A part of the volume is located in front of and another part is behind the viewer.

In order to find the appropriate case, a bounding box check needs to be done on the volume
boundaries. In the first case, no further action is necessary, because the viewing frustum
clipping is done by the 2D warp. In the second case, the volume is simply not drawn at
all. In order to deal with the third case, a clipping plane was set directly in front of the
user’s eye point, at the location of the viewing frustum’s near plane, with its normal facing
to the user. Thus, the user can see the dataset from the inside.

3.2.2.6 Concurrent Display of Polygons

The current implementation of the perspective projection algorithm allows two techniques
to warp the intermediate image to the screen:

• Computation of the final 2D image using a CPU-based algorithm and pasting it to
the viewport.

• Usage of 2D texturing hardware.

3.2 RESULTS 55

Figure 3.6: Viewpoint-object relations.

The first alternative does not allow for automatic object ordering; the programmer can
only choose to draw the final image at a certain point of time during rendering of the
scene. Since depth sorting the polygons is usually prohibitive due to their large number,
the programmer’s only choice is to draw the volume before or after the polygons.

The second alternative provides a reasonable solution automatically because the warp
matrix transforms the intermediate image into 3D space, which corresponds roughly with
the correct volume position. Thus, due to the Z-buffer, the hardware draws the scene’s
polygons at the correct depth, relative to the volume. The result is incorrect only for
polygons that intersect the volume.

3.2.3 Results

For the measurements of computation times, the following two systems were used:

• PC: a single processor PC with a 1.4 GHz Pentium 4 and a 3Dlabs Wildcat II 5110
graphics board.

• Onyx2: an SGI Onyx2 with four IR2 pipes and 16 R10000/195 MHz processors.

The tests used only one processor and were done on the monitor in mono mode. In all
tests, bilinear interpolation was used. The dataset was rendered in RGB colors, the alpha
values were defined by a linearly increasing opacity ramp.

3.2.3.1 Rendering Time

Figure 3.7 shows the rendering times (compositing and warp) for different intermediate
image sizes using the adaptive perspective projection algorithm as described in Section
3.2.2.1. This test was done on the PC with an output image size of 3002 pixels and the
64× 64× 27 voxels Engine dataset [24]. The measurement curve skips at intermediate
image edge lengths of 512 and 1024 pixels because the texturing hardware, which is used
for the warp, only works with image sizes that are powers of two.

56 CHAPTER 3: THE PERSPECTIVE SHEAR-WARP ALGORITHM

Figure 3.7: Rendering speed relative to intermediate image size.

3.2.3.2 Perspective vs. Orthogonal Projection

Table 3.2 shows the ratio between the computation times of the perspective and the or-
thogonal projection algorithm. The output window size was 3002 pixels, and the texture
based warp was used. Again, the Engine dataset was rendered. It can be seen that, in this
example, perspective projection is about 45% slower than orthogonal projection.

Table 3.2: Perspective vs. orthogonal projection.

PC Onyx2

Perspective : orthogonal projection 1.43 1.46

3.2.3.3 Software vs. Texture Based Warp

In Table 3.3 the computation times of the two warp implementations for the perspective
algorithm are given for different output image sizes of 2562 and 5122 pixels. The interme-
diate image was always 10242 pixels. On each architecture, the texture based warp speed
almost does not depend on the output image size. However, because the 5122 pixels im-
age contains four times the amount of pixels compared to the smaller image, the software
based warp takes four times as much time.

3.2.3.4 Compositing vs. Warp

In Table 3.4 the fractions of compositing and warp, in relation to the total rendering time,
are listed for both the software based and the texture based warp algorithm, with differ-
ently sized output images. The Stanford version of UNC’s Brain dataset [23] was used

57

Table 3.3: Software vs. texture based warp.

Warp type Output image size PC [ms] Onyx2 [ms]

Software 2562 19.1 42.5
Software 5122 80.1 163.9
Texture 2562 10.5 19.0
Texture 5122 10.6 19.4

(128× 128× 84 voxels), and the intermediate image size was 10242. The table demon-
strates that by using texturing hardware, the warp only accounts for about 1% of the total
rendering time on both architectures, independent from the window size. In contrast, the
computation time of the software based warp accounts for about 7% of the total rendering
time with both architectures. The times for compositing and warp do not always sum up to
100% because rendering a frame also involves the computation of the viewing parameters,
which is not listed in the table.

It is interesting to see that the fraction of the software warp with a 2562 output image
is slightly smaller for the PC than for the Onyx, but the same ratio is inverted for the
texture based warp. This is because the PC’s CPU is much faster than the Onyx2’s, but
the performance difference is smaller for texture processing.

Table 3.4: Cost of compositing and warp.

PC Onyx2
Warp type Output image size Comp. Warp Comp. Warp

Software 2562 98.3% 1.7% 98.1% 1.9%
Software 5122 93.2% 6.7% 93.0% 7.0%
Texture 2562 98.9% 1.1% 99.1% 0.9%
Texture 5122 99.0% 0.9% 99.1% 0.9%

3.3 The Pre-Integrated Shear-Warp Algorithm

Although the traditional shear-warp volume rendering algorithm achieves a high rendering
performance, its image quality is usually inferior to the results of texture hardware based
volume rendering. This is because in the shear-warp algorithm, the resampling in the
compositing is only bilinear, and the intermediate image is usually smaller than the final
image, so the warp has to enlarge it, again using bilinear interpolation.

For texture hardware accelerated volume rendering, Engel et al. [26] have presented the
pre-integration approach, which considerably improves image quality. This approach is
very efficient as long as the graphics hardware provides the required functionality. But the
major disadvantages of the texture-based approach, as mentioned in Section 3.1, remain.

58 CHAPTER 3: THE PRE-INTEGRATED SHEAR-WARP ALGORITHM

Since the shear-warp algorithm is purely CPU-based, it allows the integration of many
improvements that have originally been developed for other volume rendering algorithms.
Pre-integrated volume rendering provides an efficient way to interpolate in-between slices
of the volume data with only little loss in rendering performance. It is based on the pre-
computation of a lookup table, which supplies RGBA values (i.e., color and opacity)
for every pair of scalar data values. With the help of this table, pre-integrated volume
rendering can interpolate linearly between the slices, instead of assuming a constant data
value, as in the original shear-warp algorithm. Thus, pre-integration achieves significantly
improved results, in particular for nonlinear transfer functions.

The research presented in this section was carried out in collaboration with Martin Kraus,
Ulrich Lang, and Thomas Ertl. It was published in [81].

3.3.1 Shear-Warp With Pre-Integration

The following subsections will discuss the extension of the shear-warp algorithm with
pre-integration and the implementation issues that were encountered. The following top-
ics will be addressed: slab rendering, buffer slices to avoid redundant computations, the
pre-integration table lookup, opacity and color correction, and rasterization differences
between the new and the standard shear-warp algorithm.

3.3.1.1 Slab Rendering

As described in Section 2.1.4, pre-integrated volume rendering computes the color of
ray segments instead of single point samples on viewing rays. Thus, the variant of the
shear-warp algorithm described below renders slabs between adjacent slices instead of
individual slices (see Figure 3.8). The volume data is still traversed slice by slice in front-
to-back order, and the slab in front of each slice is rendered. Note that there is one less
slabs than there are slices in the volume.

As each slab between two slices is rendered with the help of the data values s f and sb on
these slices, the bilinearly interpolated data values are used twice, once for each adjacent
slab. Instead of computing the same bilinear interpolation for each slab, a buffer slice can
be used, which will be presented next.

3.3.1.2 Buffer Slice

The buffer slice stores interpolated scalar data values of the back slice as floating point
numbers. These values can be reused for the front slice of the next slab. For the imple-
mentation of the buffer slice, two approaches were implemented and compared. The first
option is to store two buffer slices in memory, each with the size of the volume slices that
are rendered to the intermediate image (slice-aligned buffer slices, see Figure 3.9a). Two
buffer slices are required in order not to overwrite buffered values before they are needed
for the pre-integration table lookup. Thus, two blocks of memory have to be allocated,

3.3 SHEAR-WARP WITH PRE-INTEGRATION 59

���
��

��	��

)��*�����	!�, ��

Figure 3.8: A viewing ray through the volume, traversing slices and slabs. The scalar data
values of the volume dataset on the front slice and the back slice are denoted by s f and sb,
respectively.

and the size of the two buffer slices has to be adapted whenever the size of the displayed
slices changes. Depending on the volume size, this may happen whenever the principal
viewing axis changes. Only in the case of cubic volumes the size of the buffer slices re-
mains constant because the slices rendered to the intermediate image have the same size
for each principal axis. In order to prevent allocation and de-allocation of memory when-
ever the principal axis changes, the memory for the buffer slices can be allocated only
once and the size of the largest slice can be used.

The second approach is to create a single buffer slice, which has the same size as the
intermediate image (intermediate image aligned buffer slice, see Figure 3.9b). In this case
only one slice is needed because a data value is always buffered right after the data value
buffered previously at the same position has been read. This approach requires to change
the size of the buffer slice whenever the size of the intermediate image changes, i.e., for
every change of the viewpoint. This size is easily computed because the implementation
of the shear-warp algorithm presented here already uses the same idea for the allocation of
the memory for the intermediate image. In order to prevent frequent memory allocation,
the same approach as for the slice-aligned buffer slices can be followed by allocating
memory once for the largest intermediate image size.

With the approaches described above, there is no difference in the frequency of memory
allocation, but there is a difference in the size of the allocated memory. Let vx and vy be the
width and height of the slices in voxels, respectively. Then, in the case of the orthogonal
projection shear-warp algorithm, the intermediate image consists of (2× vx)× (2× vy)
pixels in the worst case, i.e., when the viewer looks along the diagonal of the object.
The intermediate image aligned buffer slice requires almost as much floating point (float)
elements as there are intermediate image pixels, i.e., (2× vx)× (2× vy) = 4× vx × vy

floats. (Strictly speaking, it requires one row and one column less.)

60 CHAPTER 3: THE PRE-INTEGRATED SHEAR-WARP ALGORITHM

The two slice-aligned buffer slices require 2× vx × vy floats (again, the correct value is
one row and one column less). Thus, the slice-aligned buffer slices require almost exactly
half the amount of memory compared to the intermediate image aligned slice buffer.

In the case of the perspective projection shear-warp algorithm, similar considerations ap-
ply. The intermediate image aligned buffer slice can be used analogously to the case of
the orthogonal projection algorithm. However, the slice-aligned buffer slices vary with
the size of the volume slices that are composited to the intermediate image. By allocat-
ing buffer slice memory only for the front slice and changing the size of the buffer slice
by changing its size variables, there is no memory allocation penalty to the slice-aligned
buffer slice approach.

�����"���	����"	���(�	��

���
��	�������

��,,������
��

(a)

�����"���	����"	���(�	��

�����"���	����"	���

	���������,,������
�

(b)

Figure 3.9: (a) Slice-aligned and (b) intermediate image aligned buffer slices.

3.3.1.3 Pre-Integration Table Lookup

The bilinear interpolation that is carried out to determine the scalar data values s f and
sb for the lookup in the pre-integration table generates floating point numbers. Thus, the
lookup in the pre-integration table should bilinearly interpolate the tabulated colors and
opacities. This is rather expensive, since it adds another bilinear interpolation for the com-
position of each voxel. Therefore, using the nearest-neighbor value in the pre-integration
lookup table was tried. It turned out that for typical transfer functions, no difference is
visible in the resulting images. Thus, it is generally sufficient to use nearest-neighbor
interpolation for the lookup and gain a few percent of rendering speed (see Section 3.3.2).

3.3.1.4 Opacity and Color Correction

In the shear-warp algorithm, the distance between the volume samples on the viewing ray
depends on the viewing direction, as shown in Figure 3.10. Larger distances between vol-
ume samples should result in higher opacities when compositing the slices: the sampled

3.3 RESULTS 61

)��*�����	!�

)���"��

���
��

)��*�����	!�

� �-

Figure 3.10: Opacity and color correction due to different viewing directions.

opacity α needs to be corrected to α′. The derivation of the new opacity can be found in
[51], it results in:

α′ = 1− (1−α)
d′
d

Similarly, the color components c have to be corrected. Since they are proportional to α′,
the correct values c′ result in:

c′ = c
α′

α

3.3.1.5 Rasterization

A fundamental difference in rendering between the traditional approach with bilinear in-
terpolation compared to pre-integration is the number of slices that are actually rendered:
traditionally, each slice that is present in the volume dataset in the principal viewing di-
rection is rendered. Since the pre-integration approach requires two volume slices and
renders the slab in-between them, one slice less has to be rasterized with this approach.
However, for typical volume sizes with dozens of slices, this effect can be neglected.

3.3.2 Results

After all the discussed improvements were integrated in the author’s own implementation
of the shear-warp algorithm for orthogonal projection, speed tests of the algorithm were
carried out with different combinations of extensions and compared the resulting image
quality.

62 CHAPTER 3: THE PRE-INTEGRATED SHEAR-WARP ALGORITHM

3.3.2.1 Rendering Performance

The rendering performance tests were done on a PC with a 1.7 GHz Pentium 4 processor,
256 MB RAM, and an ATI Radeon 7500 graphics card. The output image size was 5122.
The following datasets were used for the performance tests: the UNC Engine [24], Stan-
ford’s version of the UNC Brain [23], and Stefan Röttger’s Bonsai tree [22]. The opacity
transfer function was set to a linear ramp from zero to full opacity, which extended over
the entire data range. An automatic performance measurement procedure was applied,
which rotated the volume by 180 degrees in steps of 2 degrees about its vertical axis. The
average rendering times per displayed frame are listed in Table 3.5.

Table 3.5: Rendering performance in seconds per frame. The abbreviated rendering pa-
rameters are: NL: nearest neighbor lookup, BL: bilinear lookup, NC: no opacity correc-
tion, OC: opacity correction.

Pre-Integrated
NL BL

Dataset Size [voxels] Transparent Standard NC OC NC OC

Engine 1282×55 28.0 % 0.26 0.30 0.34 0.36 0.40
Brain 1282×84 13.3 % 0.43 0.49 0.56 0.58 0.66
Bonsai 1283 79.5 % 0.23 0.56 0.60 0.65 0.69

In the table, the first three columns specify the dataset, its size, and the percentage of
transparent voxels it contains. The fourth column shows the performance of the standard
shear-warp algorithm without pre-integration and without opacity correction. The remain-
ing columns list the times that were achieved with different combinations of extensions.
Two types of extensions are distinguished: lookup in the pre-integration table, and opacity
correction (including color correction). The first two columns of the pre-integrated ren-
dering tests are results from rendering with nearest-neighbor lookup in the pre-integration
table, for the last two columns this lookup is improved by bilinear interpolation between
the table values. The abbreviations used for the further classification of the table are: NL
(nearest neighbor lookup), BL (bilinear lookup), OC (opacity correction enabled), and NC
(no opacity correction). In all the performance tests, the intermediate image was warped
by 2D texturing hardware, as mentioned in Section 3.2.2.2. Slice-aligned buffer slices are
slightly faster than intermediate image aligned buffer slices because the computation of
the location within the buffer slices is simpler, but the performance difference is less that
1% and the resulting images are identical. Therefore, only the numbers for slice-aligned
buffer slices are shown in the table.

The times indicate that the pre-integrated shear-warp algorithm achieves a performance
which is between 34% and 88% of the speed of the standard shear-warp, depending on the
dataset. Pre-integration is fastest with nearest-neighbor interpolation in the pre-integration
lookup table, no opacity correction, and slice-aligned buffer slices. In the performance
tests, opacity correction accounts for 6-13% of the rendering time if enabled, bilinear
interpolation in the pre-integration lookup table results in a 14-20% performance penalty.

3.3 RESULTS 63

(a) (b) (c)

Figure 3.11: The Engine dataset: (a) standard shear-warp, (b) pre-integrated shear-warp
without opacity correction and (c) pre-integrated shear-warp with opacity correction. (See
also Color Plate 3 on page 124.)

3.3.2.2 Image Quality

A number of images were rendered, which result from different combinations of rendering
parameters. The images were created with the same datasets and output image resolution
as in the performance tests, but different transfer functions were used to emphasize the
differences of the applied algorithms. The inset in the top right corner of every image
shows a magnification of the region highlighted by a black square.

In Figure 3.11, the Engine dataset is depicted using three different settings. Figure 3.11a
was created by the standard shear-warp algorithm without any of the extensions presented
in this chapter. For Figure 3.11b, the pre-integrated rendering algorithm with nearest-
neighbor interpolation in the pre-integration table and no opacity correction was used.
Figure 3.11c was computed using the same settings, except that opacity correction was
enabled. The difference between the standard algorithm and pre-integration is clearly
visible: the engine’s features are depicted much smoother and show more detail with
pre-integration. The impact of opacity correction can clearly be seen by comparing Fig-
ures 3.11b and 3.11c: the semi-transparent engine block is more opaque in Figure 3.11c.

For the creation of the images of the Brain dataset in Figure 3.12, the same pre-integration
settings were applied as for the Engine. Here, the subtle details on the cheek, which are
enlarged in the inset, can only be seen with pre-integration. Again, opacity correction
makes a difference, but due to the nature of the selected transfer function, it can not be
seen as clearly as in the previous example.

The images of Figure 3.13 depict the Bonsai dataset. They were rendered using the same
pre-integration settings as before. Pre-integration accounts for significantly less staircas-
ing artifacts on the flower pot than the standard algorithm, as can be seen very well in the
inset.

In Figure 3.14, texturing hardware was employed for rendering the Bonsai dataset with
the same transfer functions, the same viewpoint, and the same volume resolution as for the
shear-warp. In Figure 3.14a, 128 image plane aligned textured polygons were rendered,

64 CHAPTER 3: THE PRE-INTEGRATED SHEAR-WARP ALGORITHM

which is the same amount of slices as were composited for the shear-warp algorithm.
The texturing hardware’s capability of performing trilinear interpolation while composit-
ing and sampling at image resolution result in a clearer image than the shear-warp can
achieve even with pre-integration. However, staircasing artifacts are obvious in the result-
ing image. For Figure 3.14b, 256 textures were rendered. This reduces the staircasing
artifacts significantly, but they are still noticeable, even more clearly than in the images
rendered by the pre-integrated shear-warp algorithm. Figure 3.14c demonstrates that 1024
textured polygons result in an image of high quality.

3.3 RESULTS 65

(a) (b) (c)

Figure 3.12: The Brain dataset: (a) standard shear-warp, (b) pre-integrated shear-warp
without opacity correction and (c) pre-integrated shear-warp with opacity correction. (See
also Color Plate 4 on page 124.)

(a) (b) (c)

Figure 3.13: The Bonsai dataset: (a) standard shear-warp, (b) pre-integrated shear-warp
without opacity correction and (c) pre-integrated shear-warp with opacity correction. (See
also Color Plate 5 on page 124.)

(a) (b) (c)

Figure 3.14: The Bonsai dataset rendered with 3D texturing hardware support using differ-
ent numbers of textured polygons: (a) 128 polygons, (b) 256 polygons, (c) 1024 polygons.
(See also Color Plate 6 on page 125.)

66 CHAPTER 3: THE PRE-INTEGRATED SHEAR-WARP ALGORITHM

Chapter 4

Interaction Methods

This chapter describes the developments for user interaction in virtual environments. First,
a new widget library for device independent virtual reality user interfaces will be pre-
sented. It allows to write applications which can be used with a variety of display devices
from desktop to CAVE without the necessity of writing specific code for every device.

The second part of this chapter describes the development of new interaction elements for
direct volume rendering in virtual environments, using the widget library from the first
part of this chapter. It will be reported on two evaluation steps, in which user studies were
carried out to find usability issues with the developed volume rendering user interface.

4.1 Device Independent VR User Interface

A user interface for virtual reality applications should have an API which allows the pro-
gram developer to describe the parameters that can be changed by the user, but it should
hide how the interaction elements are presented to the user, and how the user interacts
with them. Furthermore, the user interface should support different types of input devices
like the ones described in Section 2.2.1. They differ basically in the number of degrees
of freedom and in the number of push buttons. Also, the interface should be usable with
different types of display devices, which were described in Section 2.2.2, and it should
take advantage of the additional space that immersive environments provide compared to
single screen devices. Finally, the interface should be easy to use, preferably it should
be based on what users know from their experience with other graphical user interfaces
(GUIs).

The widget libraries for user interfaces which were available at the beginning of the devel-
opments either do not work in conjunction with Performer because they are designed for
window systems on desktop computers (e.g., Qt [70], Java AWT [6], FLTK [28], wxWin-
dows [109]), or they were device dependent (Virtual Tricorder [105], Studierstube [77],
Virtual Palette [14], G3Menu [8], Palmtop interface [37]). For these reasons, a new library
had to be developed.

67

68 CHAPTER 4: DEVICE INDEPENDENT VR USER INTERFACE

4.1.1 Basis

The widget library that was created in the first step was designed for CAVE-like envi-
ronments and input devices with six degrees of freedom and three buttons. At this stage,
device independence was not considered, in order to be able to evaluate the general use-
fulness of the idea of the new GUI. The basic idea was that traditional 2D menu elements
float in 3D space. The widgets were derived from desktop user interfaces as depicted in
Figure 4.1: labels, push buttons, check boxes, radio buttons, and sliders. As an alterna-
tive to the slider, a rotary knob widget was created. The selection of menu entries was
done with a virtual beam of limited length, which is drawn as an extension of the input
device. The graphics API used was OpenGL Performer. The widget library was inte-
grated into COVISE’s virtual reality renderer COVER, which was introduced in Section
2.4.2.1. This basic virtual reality user interface (VRUI) was developed in collaboration
with a colleague, Uwe Wössner.

Figure 4.1: Basic menu widgets: label, push button, check box, radio button, slider, rotary
knob, sub-menu.

A menu has a title bar, which allow the user to move it, to close it, or to shrink it to the
title bar. Moving a menu in 3D is done similar to moving a window in a typical desktop
application, which is by clicking the title bar and dragging the pointer. Depending on
which button is used for clicking, the menu either always hangs down, or it is rotated
with the pointer movement. Clicking it with another button and turning the input device
changes the size of the menu. By default, the left button moves with gravity, the middle
button scales, and the right button moves with free orientation.

Activating a menu button is done by pointing at it and clicking a button on the input
device. Check boxes and radio buttons are used in the same way. Sliders are moved by
clicking on the position marker and dragging the mouse from there up to the desired value.

Rotary knobs are manipulated by clicking on them and then turning the hand, similar
to real knobs. There are three advantages to rotary knobs, as opposed to sliders. First,
the human hand can turn much more precisely than translate. Second, rotary knobs do
not have a limited value range, they can be rotated multiple times for manipulation of

4.1 EXTENSIONS 69

unconstrained values. Third, the accuracy of the adjustment is independent of the user’s
distance from the knob.

4.1.2 Extensions

After the basic widget library had been created and successfully tested in VR applications,
device and scenegraph independence, as well as new widgets and layout options were
integrated. The resulting widget library VRUI+ was published in [30].

4.1.2.1 Scenegraph Independence

Operating System

Application

VRUI+

VRSG

Graphics API
Performer, Optimizer, ...

Figure 4.2: Layers of VRUI+.

The original widget library required OpenGL Performer. In order to achieve scenegraph
independence, an abstraction layer had to be inserted between the widget library and the
graphics API. The abstraction layer, called virtual reality scene graph (VRSG), had to
provide all the functionality of the graphics API that the widget library required. Figure
4.2 shows the location of the VRSG between the widget library VRUI+ and the graphics
API.

The VRSG was modeled similar to OpenGL Performer and Cosmo 3D, which is the scene-
graph API of OpenGL Optimizer. This facilitates its use for Performer and Optimizer
developers, and it simplifies the interface to the actual graphics API in these two cases,
so that in many cases the VRSG commands can be mapped directly to the corresponding
graphics API commands. The VRSG class hierarchy is depicted in Figure 4.3.

While all the other images in this dissertation show the OpenGL Performer version of the
user interface, Figure 4.4 shows that the widgets look the same when Cosmo 3D is linked
instead.

70 CHAPTER 4: DEVICE INDEPENDENT VR USER INTERFACE

vrsgMaterial

vrsgTexture

vrsgNode

vrsgGroup

vrsgTransformvrsgSwitch

vrsgShape

vrsgShapeLook

vrsgGeometry

...

vrsgSphere vrsgGeoSet

vrsgTriSet

vrsgVec3 vrsgMatrix vrsgPlane vrsgSeg vrsgMem vrsgFont

Figure 4.3: VRSG class diagram.

4.1.2.2 Device Independence

The menus of the basic widget library float in space and can be moved freely by the user.
On multi-screen projection devices like CAVEs or power walls there is enough space for
several menus and a dataset. However, on single screen devices the dataset and the menus
often overlap because space is limited. If the dataset is located in front of a menu, the
menu is hidden by it, so in order to select a menu entry the user would have to move away
the dataset.

To overcome this usability issue VRUI+ makes use of the stencil buffer. The user interface
and the pointing device are displayed first and they set the stencil buffer. After that the
dataset is displayed with stencil buffer testing enabled. Thus, the user interface remains
on top.

However, in places where the menus are visible although they are actually located behind
or within the dataset, the stereo effect is significantly reduced. Therefore, a snapping
mode was created in which all windows snap to the nearest edge of the screen. The stereo
effect of the dataset is much less affected at this location, because it appears as if the
menus were not part of the actual 3D display area.

Another difference between output devices is that on single screen displays, menus and
dialog windows cannot be moved along the depth axis, but they always lie in the plane
of the display screen. This restriction of the degrees of freedom was necessary to make
windows appear as if they are part of the display screen border instead of the 3D scene,
so that the stereo effect can be maintained. In order to ensure that they occlude each other
entirely even if they contain elements that have depth like knobs or sliders (see Figure
4.6b), they are displayed at slightly different depths. The window that was clicked on last
is always displayed closest to the user.

The user interface can be used with a variety of input devices. The minimum requirement
is two degrees of freedom for the position and one push button, which includes the desktop

4.1 EXTENSIONS 71

Figure 4.4: VRUI+ with Cosmo 3D.

mouse. Rotary knobs can be turned with a mouse by clicking on them and dragging the
mouse up or down while keeping the button pressed. All the other widgets can be used
similar to their 2D counterparts in traditional GUIs.

4.1.2.3 New Widgets and Layouts

Two additional widget types were created: a tab widget which allows to change between
multiple dialog windows that are located at the same place, and a choice widget which
allows the selection of one element of a set of options (see Figure 4.5).

(a) (b)

Figure 4.5: New widgets: (a) tab, (b) choice.

Figure 4.6a shows a typical VRUI+ dialog window. In order to demonstrate that some
window elements are true 3D, the same window is shown in Figure 4.6b after its elements
have been extruded.

Within dialog windows, widgets can be placed in several ways. VRUI+ has only one
layout manager, which arranges its elements in a row or column, similar to flow lay-
out in Java’s AWT. The layout managers can be nested to achieve the desired widget
arrangement. Furthermore, the layout manager provides options for the alignment of its

72 CHAPTER 4: INTERACTION ELEMENTS FOR VOLUME RENDERING

(a) (b)

Figure 4.6: Dialog window: (a) front view, (b) side view, extruded.

elements, which can be left, middle, or right, and also the spacing between the elements
can be changed. Figure 4.7 shows several layout options.

(a) (b) (c) (d)

Figure 4.7: Widget layout: (a) left, (b) centered, (c) right, (d) larger spacing.

4.2 Interaction Elements for Volume Rendering

The most significant previous developments of user interfaces for volume rendering in
virtual environments are the Crumbs tool [11] and the StudyDesk interface [106, 107].
However, none of them allows an easy modification and display of both color and opacity
transfer function, and they cannot be used in conjunction with a traditional visualization
system. Therefore, a new volume rendering user interface had to be created.

4.2 FIRST APPROACH 73

A number of interaction elements are required to work with volumetric data in virtual en-
vironments. The author’s most important contribution is a transfer function editor, which
allows to change color and transparency of the data elements from within the virtual en-
vironment. A 3D menu offers various datasets to the user, provides control over time
dependent datasets, and has options to enable or disable various rendering parameters.
Furthermore, three ways of cutting off locally constrained parts of the dataset have been
implemented.

After the first implementation of the user interface, a user study with external participants
was carried out. After the study, the interface was improved according to the results.
Then, another study was conducted to evaluate the improved system. This section will
describe all of these stages in chronological order. The work presented in the remaining
part of this chapter was done in collaboration with the author’s colleagues Uwe Wössner
and Ulrich Lang, who participated in the preparation and realization of the user studies.
Uwe Wössner also helped with the implementation of interactive elements of the user
interface.

4.2.1 First Approach

In the first approach, a general purpose volume rendering user interface was developed.
It was created as a plug-in for the virtual reality renderer COVER. It contains a transfer
function editor and a virtual reality menu to access the volume rendering options.

4.2.1.1 Transfer Function Editor

The new transfer function editor was specifically designed for virtual environments, which
usually suffer from imprecise input device tracking and limited display screen resolution.
The editor and all input elements are placed on a floating menu, as displayed in Figure
4.8. The right part of the image is an assembly of all possible knob layouts for different
editing modes.

The new transfer function editor allows to edit one dimensional transfer functions, i.e.,
its color and opacity assignment depends only on the data value. The color and opac-
ity transfer functions are modified in the function window. The data values are located
horizontally, the smallest value is at the left. The transfer functions assign both a color
and an opacity to each data value. The resulting RGBA values, as they are applied to the
volume data, are displayed in the color bar above the function window. The alpha value
can be perceived by the amount of opacity of the upper bar in comparison to the window
background texture.

Changing the color value (R, G, and B components) requires setting a control point (pin)
in the function window, which is done by clicking on the palette icon in the icon bar and
then clicking on the desired data value position in the function window. The colored disk,
which then appears at the right of the function window, reflects the HSV color model.
The hue and saturation components are selected by clicking the left button on the desired

74 CHAPTER 4: INTERACTION ELEMENTS FOR VOLUME RENDERING

Figure 4.8: Transfer function editor.

location in the colored disk, the brightness is modified by turning the input device while
pressing the middle button.

Alpha pins, which describe the opacity function, can be set independently of color pins.
Setting an alpha pin requires selecting a pin of the desired type in the icon bar and dragging
it to a scalar position in the function window. There are three basic types of alpha pins:
peaks, ramps, and blanks. Peaks and ramps have a slope, a minimum, and a maximum
value. They are used to gradually fade in or out ranges of data values. If peaks or ramps
overlap, the maximum value determines the resulting alpha value. Alpha blanks have only
a width, they force a scalar range to be transparent and dominate peaks and ramps.

The properties of alpha pins can either be adjusted by the rotary knobs to the right of the
function window, or they can be changed by pressing the middle mouse button and turning
the mouse when the pointer is in one of three areas around the pin position. The location
of these areas is displayed in a horizontal bar, located between the function window and
the color bar.

Both color and alpha pins can be selected by clicking next to them in the function window
with the left mouse button. They can be moved horizontally when the right mouse button
is pressed. If multiple pins are located closely together, repeated left mouse button clicks
cycle through them. Removing a pin is done by first selecting it and then clicking the
garbage can icon.

Some commonly used default color and default alpha pin configurations can be loaded
by clicking the respective buttons. Multiple clicks on these buttons cycle through several
default configurations: the alpha button offers ascending and descending ramps, and total
opacity. The color button cycles through a set of colors from cold (blue) to warm (red),
a set of all primary colors from the HSV color scheme, and a gray scale from black to
white.

4.2 FIRST APPROACH 75

Figure 4.9: First version of the volume menu.

4.2.1.2 Volume Menu

The volume menu is depicted in Figure 4.9. It can be accessed by a menu entry in a
global menu, which provides mainly navigational options. The volume menu consists of
the following menu entries:

• a file button which opens a list of volume files available to load.

• a toggle button to enter the probe mode.

• a toggle button to display a clipping plane.

• a slider to set the desired frame rate, which affects image quality.

• a toggle button to draw a wireframe bounding box around the dataset.

• a toggle button to turn off density interpolation (see Figure 4.10).

• an animation button which opens a sub-menu with settings for the display of time
dependent datasets.

In the following sections, the more complex menu functions will be described in detail.

4.2.1.3 Image Quality

All interactive volume rendering algorithms are based on a trade-off between image qual-
ity and rendering speed. In Chapter 3, it was described how frame rate adaption can be
achieved with the texture hardware based and the shear-warp algorithm. The volume ren-
dering user interface, which is described here, offers a slider to select the frame rate, as
displayed in Figure 4.9. For every frame, the system measures the rendering time and
compares it to the slider value. Before the next frame is drawn, the image quality is

76 CHAPTER 4: INTERACTION ELEMENTS FOR VOLUME RENDERING

(a) (b)

Figure 4.10: Lambda dataset: (a) with tri-linear density interpolation, (b) with nearest-
neighbor interpolation.

adapted so that rendering takes the desired time. Compared to a slider which influences
image quality directly, the advantage of this approach is that the users will not be inter-
rupted in their work by low frame rates without explicitly allowing this.

Whenever the users want to see a higher quality image, they can click a mouse button
while the mouse is above their head to trigger the high quality mode. In Figure 4.11, the
difference between the high quality mode and the adaptive work mode is depicted. The
dataset used in this and some of the following images is the result of an airflow simulation
generating Lambda waves, which is courtesy of Ulrich Rist from the IAG of the University
of Stuttgart. In high quality mode the volume is drawn at its native resolution, usually
resulting in low frame rates. Due to these low frame rates, it becomes hard to select items
in the menu. Thus, in order to leave this mode and return to the adaptive mode, it suffices
to press a mouse button again.

(a) (b)

Figure 4.11: Lambda dataset: (a) adaptive mode, (b) high quality mode.

4.2.1.4 Detail Probe

Motivated by the clear boxes in [11], the detail probe mode was developed (see Figure
4.12). When it is selected, the boundaries of the volume dataset are displayed and only a
cubic subset of the volume is rendered. The user can drag the cube with the left mouse but-
ton, its size can be changed by turning the mouse while the middle button is pressed. The

4.2 FIRST APPROACH 77

probe can be moved around at interactive speed because the volume data is not modified,
it is merely clipped at six sides.

(a) (b)

Figure 4.12: Lambda dataset: (a) regular display, (b) probe mode.

4.2.1.5 Clipping Plane

In the volume menu, a clipping plane can be selected. As displayed in Figure 4.13, its
effect is to cut off all volume data at one side of the plane. Clipping planes are supported
by both the texture based and the shear-warp rendering algorithm. For the shear-warp
algorithm, the clipping plane functionality was described in Section 3.2.2.3.

For the algorithm based on textured slices, the straightforward approach would be to use
an OpenGL clipping plane. But when it is applied to volume data displayed with the
slicing technique, sub-sampling artifacts occur on the clipping plane. Therefore, a new
approach was developed for the clipping plane: the orientation of the volume slices is
matched with the orientation of the clipping plane, and the volume is clipped by not
drawing slices on one side of the plane. Furthermore, the volume slicing position is
adapted so that there is always a slice drawn at the clipping plane location. This approach
yields the clipping plane behavior expected by typical users of the system.

(a) (b)

Figure 4.13: Lambda dataset: (a) no clipping, (b) clipping.

78 CHAPTER 4: INTERACTION ELEMENTS FOR VOLUME RENDERING

4.2.1.6 Time Dependent Datasets

Time dependent datasets can either be displayed in single frame mode or as an animation
with adjustable speed. The animation parameters can be set in the animation menu, as
displayed in Figure 4.9. In the shear-warp algorithm, all volume data is loaded into main
memory, and for every time step the pointer to the beginning of the respective dataset is
adjusted accordingly.

When the texture hardware based algorithm is used, all time steps are loaded entirely
into texture memory. If the texture memory is insufficient to accommodate all time steps,
OpenGL automatically caches the data in main memory, slowing down animation speed
considerably. Figure 4.14 shows an example animation, which is courtesy of J. Marczyk,
EASi, and SGI.

Figure 4.14: Time steps of a statistical finite elements simulation.

4.2.2 First Evaluation

In order to find out about the usability of the new interaction elements for volume render-
ing in virtual environments, a usability study was carried out in the CAVE at the HLRS.
Derived from [90], the evaluation process consisted of two phases: a usability inspection
and a scenario-based evaluation. Both phases were slightly modified to suit the require-
ments of the research for this dissertation.

4.2.2.1 Phase 1: Usability Inspection

In the usability inspection, a specialist from the HLRS, who was not involved in the sys-
tem’s development process, reported obvious flaws in the user interface design. He also
made redesign suggestions to the developers, who decided on their implementation. The
volume rendering system described in Section 4.2.1 already includes these changes.

4.2.2.2 Phase 2: Scenario-Based Evaluation

Before the external participants were invited, a pilot study of the system was conducted by
an in-house expert. The pilot study revealed several issues, for instance with the chronol-
ogy of the evaluation procedure, the number of tasks, and the understanding of the ques-
tionnaire. All of these issues were solved before the external participants were invited.

The following two scenarios were created in which the users could explore the volume
rendering system:

4.2 FIRST EVALUATION 79

Figure 4.15: The skull of the Visible Human in the CAVE. (See also Color Plate 7 on page
125.)

• The first scenario was a downsampled 256× 256× 120 voxels part of the skull of
the male Visible Human CT dataset, which is courtesy of the National Library of
Medicine [89] (see Figure 4.15). It was suggested to the participants to segment the
jaw bone, the auditory canal, or the spine.

• The second scenario was a volume dataset representing the temperature distribution
in the interior of a passenger car (see Figure 4.16). The car body, the seats, and the
driver were rendered with polygons. It was suggested to visualize the air at a vent
output or particularly hot areas.

The evaluation was carried out according to the following procedure:

1. Self-Rating Questionnaire. In a conference room, the users filled out a questionnaire
asking them to self-rate personal skills and knowledge. The questions were based
on a Likert scale [57] with a value range from 1 to 5. The users’ gender, age, and
physical constraints such as glasses were recorded.

2. Introductory Presentation (Briefing). After the questionnaire, a brief introduction
to volume rendering and the CAVE was given with a Powerpoint presentation. It
described the functionality of the transfer function editor in detail and finally pre-
sented two application scenarios in which the participants should work.

3. Passive Introduction. The users were taken to the CAVE, where three evaluators
were present: M, V, and P. V and P sat outside of the virtual environment. The
presenter M explained the functionalities of the CAVE and the volume rendering
system. The passive introduction averaged around 5 minutes. Evaluator V video-
taped steps 3 to 5, and P conducted participant observation during the same time.

80 CHAPTER 4: INTERACTION ELEMENTS FOR VOLUME RENDERING

4. Active Introduction. The users were handed the 3D input device (a mouse with three
buttons) and started exploring the first scenario with M still explaining. This step
seamlessly faded into Step 5, and it averaged to 5 minutes.

5. Exploration of the Scenarios. M left the CAVE and served as an expert mediator,
but he only helped users when asked to. About ten minutes before the end, it was
switched to scenario two. This step was aborted when the total elapsed time of steps
3 to 5 reached 30 minutes.

6. Follow-up Questionnaire. Back in the conference room, the users filled out a ques-
tionnaire. Ten questions asked for the overall usability of the user interface, 24 dealt
with single components of the volume rendering system. All these questions were
based on Likert scales. Five additional questions were posed as multiple-choice
questions.

7. Focused Expert Interview (Debriefing). Finally, a focused expert interview was con-
ducted by P. It mainly addressed the system’s functionalities and direct interaction.
This interview took between 20 minutes and 1 1/2 hours. The users’ comments
were hand-noted.

Figure 4.16: Volume rendered temperature distribution in a polygonal car cabin. (See also
Color Plate 8 on page 126.)

4.2.2.3 Evaluation Results

Twelve volunteer users participated in the evaluation. They either came from related
departments at the University of Stuttgart, or they worked with visualization software in
the industry. Table 4.1 shows that there was the desired range of users’ skills.

4.2 FIRST EVALUATION 81

Table 4.1: Self-Rated experience on a Likert-Scale from 1 (low) to 5 (high).

Type of experience Average score

CAVE or CUBE 2.83
Volume Rendering 1.90
Scenarios 1.13
Scientific Visualization 2.33

The evaluation of the follow-up questionnaire resulted in the following significant find-
ings:

• For 2 users the image quality was not detailed enough, 7 users did not mind the poor
image quality with large volumes.

• 11 users found the high quality mode useful, one found it awkward to use.

• 11 users thought the automatic alignment of the editor menu was useful.

• 10 users liked the layout of the user interface components.

• One user had trouble interacting with the rotary knobs.

• For 9 users, defining the alpha function with pins made sense.

• All users found the probe mode to be helpful, 10 users thought it was easy to use.

• 9 users found the clipping plane beneficial, 8 users thought it was easy to use.

The overall usability satisfaction with the system scored from 55% to 90%. The numbers
are based on a composite measure derived from a System Usability Scale [10].

After having consulted both quantitative and qualitative data, the key findings that oc-
curred across all investigative methods were worked out:

• Alpha and color pins are hard to differentiate when both are gray.

• The mouse button assignment is confusing when working with pins.

• Pin positioning is imprecise in the transfer function field.

• When entering the probe mode, some users were unaware of the activated clipping
plane mode.

• Users requested a rectangular or trapezoidal alpha pin.

• Invisible colors in color bar resulting from transparent regions in the alpha function
made it difficult to set the color of color pins.

82 CHAPTER 4: INTERACTION ELEMENTS FOR VOLUME RENDERING

• After deletion of all color pins the volume turns black and thus becomes invisible
on a black background, even if the alpha function contains opaque regions.

The evaluation of the new volume rendering system showed its general usefulness. It
was surprising how little the users were disturbed by the relatively poor image quality
of large volumes, but this may in part be due to the existence of the high quality mode.
Nevertheless, the user study found a number of usability issues, which were solved in a
second evaluation approach.

4.2.3 Solving the Usability Issues

The first user study found several usability issues of the volume rendering system, most of
them related to the transfer function editor. After the evaluation was finished, most of the
major usability issues were addressed, and some functionality was added that was only
requested by a few users. Here is a list of the changes:

• The mouse button assignment was confusing because separate buttons were used
for selection and manipulation of pins. Now both can be done with the same mouse
button. However, it can now happen that the user moves a pin accidentally.

• Imprecise pin positioning: users weren’t aware of the exact pin locations. Now the
respective data value is displayed below the selected pin.

• Users asked for a trapezoidal pin type. Therefore, a width parameter was added to
the peak pin, so that it can be widened to the shape of a trapezoid. Additionally, the
minimum value parameter was removed because none of the participants had used
it and it could be substituted by a wide trapezoid.

• Previously, the color bar displayed the transfer function colors and opacities in one
bar. Thus, users couldn’t see the colors of transparent regions which confused them.
Now the color bar is divided into two parts: one part displays only the color, the
other additionally represents the opacity.

• After deletion of all color pins, the volume turned black even if opaque regions
existed in the transfer function. In the new version, the default color is white, which
makes the volume visible on black projection walls.

• The rotary knobs in the transfer function editor were hard to use for a precise setting
of values, because they transformed hand rotations 1:1 into knob rotations. There-
fore, a fine-tuning mode was added, used by turning the knob when the right mouse
button is pressed. Now, angular changes of the hand are converted into knob rota-
tions at a ratio of 1:10. The left mouse button can still be used to do 1:1 rotations.

• Some users had requested an undo function, so it was implemented. It stores the
last 20 actions that affected the transfer function. Simple clicks on the undo button
go back one step at a time.

4.2 SOLVING THE USABILITY ISSUES 83

• Since some users had asked for a histogram of the data values in the volume, a
button was added that displays a 2D histogram as the background texture of the
function window.

• Some users were irritated by the transfer function editor’s background color, which
was a pattern of black and white dots. It made some text difficult to read. In the
new version, the background color is solid black.

• Because nobody used them, and because an undo function and an option to save the
volume with the transfer function had been added (see below), the preset buttons
were removed from the transfer function editor.

Figure 4.17: The improved transfer function editor.

Figure 4.17 shows the improved transfer function editor with several alternatives for the
knob layout, which are displayed depending on the selected pin type.

Figure 4.18: The improved volume menu.

84 CHAPTER 4: INTERACTION ELEMENTS FOR VOLUME RENDERING

Additionally, three new options were added to the volume menu (see Figure 4.18). As
an alternative to the existing clipping mode, opaque clipping was implemented, which
clips both halfs of the object away, leaving a single plane. In this plane, the opacity
transfer function is set to the maximum, making the plane opaque. Figure 4.19 shows the
difference between the new clipping mode and the previous one.

Another new option in the volume menu is the discrete colors knob. If it is set to zero,
discrete colors are not used, which means the color transfer function consists of contin-
uous color gradients between the color pins, just as in the earlier implementation. If the
knob is set to a value n > 0, the color transfer function is split into n evenly sized regions
of constant color.

Finally, a save button was added to store both volume and transfer function in a single file.

(a) (b) (c)

Figure 4.19: Lambda dataset: (a) no clipping, (b) regular clipping, (c) opaque clipping.

4.2.4 Second Evaluation

Another user study was carried out to support that the new volume rendering system ben-
efits from the improvements. This time, the collaborative aspects of the system were
evaluated additionally, but these will not be discussed in this dissertation. Basically, the
same evaluation procedure was applied as in the first user study, but due to the collabora-
tive aspects two users worked on the same datasets at the same time. They were located
in two networked CAVEs with audio link.

4.2.4.1 Scenario-Based Evaluation

Similar to the first user study, the participants should work in two scenarios, but with
additional collaborative aspects. In the first scenario, the users were given the same Visible
Human skull dataset as in the first study (see Section 4.2.2.2). One of the users should
present features of the dataset to the other participant, who was supposed to ask questions
to the presenter. The presenter was advised to make use of the transfer function editor to
demonstrate anatomic details of the skull.

For the second scenario, a knee joint, was loaded into the volume rendering system, which
was also extracted from the Visible Human dataset (see Figure 4.20). Beforehand, a nee-
dle was hidden in the dataset. The needle was represented by a simple straight line of

4.2 SECOND EVALUATION 85

Figure 4.20: The visible human knee.

voxels with the same data values as bone, which could only be seen after precise modifi-
cations of the transfer functions. The participants had to collaborate to find the needle as
fast as possible and tag it with a cone shaped marker (see Figure 4.21). This task required
careful adjustments of the transfer functions.

Five pairs of people from different professional fields were invited, some of them had al-
ready participated in the first study. Most of the ten participants were members of neigh-
boring research centers. The user study took place on three consecutive days and had a
mean evaluation time of three hours per pair.

Figure 4.21: Scenario #2: to find the needle.

The evaluation started with briefings for the participants. The briefings consisted of Pow-
erpoint presentations explaining the volume rendering system and the tasks which had to
be solved. After the presentations, the participants filled out a self rating questionnaire,
which was similar to the one used in the first study.

86 CHAPTER 4: INTERACTION ELEMENTS FOR VOLUME RENDERING

Then the participants were guided to the CAVEs and they were given short introductions
to the user interface. This part of the evaluation took about 15 minutes.

When both of the participants felt comfortable with the user interface, they were con-
nected to the audio system and from then on they could communicate with each other.
Also, video recording of the session was started. The participants had 15 minutes to work
in each of the two scenarios. During all of this time, the participants could ask the ob-
servers questions about the software. Occasionally, if the participants ignored them, the
presenter asked the participants to use one of the new features of the transfer function
editor. If after about 10 minutes into the search task there was no progress, the observers
began to give hints about the location of the needle. During the time in the CAVEs, the
observers made notes about the participants’ questions and their behavior.

After the tasks had been solved, the participants went back to the briefing rooms. They
filled out questionnaires which were split in two parts: multiple choice questions and
questions for free answers. The multiple choice section contained questions about col-
laboration, and technical issues with the user interface. This part of the evaluation lasted
about 20 minutes.

After that, the participants met in one of the briefing rooms, where they were consulted
about their experiences in the CAVEs. The interviews followed pre-designed guidelines
and took up to one hour.

4.2.4.2 Evaluation Results

This section will only cover the results that were obtained from the questions regarding
the user interface.

• Unlike in the last user study, the participants were not confused by the mouse button
assignment for the pin usage. Previously, two mouse buttons had to be used for
selection and manipulation, now one button can do both. Only 2 out of 10 users
said they had problems with the new usage scheme, while previously 7 out of 12
were confused with the button assignment.

• Previously the pin positioning was considered to be imprecise because there was no
feedback about the exact pin position. With the display of the current data value,
only 3 users requested more information.

• The new trapezoidal pin was accepted quickly, 8 users found it easy to use.

• The color bar division into one with and one without opacity representation, com-
pared to only one bar with opacity, was considered helpful by all participants.

• 8 users liked the new fine tuning mode for rotary knobs.

• 9 users were happy with the transfer function editor’s new solid black background.

4.2 SECOND EVALUATION 87

• The new undo button was found to be useful by all but one user, who said it did not
work as expected.

• 8 users found the histogram display useful.

Particularly in the search scenario, the participants had to use many functions of the trans-
fer function editor, which was much less required in the first evaluation. The result shows
clearly that the user interface has improved since the first evaluation.

88 CHAPTER 4: INTERACTION ELEMENTS FOR VOLUME RENDERING

Chapter 5

Parallelization and Distribution Methods

In this chapter, a parallelized version of the perspective shear-warp algorithm will be pre-
sented. The parallelized algorithm is designed for distributed memory machines using
MPI. Fast parallel computers are often installed at remote locations, where they can only
be accessed via a network connection. Local display computers typically do not offer fast
parallel processing. The new algorithm composites the intermediate image on a remote
parallel computer and transfers it to a local display computer. Transferring the interme-
diate image takes advantage of the feature that the warp can be done very fast even in
simple graphics hardware. With this approach, even low end PCs or laptop computers can
display complex volumetric data interactively. The proposed remote volume rendering
algorithm can also be used in virtual environments, provided that there is a fast network
connection to a high performance parallel computer.

The research presented in this chapter was carried out in collaboration with Ulrich Lang,
and it was published in [82] and [83].

5.1 The Parallelized Perspective Shear-Warp

Although today interactive volume rendering is mostly done with specialized computer
graphics hardware—which is usually high end graphics equipment with fast 3D texturing
and large texture memory—this technique has limitations. Only volume datasets that fit
into texture memory can be rendered at interactive frame rates, larger volumes have to be
swapped between texture and main memory, which is slow. For software based volume
rendering approaches, single PCs are not fast enough to display large volume datasets
interactively.

Another bottleneck of the texture based approach is the pixel fill rate. It is still not high
enough to reach interactive frame rates on a 10242 pixels screen. Display screens of
this resolution are commonplace in virtual environments, which are the motivation for
the developments presented in this chapter. In many installations, a large visualization
machine drives multiple display screens with stereoscopic images to create the effect of
immersion. The two most widely used approaches to drive virtual reality environments are

89

90 CHAPTER 5: PREVIOUS WORK

high-end multi-pipe graphics machines and networked PCs. Networked PCs suffer from
the same limitations for volume rendering as single PCs, and high-end graphics hardware
is expensive.

In the recent past, clusters of commodity PCs have gained importance in the field of
parallel computing. These clusters are usually linked with Fast Ethernet or Myrinet, both
providing high bandwidth and low latency. Many PC clusters are competitive to special
purpose parallel computers. Due to their lower price, they do not need to be installed in
central places, but they can be located wherever they are used, for instance in a physics or
engineering department at a university. This decentralization of parallel computing power
increases the number of places where interactive compute time is available on a parallel
architecture.

The availability of large numbers of interactive nodes on parallel computers encourages
us to use them for volume rendering in conjunction with a visualization computer that is
connected to multiple stereo displays. The shear-warp algorithm is a very fast CPU-based
volume rendering algorithm.

Although on single processor machines the shear-warp algorithm is usually slower than
hardware supported solutions, its good scalability allows it to be competitive on multi-
processor machines. Lacroute [52] and Jiang and Singh [41] showed that the orthogonal
projection shear-warp algorithm scales well on shared memory parallel computers. Amin
et al. [3] and Troutman et al. [93] demonstrated that it can be used efficiently on dis-
tributed memory machines. This chapter describes how the shear-warp algorithm for per-
spective projection can be employed efficiently for remote volume rendering on parallel
computers.

5.2 Previous Work

A detailed description of the shear-warp algorithm can be found in Section 2.1.3. The
version for perspective projection is discussed in Section 3.2.

Related work in the field of CPU-based volume rendering on parallel computers includes
VFleet [98], which uses a ray casting renderer and a compositing tree, but it does not
offer shear-warp rendering and is not real-time. At the University of Utah an interactive
ray tracing system for volume visualization on parallel computers was developed [65].
It allows to render volume data in real-time, using isosurfacing or maximum-intensity
projection. However, volume rendering with arbitrary opacity transfer functions and alpha
blending is not supported.

Knittel’s UltraVis system [45, 46] renders volume data in real-time using a ray casting
algorithm. Extensive use of the MMX and SSE units of Pentium processors and optimized
cache memory access result in very high performance. PC cluster support allows the
approach to scale with the number of available CPUs. However, the approach requires the
presence of Intel CPUs, it cannot be used on other parallel computers.

At Sandia National Laboratories the Parallel Volume Rendering system (PVR) [71, 87]
has been implemented. It uses a parallel computer to provide interactive rendering rates

91

for very large volumes using a ray casting algorithm and a sophisticated compositing
scheme. The drawback of this system is that it does not render fast enough to drive a
virtual environment with multiple screens.

One of the most recent developments that uses PC clusters for visualization is the WireGL
[38] library, which acts as an OpenGL driver to an application but distributes the data
which is to be displayed among several PCs. Chromium [39] implemented an improved
handling of the large amount of data that has to be transferred for each frame before it
can be displayed. For volume rendering, it allows the distribution of a volume dataset
among all cluster nodes, each node rendering only its assigned partition. The drawback of
this approach is that it requires a cluster of PCs with graphics cards, while for the volume
rendering approach presented in this chapter a PC cluster without graphics hardware, or a
special purpose parallel computer can be used, which may already be installed for science
or engineering simulations.

5.3 The Rendering System

The development of the parallelized shear-warp algorithm with perspective projection
is based on the work presented in Section 3.2. The parallel extensions were done in
two areas: first, the perspective projection algorithm was parallelized, and second, a new
remote renderer was written, which runs on a parallel machine and communicates with the
local display machine via a network connection (see Figure 5.1). The network connection
is established between the display computer and one node of the parallel computer.

Display Computer
Remote Rendering

Machine

Network

connection for

transfer of:

• Commands

• Matrices

• Encoded images

• Volume data

Root node:

Parallel rendering

processes:

• Command

dispatching

• Scanline

assignment

• Compositing

• Image encoding

• CompositingUser interface

• Intermediate

image

decoding

• Warp

Renderer

plug-in:

Figure 5.1: Remote rendering system components.

5.3.1 The Parallelized Shear-Warp Algorithm

In [52], Lacroute parallelizes both the compositing and the warp. The compositing is par-
allelized by partitioning the object space into sections of intermediate image scanlines,

92 CHAPTER 5: THE RENDERING SYSTEM

which are distributed among the available processors. Additionally, dynamic task stealing
is implemented to optimize load balancing. The warp is parallelized using static inter-
leaved partitions without dynamic approaches.

The new algorithm only parallelizes the compositing, but not the warp. This is because,
as shown in Section 3.2, the warp can be done efficiently by graphics hardware, even if
only 2D texturing is supported. If 2D texturing is not accelerated by the display computer,
the warp is still fast for small output images, but it becomes considerably slower for large
output images. However, today 2D texturing acceleration is provided by most graphics
hardware.

The compositing was parallelized by partitioning the intermediate image into sections of
scanlines, similar to Lacroute’s approach, but without task stealing. The idea is illustrated
in Figure 5.2. Each process is assigned an equally sized section of the intermediate
image. If the scanlines cannot be distributed evenly, the root node is the first to be assigned
less lines than the other nodes, because it has to do the additional work of collecting all
rendered sections and sending the result to the display machine.

For perspective projection, the compositing is more expensive than for orthogonal projec-
tion, because every intermediate image scanline does not only require data from two voxel
lines, as in the case of orthogonal projection. Instead, it needs to look at multiple voxel
lines, depending on the degree of the perspective. In the worst case, an entire voxel slice
from the back of the volume has to be processed to compute a single intermediate image
pixel. In general, the farther away the slice that is currently processed, the more vox-
els have to be accumulated for an intermediate image pixel. This is partly compensated
because less pixels need to be drawn per slice.

Intermediate image

scanlines

Volume slices

Process #1

Process #2

Process #3

Intermediate image

Figure 5.2: Intermediate image task distribution with sections of the same size.

This feature of the perspective projection, and the fact that shear-warp rendering requires
the storage of three datasets in memory, one for each principal axis, makes it difficult to

5.3 THE RENDERER PLUG-IN 93

distribute the volume data on distributed memory machines. In the approach presented
here, each node has a copy of the entire volume dataset. If a large number of nodes
is available, but there is not enough memory on each node to store the volume data, the
available nodes could be split into three parts and get one volume dataset for each principal
axis. Although the maximum usable volume size would be three times as high, this also
means that only one third of the nodes can be used for rendering at a time.

5.3.2 The Renderer Plug-In

Since the intermediate image generation is decoupled from the actual drawing of the final
image, the renderer plug-in for the existing volume rendering software is rather simple. It
only needs to pass the current view matrix to the remote renderer, receive the intermediate
image and the corresponding warp matrix, and warp the image to the screen. Additionally,
all changes of image generation parameters have to be passed to the remote renderer. They
include the transfer functions, interpolation mode, and image quality.

5.3.3 The Remote Renderer

At startup, the remote renderer expects a volume dataset. Depending on the volume size
and the network connection, the transfer may take a few seconds. Then the three run
length encoded versions of the volume data (one for each principal axis) are generated on
the remote computer, and they are stored in each node. After that, the remote renderer is
ready to receive commands from the renderer plug-in.

The following pseudo-code shows the flow of control for the root node and the other
nodes in the parallel algorithm. The root node both distributes the commands and collects
the resulting intermediate image sections. The reception is done by an MPI_Recv()
command with the memory address for the destination of the sections, so no additional
copying is necessary. When all sections have arrived at the root node, the intermediate
image is run length encoded and then transferred to the renderer plug-in, along with the
warp matrix.

procedure rootNodeRenderingLoop()
{

Receive the view matrix from the plug-in.
Compute the appropriate section partitioning.
Pass the section partition parameters to the other nodes.
Render self assigned section.
Receive the rendered sections from the other nodes.
Encode the intermediate image.
Transfer the intermediate image to the plug-in.

}

procedure otherNodesRenderingLoop()

94 CHAPTER 5: THE RENDERING SYSTEM

{
Receive section parameters from the root node.
Render the section.
Transfer the rendered section to the root node.

}

The remote renderer is an MPI program without a user interface and with no user interac-
tion after startup. This was an important design decision, because the renderer should run
on as many different platforms as possible, and it should not require X Window support.
In addition to the number of processes which is passed to the MPI startup tool, the remote
renderer requires only two command line parameters: the port number and the display
host address for the socket connection. Everything else is transferred from the display
host at runtime, including the volume dataset.

5.3.4 Data Transfer

The data communication between the renderer plug-in and the remote renderer is done
with one bidirectional TCP socket connection. It is established at startup and remains
active until the application is closed. A TCP connection proved to be fast enough for the
purposes of remove volume rendering, because the bottleneck is the compositing on the
remote machine.

When the orthogonal projection shear-warp algorithm is used, the intermediate image
pixels are usually mapped 1:1 to voxels. This can be done because the slices are only
sheared and not scaled. In the case of perspective projection, the additional scaling makes
the slices smaller when they are farther back. Thus, more than one pixel per voxel is used
for the front volume slice. This ensures that the smaller slices map to enough pixels on
the image, so that enough detail is retained.

For this reason, the intermediate images for perspective projection are larger than for
orthogonal projection. Furthermore, the intermediate image size is constrained to edge
lengths of powers of two, so the warp can be done without resizing the image—this is a 2D
texturing hardware requirement. Typical 10242 pixel RGBA images require 4 megabytes
(MB) of memory. An interactive frame rate of 10 frames per second would require a data
transfer rate of 40 MB per second, which is far beyond the bandwidth of Fast Ethernet
(100 Mbit/s).

The intermediate image typically contains large transparent regions, which can efficiently
be run length encoded. Two run length encoding algorithms were implemented: the first
algorithm encodes the entire intermediate image, the second encodes only the rectangular
window which was actually worked on in the compositing step (see Figure 5.3). It turned
out that for large window sizes the first algorithm is faster, but in all other cases the second
algorithm is faster. Some performance numbers can be found in Section 5.4.3.

An important issue with the compression algorithm was to make sure that no memory is
unnecessarily copied, allocated or deallocated in the process of encoding and decoding.

5.3 OVERALL ALGORITHM 95

Intermediate image

begin[x,y]

end[x,y]

Encoded area

Figure 5.3: Encoding of actually used intermediate image window.

This goal was reached by not re-allocating memory when the intermediate image size
remains the same or decreases. A re-allocation is done only for images larger than the
allocated space. Furthermore, the intermediate image data is stored only once, so only a
pointer to it is passed among the functions that work with it.

5.3.5 Overall Algorithm

The data flow for the rendering of one frame is shown in Figure 5.4. The display computer
does not need to keep the volume data in memory after it was transferred to the remote
renderer at startup.

5.4 Results

The parallelized perspective projection rendering algorithm was tested on the following
three parallel computers, which are displayed in Figure 5.5:

• An SGI Onyx2 with 16 195 MHz R10000 processors and 16 GB of shared memory.

• A SUN Fire 6800 node with 24 UltraSparc III 750 MHz processors and 96 GB of
shared memory. Up to 8 processors were available for interactive use.

• A Fujitsu-Siemens cluster of 32 Linux PCs with 64 Pentium 4 Xeon processors at
2.4 GHz and Myrinet between the nodes.

96 CHAPTER 5: RESULTS

T
im

e

Get image request

from User

Transfer view matrix

Composite

intermediate image

Transfer intermediate image

and warp matrix

Warp and render

image

Display Computer Start Remote Renderer Start

Figure 5.4: The remote rendering data flow.

(a) (b) (c)

Figure 5.5: Parallel rendering platforms: (a) SGI Onyx2, (b) SUN Fire 6800, (c) Fujitsu-
Siemens PC Cluster.

Apparently, for the shared memory machines the algorithm could have been written in
OpenMP or with threads. But since the program had to run on any multi-processor archi-
tecture, MPI was used.

The display machine was an SGI Onyx2 with four R10000 processors at 250 MHz, 4 GB
RAM and Infinite Reality 2 graphics. It was linked to the above Onyx2 by a 1 Gbit/s
Ethernet connection and to the PC cluster via 100 Mbit/s Ethernet. Both Onyx2 systems
and the PC cluster were located in the same building at the HLRS. The SUN was located
about 100 km away in the city of Ulm, and it was connected to the display machine via
100 Mbit/s Ethernet.

The dataset that was utilized to test the performance of the parallelized algorithm is the
General Electric CT engine. It was used in two different sizes: “large” is a 256×256×110
voxels version, “small” is a 128× 128× 55 voxels downsampled version. The opacity
transfer function was set to a linear ramp from zero to full opacity. The image generation
was carried out in 24 bits RGB color space. Whenever the large engine was used, the
intermediate image size was 10242, for the small engine it was 5122 pixels. The inter-

5.4 OVERALL RENDERING PERFORMANCE 97

mediate image was transferred using run length and window encoding. For all tests the
volume was rotated 180 degrees about its vertical axis in 90 steps of two degrees.

5.4.1 Overall Rendering Performance

In the following three subsections, the rendering performance of the multi-processing
platforms, which were used in the tests, will be displayed. For each graph the remote
renderer was executed with different numbers of processes. The initialization of the MPI
environment ensured that each process could run exclusively on its own processor. The
length of the bars reflects the average rendering time per frame needed for the above
mentioned 180 degrees rotation. The sections of the bars display how the total rendering
time was distributed to specific tasks.

The idle time of the renderers is largely the time the display machine needed to decode
the intermediate image, transfer it to texture memory, and display it on the screen. During
this time the renderer waited for the next view matrix. There is also an implementation
with pipelining to hide the idle time, but it was not used in the performance tests. It will
be addressed in Section 5.4.5.2.

In all three performance tests, image decoding took about 29 milliseconds (ms) and draw-
ing took 16 ms. Idle times that occur due to processes waiting during compositing are
included in the total compositing time. In each of the three performance tests the large
engine dataset was used.

Figure 5.6: SUN Fire rendering performance.

5.4.1.1 SUN Fire

Figure 5.6 shows the rendering performance of the SUN Fire. The compositing step took
most of the total time, while image encoding and image transfer both account only for
very little time: encoding took 9.9 ms and the transfer took 11.1 ms.

98 CHAPTER 5: RESULTS

Figure 5.7: SGI Onyx2 rendering performance.

5.4.1.2 Onyx2

Figure 5.7 shows the rendering performance of the SGI Onyx2 system. Because of the
fast network connection to the display machine, the image transfer took only 1.7 ms in all
the tests and is hardly visible in the diagram. Image encoding took 29.2 ms.

5.4.1.3 PC Cluster

The rendering performance of the PC cluster is displayed in Figure 5.8. It differs signif-
icantly from the previous two machines. The PC cluster’s computing power makes it the
fastest tested machine with a minimum rendering time of 132 ms per frame. Image en-
coding took 3.0 ms, the image transfer accounts for 31.4 ms. The relatively slow transfer
is due to the endianness adaptation that is required between the PCs and the SGI.

5.4.2 Compositing

Section 5.4.1 showed that the compositing is the most time consuming rendering step,
which is why it was parallelized. Its performance can be judged by comparing the times of
the total compositing, i.e., the time it takes before all processes are done with compositing,
with the average compositing time of the processes. With perfect load balancing these
values would be equal. Figure 5.9, which shows the performance of the Onyx2, indicates
that the numbers are not equal. The solid line shows the total compositing time, while
the dotted line shows the average time it actually took the processes to composite their
sub-tasks. The space between the lines reflects the improvement that would be achievable
by optimizing the load balancing.

5.4 INTERMEDIATE IMAGE TRANSFER 99

Figure 5.8: PC cluster rendering performance.

5.4.3 Intermediate Image Transfer

The comparison of the (non-parallelized) run length encoding, transfer, and decoding
times for the three implemented encoding types in Figure 5.10 shows the great advantage
of window encoding. Here, only the part of the image that was actually composited is run
length encoded. In the test, the encoding was done on the SUN Fire, then the image was
transferred to the SGI Onyx2, where it was decoded. For this test, the large engine dataset
was used, and the intermediate image size was 10242 pixels.

5.4.4 Shear-Warp vs. 3D Texture Hardware

Section 3.2 showed that the rendering speed of the shear-warp algorithm is nearly inde-
pendent of the output image size when the warp is done in texture hardware.

However, the 3D texturing hardware volume rendering approach is highly dependent on
the output image size due to its pixel fill rate limitation. In Figure 5.11, the rendering
times for output image sizes from 3002 to 9002 pixels are shown for both algorithms,
using the small engine dataset. The texture hardware algorithm was used on the Onyx2,
the perspective shear-warp algorithm was used for the compositing on the SUN Fire with
four processors, and the Onyx2 did the warp. The graph shows that for an image size of
9002 pixels, both algorithms are about equally fast.

5.4.5 Discussion

In this section, the performance numbers from the previous section are discussed, and
ideas on how to further improve the performance are given.

100 CHAPTER 5: RESULTS

Figure 5.9: Total compositing vs. average section compositing.

Table 5.1: Maximum rendering speed of the tested machines.

Machine # processes images per second

SUN Fire 6 3.5
SGI Onyx2 14 2.7
PC cluster 16 8.4

5.4.5.1 Performance Comparison

The fastest rendering rates achieved by each system are listed in Table 5.1. The PC cluster
is fastest with 8.4 images per second. The image transfer rates are similar for the two
machines which are connected to the display computer via 100 Mbit/s connections, and
with firewalls in-between. The direct gigabit connection between the two Onyx2 systems
is worthwhile, it allows the shortest transfer time in the test. The PC cluster’s Pentium 4
processors are so much faster than the other two architectures that the compositing ceases
to be the dominant factor in the rendering process. Now image transfer and idle time,
although roughly the same for the SUN Fire, are the most expensive parts.

5.4.5.2 Latency Hiding

A comparison of the performance numbers of the three tested systems shows that for the
SUN and the SGI the compositing time dominates, while the PC cluster spends a large
fraction of the time transferring the intermediate image to the display machine and waiting
for the display machine to send a new view matrix.

While the image transfer time could be reduced by a faster network connection, the idle
time can be used to begin the computation of the next image: as soon as the display

5.4 DISCUSSION 101

Figure 5.10: Intermediate image run length encoding graph.

computer receives the intermediate image, it sends the view matrix for the next image to
the rendering system. This pipelining approach leads to effective latency hiding, and it
was implemented for optional use. However, for the performance tests in this chapter, no
pipelining was used in order to show the actual timings.

5.4.5.3 Image Decoding Time

A significant part of the rendering processes’ idle time results in the display machine
decoding the intermediate image. The decoding is not parallelized, since it usually does
not run on a parallel computer. The Onyx2 that was used decodes with a 250 MHz R10000
processor, but current PCs are much faster. In another test a Windows PC was used as the
display computer. It contains a Pentium 4 at 1.4 GHz, and a 3Dlabs Wildcat II 5110
graphics card.

With this PC, the intermediate image decoding time decreased from 28 ms on the Onyx2 to
6.8 ms. Looking at the overall performance, it is remarkable that the idle time increased,
as seen in Figure 5.12. Obviously, the compositing and image encoding times did not
change, compared to the test in Section 5.4.1.1.

Looking at the performance numbers, it can be seen that the time it takes to draw the
intermediate image with texture hardware, which was 17 ms on the Onyx2, increased
to 81 ms on the PC. This is due to the slower image transfer to texture memory on the
Wildcat.

102 CHAPTER 5: RESULTS

Figure 5.11: Texture hardware vs. shear-warp algorithm.

Figure 5.12: Windows PC is display machine, PC cluster renders.

Chapter 6

Volume Visualization System

The previous chapters have presented new contributions to interactive volume rendering in
three fields: rendering algorithms, interaction techniques, and parallelization and distribu-
tion. In this chapter, some parts of the development environment will be described, and it
will be shown how the new algorithms were assembled to extend an existing visualization
framework with interactive direct volume rendering.

6.1 Development Environment

In the process of the research that was carried out for this dissertation, the author devel-
oped a test bed for the implementation of new algorithms. This environment is called
“Virvo”, which is short for “virtual reality volume rendering” [80]. Virvo consists mainly
of a volume rendering front-end with a graphical user interface (VShell, see Figure 6.1),
and a remote renderer which can be used for shear-warp rendering on parallel computers
(VRemote). The core parts of the development environment will be referenced in Section
6.2, which is why they will be described below.

VShell is a hybrid C++ and Java application using the Java native interface (JNI) for
communication. The user interface was implemented with Java’s Swing widget library.
Rendering, network communication, and file handling were written in C++. The rendering
window is a Java canvas of which the C++ part knows the OpenGL handle so it can draw
on it. Input device handling is performed by Java routines that call the respective C++
routines for all actions that happen in the OpenGL canvas.

In Virvo, several volume rendering algorithms have been integrated: Lacroute’s Volpack,
orthogonal and perspective projection shear-warp versions, SGI Volumizer, and multiple
algorithms based on textured slices. For image quality comparisons, the application can
switch between any of these algorithms while maintaining the viewing parameters. Fur-
thermore, several rendering options, for instance interpolation mode, image quality, or
texturing style can be changed at runtime.

103

104 CHAPTER 6: INTEGRATION IN VISUALIZATION FRAMEWORK

Figure 6.1: The rendering front-end VShell. (See also Color Plate 9 on page 126.)

Virvo also supports clipping planes, different viewing and projection matrices, and remote
rendering. The Virvo class structure, which is depicted in Figure 6.2, allows to extract ren-
dering and file handling classes and use them in other applications. The rendering classes,
which are highlighted with a gray background in the class diagram, compile indepen-
dently from the rest of the Virvo system, and they require only an active OpenGL context.
It was important that changes of the OpenGL state that were required for rendering were
reset before the end of the rendering routine.

VRemote is a command line C++ program that uses the MPI interface for parallelization.
The command line arguments consist of the name of the visualization host, the port num-
ber for the TCP connection, and an optional parameter to set the encoding style for the
intermediate image. The tasks of the remote rendering utility have been discussed in detail
in Chapter 5. On the display computer, VRemote requires a counterpart, which provides
it with volume data, rendering options, and viewing matrices.

6.2 Integration in Visualization Framework

For three reasons, the visualization framework COVISE was selected as the environment
for the volume rendering system. First, COVISE is a versatile framework which is not
restricted to a specific visualization field, and it supports virtual environments. Second,
COVISE is extensible in important places: the virtual reality renderer supports plug-ins,
and there is an API to complement the collection of modules influencing the data flow.

105

Java GUI

JNI
Abstract
Renderer

OpenGL
Window

Window
Manager

Viewing
Parameters

On-Line
Simulations

File I/O

Volumizer
Texture
Mapping

Perspective
Shear-Warp

VolPack

User Interface

Figure 6.2: The class hierarchy of VShell.

Third, changes had to be made to the source code for extensions of the renderers—which
was only possible with COVISE, because it has been developed at the HLRS.

A short introduction of COVISE can be found in Section 2.4.2.1. For the integration of the
new volume rendering algorithms, mainly data format issues, file handling, and rendering
had to be dealt with. Each of the following sections will discuss one of these aspects. Each
section begins with the status of COVISE at the beginning of the integration efforts. Then
the contributions of this dissertation will be described, and it will finally be presented how
the new algorithms were integrated into COVISE.

6.3 Data Formats

This section reports on the native data formats of COVISE [15], and it will show how they
could be used to represent volume data.

6.3.1 Basis

COVISE did not have any specific volume data format, but it was aware of three dimen-
sional scalar fields. This type of data is referred to as DO_Structured_S3D_Data. It
is simply an array of scalar floating point data values. Therefore, it has to be accompanied
by information about the data grid. All of the research in this dissertation is based on
volume data on regular grids. In COVISE, this data type is called DO_UniformGrid. It
containes information about how many elements are stored in each dimension, and about
size and location of the data field in object space.

Additionally, the 32 bits integer type “packed colors” was used. It contains RGBA data
with 8 bits per channel, all of which stored in one 32 bit integer value.

106 CHAPTER 6: FILE HANDLING

6.3.2 Contributions

Virvo can deal with four types of volume data:

• 8 bits per voxel scalar data

• 16 bits per voxel scalar data

• 24 bits per voxel RGB color data: 8 bits are stored for each color component

• 32 bits per voxel RGB color plus scalar data: the data value is used as a lookup into
the opacity transfer function

The 16 bit data type is predominantly used with DICOM data. However, although DICOM
files store 16 bits per pixel, most of them only actually utilize 12 bits. The rendering
algorithm based on textured slices, which is used in this dissertation, can rasterize 12 bits
per texel if supported by the hardware.

6.3.3 Integration

Within most parts of the data flow network, the representation of volume data is based on
COVISE’s DO_Structured_S3D_Data and DO_UniformGrid data types. This
means that every data value occupies one floating point value in memory, even if it was
originally represented by eight bits. It also means that 16 bit values are processed at full
precision. 24 and 32 bit volume data can only be used within the virtual reality renderer
by loading files directly from disk.

The “packed colors” data format is used for RGBA data generated by the module Col-
orEdit. When the renderer receives this data type, the transferred RGBA data will be
used directly in the compositing.

6.4 File Handling

This section will discuss the input and output (I/O) routines that were integrated for work
with volume data.

6.4.1 Basis

COVISE has a large number of I/O modules for data types used in a variety of simulation
tools, but it did not have read or write modules for volume data types. COVISE did offer
modules that could read or write scalar data fields on uniform grids, but the scalar data
was always stored as floating point numbers. There was no mechanism to read or write 8
or 16 bit values, or even to store compressed data in the files.

6.4 CONTRIBUTIONS 107

6.4.2 Contributions

Because the COVISE data types were inefficient with disk space and not flexible enough
to store additional volume rendering related information, the standardized file type 3D
TIFF was considered. However, it cannot store multiple time steps, as well as the variety
of Virvo’s volume data formats, or information about the data location in space. Because
3D TIFF is an extensible format, these features could have been integrated, but the re-
sulting files would not have been readable by applications unaware of these extensions.
Furthermore, due to their complex structure, 3D TIFF files are not easy to be generated by
other applications. Therefore, three new volume file formats were developed: RVF, XVF,
and AVF. They will be presented in the following subsections.

6.4.2.1 RVF: Raw Volume File

RVF is the simplest of the new file types. This type can easily be created from many
linearly stored raw voxel datasets on disk by adding a header of 3×2 bytes (big endian)
for the volume’s width, height, and depth in voxels. Due to its simplicity, the header
can be added manually with a hex editor. This format supports only 8 bits per voxel, the
storage of only one time step per file, and no transfer functions. The data order is the
same as for the letters in an English book: it starts top left in the front, continues first to
the right, then down, and then back.

Table 6.1: XVF file header.

Length Data Type Description

9 bytes char file ID string: “VIRVO-XVF”
2 bytes unsigned short offset to beginning of data area, from top of file

[bytes]
2 x 4 bytes unsigned int width and height of volume [voxels]
4 bytes unsigned int number of slices per time step
4 bytes unsigned int number of time steps
1 byte unsigned char bits per voxel (supported values: 8, 16, 24, 32)
3 x 4 bytes float real world voxel size (width, height, depth) [mm]
4 bytes float duration of one time step [seconds]
2 x 4 bytes float physical data range covered by the voxel data (mini-

mum, maximum)
3 x 4 bytes float real world location of volume center (x,y,z) [mm]
1 byte unsigned char compression type (0=none, 1=RLE)
2 bytes unsigned short number of transfer functions
2 bytes unsigned short type of transfer functions: 0 = 4 x 256 Byte for RGBA

channels, 1 = list of control pins

108 CHAPTER 6: FILE HANDLING

6.4.2.2 XVF: Extended Volume File

The XVF format can store more information than RVF, but it is more difficult to create
its header manually. XVF files can store multiple volume time steps in one file, plus an
arbitrary number of transfer functions. All volume data types presented in Section 6.3.2
can be stored. The byte order of all numbers is big endian, floating point values are stored
in the 4 byte IEEE standard format. XVF files optionally support run length encoding.
The header specification can be found in Table 6.1. After the header, the voxels are stored
in the same order as in RVF files, all bytes of each voxel are stored consecutively.

Table 6.2: Sample ASCII volume file with 3×2×2 voxels.

WIDTH 3
HEIGHT 2
SLICES 2
FORMAT SCALAR8 # 8 bit data
XDIST 1.0
YDIST 1.0
ZDIST 1.0
0.7 0.9 0.1
0.9 0.7 0.6
0.1 0.6 0.1
0.2 0.7 0.3

6.4.2.3 AVF: ASCII Volume File

AVF files are ASCII representations of volume data. This format provides a simple and
verifiable way for users to create volume files. AVF files consist of a header and a data
section. In the header, several lines give information about the data format. Each line
consists of an identifier and a value, separated by whitespace. This file format cannot
store transfer functions. Comments starting with “#” may occur. The specification of this
format can be found in the COVISE documentation [15]. Table 6.2 shows a sample AVI
file.

6.4.3 Integration

For file handling in COVISE, a read and a write module were created. They are called
ReadVolume and WriteVolume, respectively. The following two subsections will
describe their functionality and the way they are used within COVISE.

6.4 INTEGRATION 109

(a) (b)

Figure 6.3: ReadVolume: (a) map, (b) preferences.

6.4.3.1 Read Volume Files

Figure 6.3a shows a typical COVISE data flow network which reads a volume file and
displays it with a renderer. The module ReadVolume accepts several 3D volume data
types and sequences of 2D slice images, which are listed in Table 6.3.

Table 6.3: File types supported by ReadVolume.

File Extension Description

rvf Raw Volume File
xvf Extended Volume File
avf ASCII Volume File
tif 3D TIF File
dat Raw volume data (no header) - automatic format detection
nrd Nrrd volume file [42]
dcm DICOM file
rgb RGB image file
pgm Portable Graymap file
ppm Portable Pixmap file

Figure 6.3b displays the preferences window of ReadVolume. The source file name
is expected at the FilePath entry. If CustomSize is selected, the volume size will
be set as entered in VolumeWidth, VolumeHeight, and VolumeDepth. Otherwise,
the size entries are ignored and default values, or the values from the volume file if present,
are used.

110 CHAPTER 6: RENDERING AND INTERACTION

6.4.3.2 Write Volume Files

(a) (b)

Figure 6.4: WriteVolume: (a) map, (b) preferences.

The module WriteVolume was created to write volume data to disk. Figure 6.4a shows
a sample COVISE network which writes volume data created by the module GenDat.
Table 6.4 lists the file types which are supported by WriteVolume.

Table 6.4: File types supported by the module WriteVolume.

File Extension Description

rvf Raw Volume File
xvf Extended Volume File
nrd Nrrd volume file [42]
pgm, ppm Density or RGB images (depending on volume data type)

Figure 6.4b shows the preferences window of the module WriteVolume. The File-
Name entry expects the name of the destination file. If OverwriteExisting is se-
lected, the destination file will be overwritten if it exists. File type and data format can be
selected with the respective choice menus. MinimumValue and MaximumValue allow
to constrain the stored data range: all values up to MinimumValue will become zero,
values greater than MaximumValue will become the maximum value of the selected
data format. The remaining values will be mapped to the data range in-between.

6.5 Rendering and Interaction

COVISE contains two separate renderers. An Open Inventor based renderer is responsible
for the visualization at the desktop, a Performer based renderer is used for visualization
in virtual environments. In the following subsections, both renderers and their extensions

6.5 BASIS 111

for volume rendering will be discussed. Furthermore, existing functionality of COVISE
which contributes to volume rendering will be mentioned.

6.5.1 Basis

Before the extensions, the only way COVISE could display three dimensional scalar fields
was with polygonal approaches. There was an iso-surface module, which created surfaces
from the data with the marching cubes algorithm, and there was a cutting plane module
which displayed the data values which were located on a plane cut through the dataset.

If a data field was stored as an unstructured grid, a sampling module could be used to map
this data to a uniform grid. This module could be exploited to allow volume visualization
of unstructured grids after a resampling step.

Because COVISE did not support volume rendering, there was no explicit transfer func-
tion editor. However, the task of assigning colors and opacities was required to visualize
scalar fields with traditional visualization methods. That could be done with the color
editor module ColorEdit. This module can be used as a transfer function editor with-
out further changes. However, because it is not part of the renderer, it cannot be used for
interactive classification. The color editor creates the data type “packed colors”, which
was described in Section 6.3.1.

The desktop renderer is based on Open Inventor, wich is a versatile object oriented graph-
ics API. All the graphics objects are embedded in a class hierarchy. The original Open
Inventor API did not have a class for volume data or a volume rendering node. The object
that was most similar to volume data was SoCube, which was derived from SoShape.

The virtual reality renderer COVER is based on SGI Performer. Performer offers a scene
graph and object oriented commands, but its object hierarchy is much less sophisticated
than Open Inventor’s. Performer uses parallelization to increase rendering speed on multi-
processor hardware. Three types of processes are distinguished: APP, CULL, and DRAW.
The APP process contains the application related code, which includes the modifications
of the scene graph. The CULL process traverses the scene graph to find branches which
can be left out in the rendering stage because they will be located outside of the viewport.
In multi-pipe machines, Performer creates one DRAW process for each pipe. This allows
each pipe to render their part of the image independently from the others.

6.5.2 Contributions

This dissertation’s contributions in the fields of rendering and interaction have been de-
scribed in Chapters 3, 4, and 5. This includes a texturing hardware based and a shear-warp
volume renderer, a remote shear-warp renderer which runs on parallel computers, and a
variety of interaction methods for the work with volume data in virtual environments.

112 CHAPTER 6: RENDERING AND INTERACTION

6.5.3 Integration

All the rendering approaches developed in this dissertation were implemented in Virvo
and in the two COVISE renderers. The interaction methods were only integrated in
COVER, because they require a virtual environment. The following subsections will
describe the integration of the new algorithms in the desktop and in the virtual reality
renderer.

(a) (b)

Figure 6.5: (a) COVISE map with GenDat module for volume rendering, (b) GenDat
parameters.

6.5.3.1 Desktop Renderer

A simple module layout for volume rendering with COVISE and the desktop renderer is
depicted in Figure 6.5a. The module GenDat generates a scalar data field on a uniform
grid, using the parameters shown in Figure 6.5b. ColorEdit acts as a transfer function
editor, as depicted in Figure 6.6a. To display semi-transparencies correctly, the Trans-
parency check box must be selected. The ColorEdit module converts incoming scalar
data values to RGBA tuples, which are then passed on to the Collect module. This
module combines voxel data and grid information and transfers them to the renderer. The
renderer output for this module layout is displayed in Figure 6.6b.

For the integration of the new volume rendering algorithms it was beneficial to create
a rendering class hierarchy that was independent of the rendering environment, as men-
tioned in Section 6.1. The rendering classes could be compiled with the Open Inventor
files. In order to integrate volume rendering properly with the rest of the rendering rou-
tines, a new scene graph node was created, which was called SoVolume. It resembles
the Open Inventor class SoCube, which displays cuboids. The methods that are different

6.5 INTEGRATION 113

(a) (b)

Figure 6.6: (a) color editor, (b) output in renderer window.

for volume rendering are init(), which is called once when the instance is created,
and GLRenderGeneric. The init() method instantiates the Virvo renderer that is
most suitable for the computer’s graphics hardware, and it transfers the volume data to
the renderer. GLRenderGeneric calls the renderer’s draw routine whenever a redraw
is required. Because Open Inventor is based on OpenGL, the viewing matrix is already
set correctly when GLRenderGeneric is called, and it can be used for displaying the
volume.

In the renderer, the volume object is treated like all other COVISE data objects. If both
volume data and polygonal data are displayed, occlusion artifacts may occur. For this
case, the renderer menu offers several types of transparency sorting.

The renderer offers a specific draw style for volume data: while the data is rotated with the
mouse, the volume is drawn at a lower quality to speed up the drawing process, and when
the mouse button is released, the volume is displayed at higher quality. This draw mode
can be selected in the renderer’s pop-up menu. In the preferences window, the sampling
rate of the static volume display can be adjusted (see encircled area in Figure 6.7).

6.5.3.2 Virtual Reality Renderer

All the new developments in the fields of rendering and interaction techniques have been
integrated into the COVER renderer as a plug-in. User interaction and the interface to
COVISE is done in the APP process, while the actual volume rendering is done in the
DRAW processes. Due to this design, information has to be exchanged between the APP
process and the DRAW processes. This is done via a shared data structure which contains

114 CHAPTER 6: RENDERING AND INTERACTION

Figure 6.7: Preferences window with volume quality control wheel.

queues and shared states for data objects, the user’s position and orientation, and similar
data.

The Volume plug-in uses a custom Performer node to represent the volume objects in the
scene graph. This allows the usage of Performer’s view frustum culling features. Further-
more, draw buckets are used to ensure the correct rendering order, which is important for
the concurrent display of volume data and polygonal data.

Figure 6.8: The perspective shear-warp algorithm in the CUBE. (See also Color Plate 10
on page 127.)

In COVER, volume data can be loaded in two ways: the first option is to transfer the
data with a COVISE network, for example by using the module ReadVolume, or by

6.5 INTEGRATION 115

sampling an arbitrary grid to a uniform grid. The second option is to load a Virvo volume
file directly from disk, which can be done from the File menu of the Volume plug-in. This
requires, that the desired files be listed in the section VolumeFiles in the configuration
file of COVISE.

Remote rendering on parallel computers can be selected in COVISE’s configuration file.
When it is enabled, each rendering process waits for a connection to the remote renderer
upon startup. On the parallel computer, one remote renderer process has to be started
for each rendering process on the display computer. COVER only proceeds after all re-
mote connections have been established. As an example, Figure 6.8 shows a shear-warp
rendering of the Engine dataset [24] in the CUBE at the HLRS. The four displays of the
CAVE-like environment are driven by a cluster of four commodity PCs. The volume is
composited on 12 processors of an Onyx2.

116 CHAPTER 6: RENDERING AND INTERACTION

Chapter 7

Conclusions

The goal of this dissertation is to improve interactive volume rendering in virtual envi-
ronments. To achieve this goal, research has been conducted in the fields of rendering
algorithms, interaction techniques, and distribution methods.

In the field of rendering algorithms, an extension of the CPU-based shear-warp algorithm
has been presented, which allows perspective projection. This has been a requirement
to use the algorithm in virtual environments. The algorithm has also been examined for
optimizations for its usage in CAVE-like virtual environments.

To further improve the image quality of the shear-warp algorithm, pre-integrated render-
ing was integrated into the compositing stage. Pre-integration imposes a noticeable per-
formance hit on the standard shear-warp algorithm, but it results in substantially improved
image quality.

User interaction with volume datasets in virtual environments has been substantially im-
proved by a variety of developments. These include interaction elements for adjusting the
transfer function, a detail probing mode, and a clipping plane. After two user studies, the
system was attested fairly good usability.

Due to the specific demands of virtual environments, the rendering performance of the
perspective projection shear-warp algorithm had to be improved. An implementation for
parallel computers has been developed, which can be linked to a display computer via a
network connection. Any architecture that supports MPI can be used as a platform for the
remote renderer. The remote rendering process scales well up to 12 processors, depending
on the parallel hardware. The transfer speed of the remotely computed images has been
optimized, and the remotely rendered images can be displayed on a computer with any
type of graphics hardware.

All the new developments have been successfully integrated into the visualization system
COVISE, which did not previously support volume rendering. Now the users can work
with volume datasets in the entire data flow, from loading volume data files from disk to
interactive work in virtual environments.

In this chapter, Section 7.1 shows that the work presented in this dissertation address all
the stages of interactive volume rendering. Section 7.2 analyzes the scientific relevance
of the conducted research. Topics for future works are proposed in Section 7.3.

117

118 CHAPTER 7: INTERACTIVE VOLUME RENDERING

7.1 Interactive Volume Rendering

Figure 7.1 shows a flowchart of an interactive volume rendering system, as it could be cre-
ated from the algorithms and approaches described in this dissertation. The chart consid-
ers local rendering with texture hardware, local rendering with the shear-warp algorithm,
and remote rendering on a parallel computer with the shear-warp algorithm. The diagram
is independent from the type of display device connected to the display computer (single
or multi-screen). The part of the diagram left of the dashed line represents activities on the
display computer, the part right of it contains activities on the remote parallel computer.
The boxes on top of the dashed line represent data transfer between the two computers.
The bracketed numbers denote the chapters in which more detailed information can be
found about the respective activity.

The flowchart can be interpreted for three different volume rendering methods: local tex-
ture hardware based, local shear-warp based, and remote shear-warp based. The decision
between them depends on the availability of a parallel computer and the capabilities of
the graphics hardware on the display computer (see Figure 7.2). The rendering method
cannot be changed after it has been chosen.

In the following three sections, the suggested volume rendering methods will be described
separately.

7.1.1 Local Rendering with Texturing Hardware

At startup, the system loads a volume dataset from disk into memory. The dataset is
then transferred to the texturing hardware. If multiple graphics cards or pipes are used
in a multi-screen environment, each of them receives a copy of the dataset. Then the
polygonal objects of the scenegraph are rendered. After that, the volume is rendered.

Then user input is being processed. The user can change the transfer functions, explore
the dataset, or save the dataset and its transfer function to disk. Exploration includes probe
mode and clipping plane, but also movements of the head (if head tracking is available)
or input from the pointing device. After the user input has been processed, the rendering
loop starts over with rendering the polygonal objects.

7.1.2 Local Rendering with the Shear-Warp Algorithm

If no parallel computer and no texturing acceleration is available, volume rendering can
be done with the shear-warp algorithm on the display computer. After the volume dataset
has been loaded from disk, it is replicated and permuted such that it is available in a for-
mat which the shear-warp algorithm can process efficiently. If multiple graphics pipes are
used, each of them needs to receive a copy of the dataset. Then the polygonal objects are
rasterized, the volume dataset is rendered locally using the shear-warp algorithm, and the
intermediate image is warped either by texturing hardware, or with a CPU-based algo-
rithm.

7.1 LOCAL RENDERING WITH THE SHEAR-WARP ALGORITHM 119

Transfer dataset to

graphics hardware (3.1)

Transfer dataset

(5.3.2, 5.3.4)

Display Computer Parallel Computer

Volume data

storage (6.4)
Load dataset (6.4)

Save dataset

with transfer

function (6.4)

Update transfer

function

(4.2.1.1)

Explore

(4.2.1.2-

4.2.1.6)

Get user input

(4.1, 4.2)

Transfer dataset

to nodes (5.3.3)

Render volume with

texture hardware (3.1)

Send render command

to nodes (5.3.3)

Render volume with parallel

shear-warp algorithm (5.3.1)

Transfer intermediate

image (5.3.2, 5.3.4)

Warp intermediate

image to screen (3.2.2.2)

Transfer rendering para-

meters (5.3.2, 5.3.3)

Render polygonal

objects (4.1, 4.2)

Rendering

method

texture

hardware

remote

shear-warp

local

shear-warp

Rendering

method

texture

hardware

remote

shear-warp

local

shear-warp

Create axis aligned

datasets (3.2.1.3)

Render volume with shear-

warp algorithm (3.2.1)
Collect intermediate

image sections (5.3.3)

Figure 7.1: Flowchart of an interactive volume rendering system. The numbers in brackets
denote the sections in which the respective processes are discussed.

120 CHAPTER 7: RELEVANCE ANALYSIS

Texturing

hardware

available?

Parallel

computer

available?

Texture

hardware

Remote

shear-warp

Local

shear-warp

yes

yes no

no

Figure 7.2: Flowchart for the decision on the rendering method.

7.1.3 Remote Rendering on a Parallel Computer

When a parallel computer is available for remote volume rendering, the system is executed
in a slightly different way. After loading the dataset from disk, it is transferred via a
network connection to the master node of the remote parallel computer. The master node
then distributes the dataset to all its rendering nodes, such that each node obtains a copy
of the same dataset. After that the interaction loop is entered. The user input is processed
in the same way as above. However, now the viewing parameters have to be transferred
to the parallel computer via the network. The parallel computer renders the intermediate
image with the shear-warp algorithm. Then the intermediate image is compressed and
transferred to the display computer. There it is uncompressed and either copied to texture
memory and warped by the graphics hardware, or warped with a CPU-based algorithm.

7.2 Relevance Analysis

This section discusses the scientific relevance of three major contributions of this disser-
tation: the virtual reality user interface, the volume rendering concept and its integration
into a visualization system, and remote volume rendering based on the shear-warp algo-
rithm.

7.2.1 User Interface

The volume rendering user interface presented in Section 4.2 is the first published UI for
virtual environments which can be used with any 3D input device. At the time of its
publication, the only comparable interface provided by the Studierstube [77] required a
3D pen and a custom-made transparent panel, which occupied both hands of the user.

7.2 VOLUME RENDERING CONCEPT 121

The widget library presented in Section 4.1 has originally been conceived to allow the
creation of a volume rendering application for virtual environments. However, it proved to
be versatile enough to be used in all virtual reality applications developed at the HLRS. In
the meantime, several extensions have been added by other members of the visualization
group, for instance a customizable toolbar, a collapse function for menus, and improved
layout managing.

7.2.2 Volume Rendering Concept

As mentioned in Chapter 6, most of the developments presented in this dissertation have
been integrated into the visualization system COVISE. Some of the algorithms have only
been integrated because their development required a virtual reality framework, but they
have not become a permanent part of the visualization software. The majority of the
developments, however, are available to all COVISE users.

Due to the research carried out for this dissertation, COVISE can now work with volu-
metric data throughout its entire data chain. Previously, three-dimensional scalar fields
could be handled as data on a uniform grid, but there was no way to directly visualize
this grid type as a whole. Data on uniform grids can now be displayed with direct volume
rendering, and it can be combined with all previous visualization methods of the system.

The author’s experience with customers using COVISE’s volume rendering capabilities
so far is predominantly positive. The volume rendering functionality is mostly employed
by research institutes, and in the automotive and oil and gas industries. Most customers
are happy with the performance of texture-based volume rendering. Some of them require
the simultaneous and overlapping display of volume and polygonal data. There have been
no complaints about the transfer function editor being based on widgets instead of the
traditional approach of functions with control points. The detail probe mode is typically
adopted quickly by the users.

7.2.3 Remote Volume Rendering

The shear-warp-based remote volume rendering technique presented in Chapter 5 is an
efficient volume rendering method, but only if a parallel computer is available and it is
connected to the display computer via a fast network connection. In the past few years,
commodity graphics cards have improved at a much faster pace than CPU technology.
Therefore, the necessity for parallel computers to be used as remote volume rendering
servers has decreased. However, the advances in graphics processors have been only
a recent phenomenon, while CPU power has grown at a constant rate for a much longer
time, so parallel computers might become more interesting for real-time volume rendering
again in the future.

Today, remote volume rendering is particularly useful for interactive, but non-real-time
applications. While graphics cards have fixed accuracy and limited memory, parallel com-
puters can deal with much higher accuracy and larger datasets.

122 CHAPTER 7: FUTURE WORK

In simulations at the Astronomy Department of the Centre for Astrophysics and Super-
computing of the Swinburne University of Technology at Hawthorn (Australia) large
three-dimensional scalar fields are generated, which do not fit into the memory of to-
day’s graphics cards [9]. Therefore, the parallelized version of the perspective shear-warp
algorithm, which was developed for this dissertation, has been installed on the Linux PC
cluster at Hawthorn in collaboration with the author. Furthermore, the astronomers cre-
ated a TCL/Tk user interface and integrated it with the simulation software. Among other
features, the user interface consists of a transfer function editor with the same widgets as
those described in this dissertation. Using this system, the astronomers have been able to
visualize their results interactively.

7.3 Future Work

Despite the research conducted for this dissertation, volume rendering remains one of
the most compute intensive visualization tasks. Although faster CPUs and faster graph-
ics hardware will increase image quality and rendering performance, future work still
needs to address the optimization of the algorithms. For example, the new approaches
could be further improved by integrating level-of-detail strategies or intelligent data re-
duction methods. Optimized load balancing would accelerate the parallelized shear-warp
algorithm, albeit only to a limited extent as it was shown. Also, a parallelization of the
intermediate image compression algorithm would be beneficial.

In the future, hybrid memory approaches will become the dominant architecture for spe-
cial purpose parallel computers. The new volume rendering algorithms could take ad-
vantage of this development by adding OpenMP support and by restricting MPI usage to
processes on separate nodes.

Interaction with volume data in virtual environments could be improved by a more diverse
set of direct interaction techniques and more functionality for the transfer function editor.
Specialization to the specific requirements of certain professional groups was requested
by some of the industrial participants in the user studies.

Color Plates

(a) (b)

Color Plate 1: Intermediate image size: (a) 20482 and (b) 2562. (See also Figure 3.3 on
page 52.)

(a) (b)

Color Plate 2: Engine dataset: (a) complete, (b) clipped. (See also Figure 3.4 on page 53.)

123

124 COLOR PLATES

(a) (b) (c)

Color Plate 3: The Engine dataset: (a) standard shear-warp, (b) pre-integrated shear-warp
without opacity correction and (c) pre-integrated shear-warp with opacity correction. (See
also Figure 3.11 on page 63.)

(a) (b) (c)

Color Plate 4: The Brain dataset: (a) standard shear-warp, (b) pre-integrated shear-warp
without opacity correction and (c) pre-integrated shear-warp with opacity correction. (See
also Figure 3.12 on page 65.)

(a) (b) (c)

Color Plate 5: The Bonsai dataset: (a) standard shear-warp, (b) pre-integrated shear-warp
without opacity correction and (c) pre-integrated shear-warp with opacity correction. (See
also Figure 3.13 on page 65.)

COLOR PLATES 125

(a) (b) (c)

Color Plate 6: The Bonsai dataset rendered with 3D texturing hardware support using
different numbers of textured polygons: (a) 128 polygons, (b) 256 polygons, (c) 1024
polygons. (See also Figure 3.14 on page 65.)

Color Plate 7: The skull of the Visible Human in the CAVE. (See also Figure 4.15 on page
79.)

126 COLOR PLATES

Color Plate 8: Volume rendered temperature distribution in a polygonal car cabin. (See
also Figure 4.16 on page 80.)

Color Plate 9: The rendering front-end VShell. (See also Figure 6.1 on page 104.)

COLOR PLATES 127

Color Plate 10: The perspective shear-warp algorithm in the CUBE. (See also Figure 6.8
on page 114.)

128 CHAPTER 7: FUTURE WORK

Bibliography

[1] Java 3D. Java 3D API home page. URL: http://java.sun.com/products/java-
media/3D/.

[2] K. Akeley. RealityEngine Graphics. ACM SIGGRAPH 93 Proceedings, pp. 109–
116, 1993.

[3] M.B. Amin, A. Grama, and V. Singh. Fast Volume Rendering Using an Efficient,
Scalable Parallel Formulation of the Shear-Warp Algorithm. Proceedings of the
IEEE Parallel Rendering Symposium, October ’95, Atlanta, pp. 7–14, 1995.

[4] K. Anagnostou, T.J. Atherton, and A.E. Waterfall. 4D Volume Rendering With The
Shear Warp Factorisation. Proceedings of the IEEE/ACM Symposium on Volume
Visualization, pp. 129–137, 2000.

[5] AVS. Visualization system, Advanced Visualization Systems, Waltham, MA. URL:
http://www.avs.com.

[6] Java AWT. Java Abstract Window Toolkit documentation home page. URL:
http://java.sun.com/j2se/1.4.1/docs/guide/awt/.

[7] C.L. Bajaj, V. Pascucci, and D.R. Schikore. The Contour Spectrum. IEEE Visual-
ization ’97 Proceedings, pp. 167–173, 1997.

[8] J. Beckmann. 3D Interaktionselemente als Benutzerschnittstelle in virtuellen
Umgebungen. Diplomarbeit, Department of Computer Science, University of
Erlangen-Nürnberg, Germany, 1999.

[9] B. Beeson, D.G. Barnes, P.D. Bourke, and N. Killeen. A Distributed-Data Im-
plementation of the Perspective Shear-Warp Volume Rendering Algorithm for Vi-
sualization of Large Astronomical Cubes. White Paper, Centre for Astrophysics
and Supercomputing, Swinburne University of Technology, Hawthorn, Australia,
URL: http://astronomy.swin.edu.au/staff/bbeeson/dvr/whitepaper.pdf, 2003.

[10] N. Bevan, J. Kirakowski, and J. Maissel. What is Usability? In: H.J. Bullinger
(Ed.): Proceedings of the 4th International Conference on Human Computer Inter-
action, Stuttgart, September 1991, Elsevier, 1991.

129

130 BIBLIOGRAPHY

[11] R. Brady, J. Pixton, G. Baxter, P. Moran, C. S. Potter, B. Carragher, and A. Bel-
mont. Crumbs: A Virtual Environment Tracking Tool for Biological Imaging.
IEEE Symposium on Frontiers in Biomedical Visualization Proceedings, pp. 18–
25, 1995.

[12] B. Cabral, N. Cam, and J. Foran. Accelerated Volume Rendering and Tomographic
Reconstruction Using Texture Mapping Hardware. ACM Symposium on Volume
Visualization ’94, pp. 91–98, 1994.

[13] B. Chen, F. Dachille, and A.E. Kaufman. Forward Image Warping. IEEE Visual-
ization ’99 Proceedings, IEEE Computer Society Press, pp. 89–86, 1999.

[14] S. Coquillart and G. Wesche. The Virtual Palette and the Virtual Remote Control
Panel: A Device and an Interaction Paradigm for Projection-Based Virtual Envi-
ronments. IEEE Virtual Reality ’99 Proceedings, 1999.

[15] COVISE. On-line COVISE documentation at the web site of the HLRS. URL:
http://www.hlrs.de/organization/vis/covise/support/documentation/.

[16] COVISE. Visualization system for scientific and engineering data, VirCinity
GmbH, Stuttgart, Germany. URL: http://www.vircinity.com.

[17] C. Cruz-Neira, D.J. Sandin, and T.A. DeFanti. Surround-Screen Projection-Based
Virtual Reality: The Design and Implementation of the CAVE. ACM SIGGRAPH
93 Proceedings, pp. 135–142, 1993.

[18] B. Csebfalvi. Fast Volume Rotation using Binary Shear-Warp Factorization. Euro-
graphics Data Visualization ’99 Proceedings, pp. 145–154, 1999.

[19] T.J. Cullip and U. Neumann. Accelerating Volume Reconstruction With 3D Texture
Hardware. Technical Report TR93-027, University of North Carolina, Chapel Hill,
1993.

[20] M. Czernuszenko, D. Pape, D.J. Sandin, T.A. DeFanti, G.L. Dawe, and M. Brown.
The ImmersaDesk and Infinity Wall Projection-Based Virtual Reality Displays.
Computer Graphics, Volume 31, Number 2, pp. 46–49, 1997.

[21] J.M. Danskin and P. Hanrahan. Fast Algorithms for Volume Ray Tracing. ACM
Workshop on Volume Visualization ’92, pp. 91–98, 1992.

[22] Bonsai dataset. Courtesy of Stefan Röttger from the Computer Graphics Group
at the University of Stuttgart and Bernd Tomandl from the Department of Neu-
rosurgery at the University of Erlangen. URL: http://wwwvis.informatik.uni-
stuttgart.de/∼roettger/data/Bonsai/.

[23] Brain dataset. From the Chapel Hill Volume Rendering Test Datasets. URL:
http://www.siggraph.org/education/materials/vol-viz/mrbrain.zip.

BIBLIOGRAPHY 131

[24] Engine dataset. CT engine scan by General Electric, part of the
Chapel Hill Volume Rendering Test Datasets. URL: http://www.gris.uni-
tuebingen.de/areas/scivis/volren/datasets/data/engine.raw.gz.

[25] R.A. Drebin, L. Carpenter, and P. Hanrahan. Volume Rendering. Computer Graph-
ics, Volume 22, Number 4, pp. 125–134, 1988.

[26] K. Engel, M. Kraus, and T. Ertl. High-Quality Pre-Integrated Volume Ren-
dering Using Hardware-Accelerated Pixel Shading. Proceedings of Eurograph-
ics/SIGGRAPH Workshop on Graphics Hardware ’01, Addison-Wesley Publishing
Company, pp. 9–16, 2001.

[27] EnSight. Visualization system, Computational Engineering International (CEI),
Apex, NC. URL: http://www.ensight.com.

[28] FLTK. Fast Light Toolkit. URL: http://www.fltk.org.

[29] M. Flynn. Very High-Speed Computing Systems. Proceedings of the IEEE, Volume
54, pp. 1901–1909, 1966.

[30] F. Föhl. Geräte- und szenengraphunabhängige grafische Benutzungselemente für
VR-Anwendungen. Diplomarbeit, Institut für Informatik, University of Stuttgart,
Germany, 2002.

[31] J. Freund and K. Sloan. Accelerated Volume Rendering Using Homogeneous Re-
gion Encoding. IEEE Visualization ’97 Proceedings, pp. 191–197, 1997.

[32] T. Günther, C. Poliwoda, C. Reinhard, J. Hesser, R. Männer, H.-P. Meinzer, and
H.-J. Baur. VIRIM: A Massively Parallel Processor for Real-Time Volume Visual-
ization in Medicine. Proceedings of the 9th Eurographics Workshop on Graphics
Hardware, Oslo, Norway, pp. 103–108, 1994.

[33] P. Gußmann. Erstellung eines verteilten, synchronisierten und kooperativen Ren-
derers. Diplomarbeit, Institut für Informatik, University of Stuttgart, Germany,
2000.

[34] S. Guthe and W. Straßer. Real-Time Decompression and Visualization of Animated
Volume Data. IEEE Visualization ’01 Proceedings, pp. 349–356, 2001.

[35] T. He, L. Hong, A. Kaufman, and H. Pfister. Generation of Transfer Functions
with Stochastic Search Techniques. Proceedings of IEEE Visualization ’96, pp.
227–234, 1996.

[36] T. He and A. Kaufman. Fast Stereo Volume Rendering. IEEE Visualization ’96
Proceedings, pp. 49–56, 1996.

[37] L.C. Hill and C. Cruz-Neira. Palmtop Interaction Methods for the Immersive Pro-
jection Technology VR Systems. Proceedings of the 4th Immersive Projection Tech-
nology Workshop (IPTW), Iowa State University, 2000.

132 BIBLIOGRAPHY

[38] G. Humphreys, M. Eldridge, I. Buck, G. Stoll, M. Everett, and P. Hanrahan.
WireGL: A Scalable Graphics System for Clusters. ACM SIGGRAPH 2001 Pro-
ceedings, 2001.

[39] G. Humphreys, M. Houston, R. Ng, R. Frank, S. Ahern, P.D. Kirchner, and J.T.
Klosowski. Chromium: A Stream-Processing Framework for Interactive Rendering
on Clusters. ACM SIGGRAPH 2002 Proceedings, pp. 693–702, 2002.

[40] Open Inventor. Visualization API, Silicon Graphics, Inc., Mountain View, CA.
URL: http://www.sgi.com/software/inventor/.

[41] D. Jiang and J.P. Singh. Improving Parallel Shear-Warp Volume Rendering on
Shared Address Space Multiprocessors. ACM Symposium on Principles and Prac-
tice of Parallel Programming Proceedings, Las Vegas, pp. 252–263, 1997.

[42] G. Kindlmann. Nearly Raw Raster Data, volume data format. URL:
http://www.cs.utah.edu/∼gk/teem/nrrd/.

[43] G. Kindlmann and J.W. Durkin. Semi-Automatic Generation of Transfer Functions
for Direct Volume Rendering. Proceedings of the IEEE Symposium on Volume
Visualization ’98, pp. 79–86, 1998.

[44] J. Kniss, G. Kindlmann, and C. Hansen. Interactive Volume Rendering Using
Multi-Dimensional Transfer Functions and Direct Manipulation Widgets. IEEE
Visualization ’01 Proceedings, pp. 255–262, 2001.

[45] G. Knittel. The UltraVis System. Proceedings of IEEE/ACM Symposium on Vol-
ume Visualization, pp. 71–78, 2000.

[46] G. Knittel. Using Pre-Integrated Transfer Functions in an Interactive Software
System for Volume Rendering. Short Papers Proceedings Eurographics ’02, pp.
119–123, 2002.

[47] G. Knittel and W. Straßer. Vizard - Visualization Accelerator for Real-Time Display.
Proceedings of Eurographics/SIGGRAPH Workshop on Graphics Hardware ’97,
pp. 139–147, 1997.

[48] W. Krueger. The application of transport theory to visualization of 3-D scalar data
fields. Computers in Physics, July/August, pp. 397–406, 1991.

[49] J. Krüger and R. Westermann. Acceleration Techniques for GPU-based Volume
Rendering. IEEE Visualization ’03 Proceedings (to appear), 2003.

[50] W. Krüger and B. Fröhlich. The Responsive Workbench. Computer Graphics and
Applications 14(3), pp. 12–15, 1994.

[51] P. Lacroute. Fast Volume Rendering Using a Shear-Warp Factorization of the
Viewing Transformation. Doctoral Dissertation, Technical Report CSL-TR-95-678,
Stanford University, 1995.

BIBLIOGRAPHY 133

[52] P. Lacroute. Real-Time Volume Rendering on Shared Memory Multiprocessors Us-
ing the Shear-Warp Factorization. IEEE Parallel Rendering Symposium ’95 Pro-
ceedings, pp. 15–22, 1995.

[53] P. Lacroute and M. Levoy. Fast Volume Rendering Using a Shear-Warp Factor-
ization of the Viewing Transformation. ACM SIGGRAPH 94 Proceedings, pp.
451–457, 1994.

[54] E. LaMar, B. Hamann, and K.I. Joy. Multiresolution Techniques for Interactive
Texture-Based Volume Visualization. IEEE Visualization ’99 Proceedings, pp. 355–
361, 1999.

[55] M. Levoy. Display of Surfaces from Volume Data. Computer Graphics and Appli-
cations, Vol. 8, No. 5, May, pp. 29–37, 1988.

[56] M. Levoy. Efficient Ray Tracing of Volume Data. ACM Transactions on Graphics,
9(3), July, pp. 245–261, 1990.

[57] R.W. Lindeman, J.L. Sibert, and J.K. Hahn. Towards Usable VR: An Empirical
Study of User Interfaces for Immersive Virtual Environments. CHI 99, 15-20 May,
1999.

[58] W.E. Lorensen and H.E. Cline. Marching Cubes: A High Resolution 3D Surface
Construction Algorithm. ACM Computer Graphics Volume 21, Number 4, July,
pp. 93–99, 1987.

[59] T. Malzbender. Fourier Volume Rendering. ACM Transactions on Graphics, 12(3),
pp. 233–250, 1993.

[60] J. Marks, B. Andalman, P.A. Beardsley, W. Freeman, S. Gibson, J. Hodgins,
T. Kang, B. Mirtich, H. Pfister, W. Ruml, K. Ryall, J. Seims, and S. Shieber. Design
Galleries: A General Approach to Setting Parameters for Computer Graphics and
Animation. ACM SIGGRAPH ’97 Proceedings, pp. 389–400, 1997.

[61] M. Meißner, J. Huang, D. Bartz, K. Mueller, and R. Crawfis. A Practical Evalu-
ation of Popular Volume Rendering Algorithms. Proceedings of IEEE/ACM Sym-
posium on Volume Visualization, pp. 81–90, 2000.

[62] S. Muraki. Approximation and Rendering of Volume Data Using Wavelet Trans-
forms. IEEE Visualization ’92 Proceedings, pp. 21–28, 1992.

[63] OpenDX. Open source software project based on IBM’s Visualization Data Ex-
plorer. URL: http://www.opendx.org.

[64] OpenGL Optimizer. Visualization API, Silicon Graphics, Inc., Mountain View, CA.
URL: http://www.sgi.com/software/optimizer/.

[65] S. Parker, M. Parker, Y. Livnat, P. Sloan, C. Hansen, and P. Shirley. Interactive
Ray Tracing for Volume Visualization. IEEE Transactions on Visualization and
Computer Graphics, Volume 5, pp. 238–250, 1999.

134 BIBLIOGRAPHY

[66] H. Pfister, J. Hardenbergh, J. Knittel, H. Lauer, and L. Seiler. The VolumePro Real-
Time Ray-Casting System. ACM SIGGRAPH 99 Proceedings, pp. 251–260, 1999.

[67] H. Pfister and A. Kaufman. Cube-4 - A Scalable Architecture for Real-Time Volume
Rendering. ACM/IEEE Symposium on Volume Visualization ’96, pp. 47–54, 1996.

[68] H. Pfister, B. Lorensen, C. Bajaj, G. Kindlmann, W. Schroeder, L. Sobierajski
Avila, K. Martin, R. Machiraju, and J. Lee. The Transfer Function Bake-Off. IEEE
Computer Graphics and Applications, May/June 2001 (Vol. 21, No. 3), pp. 16–22,
2001.

[69] T.J. Purcell, I. Buck, W.R. Mark, and P. Hanrahan. Ray Tracing on Programmable
Graphics Hardware. ACM SIGGRAPH ’02 Proceedings, pp. 703–712, 2002.

[70] Trolltech Qt. GUI library. URL: http://www.trolltech.com.

[71] C.R. Ramakrishnan and C. Silva. Optimal Processor Allocation for Sort-Last Com-
positing under BSP-tree Ordering. SPIE Visual Data Exploration and Analysis IV,
1999.

[72] D. Rantzau, K. Frank, U. Lang, D. Rainer, and U. Wössner. COVISE in the CUBE:
An Environment for Analyzing Large and Complex Simulation Data. Proceedings
of 2nd Workshop on Immersive Projection Technology (IPTW ’98), Ames, Iowa,
1998.

[73] D. Rantzau, U. Lang, and R. Rühle. Collaborative and Interactive Visualization
in a Distributed High Performance Software Environment. Proceedings of Interna-
tional Workshop on High Performance Computing for Graphics and Visualization,
Swansea, Wales, ’96, 1996.

[74] C. Rezk-Salama, K. Engel, M. Bauer, G. Greiner, and T. Ertl. Interactive Vol-
ume Rendering on Standard PC Graphics Hardware Using Multi-Textures and
Multi-Stage Rasterization. Proceedings of Eurographics/SIGGRAPH Workshop
on Graphics Hardware ’00, 2000.

[75] J. Rohlf and J. Helman. IRIS Performer: A High Performance Multiprocessing
Toolkit for Real-Time 3D Graphics. ACM SIGGRAPH 94 Proceedings, pp. 381–
394, 1994.

[76] S. Röttger, S. Guthe, D. Weiskopf, and T. Ertl. Smart Hardware-Accelerated Vol-
ume Rendering. Procceedings of EG/IEEE TCVG Symposium on Visualization,
Grenoble, France, 2003.

[77] D. Schmalstieg and M. Encarnacao. A Transparent Personal Interaction Panel for
the Virtual Table. Computergraphik Topics, Vol. 10., No. 5, Darmstadt, Germany,
pp. 19–20, 1998.

[78] J. Schneider and R. Westermann. Compression Domain Volume Rendering. IEEE
Visualization ’03 Proceedings (to appear), 2003.

BIBLIOGRAPHY 135

[79] M. Schreier. An Audio Server for Virtual Reality Applications. Master’s Thesis,
Brunel University, England, May, 2002.

[80] J.P. Schulze. Virvo - Virtual Reality Volume Rendering. Project Homepage at URL:
http://www.hlrs.de/people/schulze/virvo/, 2003.

[81] J.P. Schulze, M. Kraus, U. Lang, and T. Ertl. Integrating Pre-Integration into the
Shear-Warp Algorithm. Proceedings of the Third International Workshop on Vol-
ume Graphics (VG’03), Tokyo, July 7-8, Published by ACM, pp. 109–118, 2003.

[82] J.P. Schulze and U. Lang. The Parallelization of the Perspective Shear-Warp Vol-
ume Rendering Algorithm. Proceedings of the Fourth Eurographics Workshop on
Parallel Graphics and Visualization (EGPGV’02), ACM Press, pp. 61–69, 2002.

[83] J.P. Schulze and U. Lang. The Parallelized Perspective Shear-Warp Algorithm for
Volume Rendering. Parallel Computing 29, Published by Elsevier Science, pp.
339–354, 2003.

[84] J.P. Schulze, R. Niemeier, and U. Lang. The Perspective Shear-Warp Algorithm in
a Virtual Environment. Proceedings of IEEE Visualization ’01, Published by IEEE,
pp. 207–213, 2001.

[85] J.P. Schulze, U. Wössner, S.P. Walz, and U. Lang. Volume Rendering in a Virtual
Environment. Proceedings of the Fifth Immersive Projection Technology Workshop
(IPTW’01) and Eurographics Virtual Environments (EGVE’01), Springer Verlag,
pp. 187–198, 2001.

[86] C.W. Sensen, J. Brum, P. Gordon, M. Hood, G. Lindahl, M. Schulman, C. Spindler,
M. Stuart, and S. Unger. Establishment of the First Java 3D Enabled CAVE.
Whitepaper, URL: http://www.visualgenomics.ca/PDF_files/whitepaper.pdf, 2002.

[87] C. Silva, A. Kaufman, and C. Pavlakos. PVR: High Performance Volume Ren-
dering. IEEE Computational Science and Engineering, Special Issue on Visual
Supercomputing, Winter ’96, pp. 18–28, 1996.

[88] H.A. Sovizral and M.F. Deering. The Java 3D API and Virtual Reality. IEEE
Computer Graphics and Applications May/June ’99, 1999.

[89] S. Spitzer, M.J. Ackerman, A.L. Scherzinger, and D. Whitlock. The Visible Human
Male: A Technical Report. Journal of the American Medical Informatics Associa-
tion, pp. 118–130, 1996.

[90] K. Swartz, U. Thakkar, D. Hix, and R. Brady. Evaluating the Usability of Crumbs:
a Case Study of VE Usability Engineering. Proceedings of the 3rd International
Immersive Projection Technologies Workshop, May ’99, Springer-Verlag, pp. 243–
252, 1999.

[91] J. Sweeney and K. Mueller. Shear-Warp Deluxe: The Shear-Warp Algorithm Re-
visited. EG/IEEE TCVG Symposium on Visualization, May ’02, Barcelona, Spain,
pp. 95–104, 2002.

136 BIBLIOGRAPHY

[92] T. Totsuka and M. Levoy. Frequency Domain Volume Rendering. ACM SIG-
GRAPH 93 Proceedings, pp. 271–278, 1993.

[93] R. Troutman, C. Hansen, M. Krogh, J. Painter, and G.C. de Verdiere. Binary-Swap
and Shear-Warp Volume Renderer on the T3D. Proceedings of the Thirty-Sixth
Semi-Annual Cray User Group Meeting, Fairbanks, Alaska, pp. 121–125, 1995.

[94] OpenGL Volumizer. Volume visualization API, Silicon Graphics, Inc., Mountain
View, CA. URL: http://www.sgi.com/software/volumizer/.

[95] W.R. Volz. Gigabyte Volume Viewing Using Split Software/Hardware Interpola-
tion. Proceedings of IEEE/ACM Symposium on Volume Visualization, pp. 15–22,
2000.

[96] VTK. Open source graphics API for 3D graphics, image processing, and visual-
ization. URL: http://public.kitware.com/VTK/.

[97] M. Weiler, R. Westermann, C. Hansen, K. Zimmermann, and T. Ertl. Level-Of-
Detail Volume Rendering via 3D Textures. IEEE Volume Visualization 2000 Pro-
ceedings, 2000.

[98] J. Welling. VFleet. URL: http://www.psc.edu/Packages/VFleet_Home/.

[99] S. Wergandt. Selektion, Extraktion und Aufbearbeitung von Volumendaten auf
Multiprozessor-Systemen. Studienarbeit, High Performance Computing Center
(HLRS), University of Stuttgart, 2002.

[100] R. Westermann. A Multiresolution Framework for Volume Rendering. ACM Sym-
posium on Volume Visualization ’94, pp. 51–58, 1994.

[101] R. Westermann and T. Ertl. Efficiently Using Graphics Hardware in Volume Ren-
dering Applications. Computer Graphics (ACM SIGGRAPH ’98), 32(4), pp. 169–
179, 1998.

[102] R. Westermann, L. Kobbelt, and T. Ertl. Real-time Exploration of Regular Volume
Data by Adaptive Reconstruction of Iso-Surfaces. The Visual Computer, Vol. 15,
pp. 100–111, 1999.

[103] L. Westover. Interactive Volume Rendering. Proceedings of the ’89 Chapel Hill
Workshop on Volume Visualization, ACM Press, pp. 9–16, 1989.

[104] J. Wilhelms and A. Van Gelder. Octrees for Faster Isosurface Generation. ACM
Transactions on Graphics, 11(3), pp. 201–227, 1992.

[105] M.M. Wloka and E. Greenfield. The Virtual Tricorder: A Uniform Interface for
Virtual Reality. ACM Symposium on User Interface Software and Technology, pp.
39–40, 1995.

[106] W. Wohlfahrter. Interactive Volume Exploration on the StudyDesk. Master’s Thesis,
Vienna University of Technology, Austria, 2000.

BIBLIOGRAPHY 137

[107] W. Wohlfahrter, L.M. Encarnacao, and D. Schmalstieg. Interactive Volume Ex-
ploration on the StudyDesk. Proceedings of the Fourth International Immersive
Projection Technology Workshop, Ames, Iowa, 2000.

[108] U. Wössner, J.P. Schulze, S.P. Walz, and U. Lang. Evaluation of a Collaborative
Volume Rendering Application in a Distributed Virtual Environment. Proceedings
of the Eigth Eurographics Workshop on Virtual Environments (EGVE’02), ACM
Press, pp. 113–122, 2002.

[109] wxWindows. Cross-platform GUI library. URL: http://www.wxwindows.org.

[110] R. Yagel and A. Kaufman. Template-Based Volume Viewing. Computer Graphics
Forum, 11(3), pp. 153–167, 1992.

[111] R. Yagel and Z. Shi. Accelerating Volume Animation by Space-Leaping. IEEE
Visualization ’93 Proceedings, pp. 62–69, 1993.

[112] S.Y. Yen, S. Napel, and G.D. Rubin. Fast Sliding Thin Slab Volume Visualiza-
tion. Symposium on Volume Visualization ’96 Proceedings, ACM Press, pp. 79–
86, 1996.

Summary

In the following sections, the contents of the chapters of this dissertation will be summa-
rized. Where appropriate, the respective section headings will be mentioned in order to
allow the reader the fast access to them.

Chapter 1: Introduction

Chapter 1 begins with a motivation for the conducted research (Section 1.1). The mo-
tivation originates mainly from the fact that, at the beginning of the research for this
dissertation, virtual environments had been available, but they were almost exclusively
used for the visualization of polygonal data. The direct visualization of three dimensional
scalar fields (volume data) was very compute intensive, so that it was difficult to achieve
interactive frame rates. Furthermore, there were only a few and not very sophisticated
approaches which allowed changes of the transfer functions or other ways to explore the
data directly from within a virtual environment.

Section 1.2 summarizes the most important scientific contributions of this disseration:

• The perspective shear-warp algorithm for volume visualization.

• The application of parallel computers for volume visualization in virtual environ-
ments.

• A device independent user interface for virtual environments.

• A user interface for volume visualization in virtual environments.

• The application of pre-integration with the shear-warp algorithm for volume visu-
alization.

Furthermore, Section 1.3 lists the master’s theses and semester projects which the author
advised on.

Section 1.4 gives an overview of the structure of this dissertation. It should be mentioned
that Chapters 3, 4, and 5 can be arranged in an arbitrary order because their content is not
interdependent. The chapters present the conducted research in the fields of rendering,
interaction, and parallelization. The results from all these fields merge into a volume
visualization system in Chapter 6.

139

140 SUMMARY

Chapter 2: Foundations

Chapter 2 explains the foundations for all the fields in which research was conducted.
Section 2.1 describes the most common approaches for volume visualization: ray casting,
splatting, shear-warp, texture hardware based approaches, and special purpose hardware.
Ray casting is an image space algorithm, it computes the color of every pixel by casting
viewing rays through the dataset. The shear-warp algorithm is a variation of ray cast-
ing, but via a conversion of the coordinate systems it becomes an object space algorithm,
so that memory cache strategies can be applied efficiently. Splatting is an object space
approach as well: for every volume element multiple pixels (the splat) are blended on
the output image. By using hardware accelerated texture mapping the slices of volume
datasets can be rendered very fast. Special purpose volume rendering hardware can im-
plement one of the above methods and execute it very fast. The most recent graphics
hardware can be treated as a fast vector processor which can even be used for hardware
accelerated ray casting. Finally, Fourier and compression domain volume rendering are
presented.

Section 2.2 describes the state of the art of the devices that are used in virtual environ-
ments. This section is subdivided into input and output devices. Input devices are: the
desktop mouse; the data glove; and mechanical, electromagnetical, optical, and hybrid
tracking systems. Output devices are: the monitor, the head mounted display, the work-
bench, the power wall, the curved screen, and the CAVE.

Section 2.3 introduces hardware and programming models for parallel computing. The
hardware is subdivided into computers with distributed memory, shared memory, and
hybrid memory, which is a combination of the above. The programming models are based
on either threading, which is used with shared memory architectures, or message passing,
which is used with distributed memory computers.

The last section of the foundations chapter presents both the application programming
interfaces (APIs) that are employed in visualization, and a number of visualization frame-
works. The programming interfaces are subdivided into a lower and a higher level, with
respect to the hardware. Low level APIs are OpenGL and DirectX, with OpenGL be-
ing available for all operating systems, but DirectX only for Windows. The higher level
APIs mentioned are OpenGL Performer, OpenGL Optimizer, OpenGL Volumizer, Java
3D, Open Inventor, and the Visualization Toolkit (VTK).

Visualization frameworks can be structured into modular and integrated tools. In modular
tools like COVISE, AVS, Amira, and OpenDX, the data flow is represented graphically
with a network of modules which read, filter, or render the data. An integrated tool like
EnSight does not offer a visual representation of the data flow, but its functionality is
accessible in menus.

Chapter 3: Rendering Methods

In Chapter 3 the results from research in the field of rendering methods and algorithms is
described. The goal was to accelerate the interactive and direct visualization of volume

SUMMARY 141

data by the development of efficient algorithms. The chapter is structured into three sec-
tions, each focusing on a different topic. Section 3.1 reports on specific adaptations of the
hardware accelerated texturing approach to the characteristics of virtual environments. It
explains how a constant frame rate can be achieved with a multiresolution technique, and
it is elaborated on how the texture orientation should be computed.

Section 3.2 describes the enhancement of the shear-warp algorithm to perspective projec-
tion. At the beginning of the research for this dissertation it was limited to orthogonal
projection. The approach has been previously described by Lacroute [51], but the mathe-
matical derivation was flawed. The correct derivation was facilitated by the introduction
of two new coordinate systems.

A further contribution of this dissertation is the proof that projection and warp can be
permuted in the case of perspective projection. This is a requirement for the general
applicability of the perspective shear-warp algorithm. Furthermore, in this section the
complexity of the perspective warp is compared with the orthogonal projection warp.
Differences result from the perspective warp being a non-affine transformation, while the
orthogonal projection warp is affine.

The second part of Section 3.2 discusses extensions of the perspective shear-warp algo-
rithm, which optimize its usability in virtual environments. The first extension concerns
the compositing of the intermediate image. Due to the observation that the size of the
intermediate image is not defined by the volume size in the case of the perspective projec-
tion algorithm—each slice is scaled differently—the size of the intermediate image can
be adapted to the desired frame rate dynamically. This, however, affects in turn the detail
level of the output image.

A further optimization is the execution of the warp with hardware accelerated texturing.
At this, the intermediate image is loaded as a texture, and the warp matrix is used as
the viewing matrix. Thus, the warp can be executed very efficiently in the presence of
hardware acceleration, and the rendering time is nearly independent of the size of the
output image.

Generally, a significant drawback of the perspective shear-warp algorithm is that prior to
the compositing the dataset has to be subdivided into multiple pyramidal sub-volumes.
However, Section 3.2.2.4 shows that this is not necessary in the case of a CAVE-like vir-
tual environment, because due to the occurring viewing angles artifacts can be neglected.

Further topics of research in this section are a clipping plane, which can also be used to
allow the viewer to step into the dataset, as well as the concurrent display of shear-warp
rendered volume datasets and polygonal objects.

In the last part of Section 3.2, results from a number of performance measurements are
presented. It focuses on how the rendering time depends on the size of the intermediate
image, compares the algorithms for perspective and orthogonal projection, finds out about
the differences of the software based and the texturing hardware based warp, and shows
which fraction of the total rendering time the warp accounts for.

Section 3.3 explains how the approach of pre-integration can be combined with the shear-
warp algorithm. In this case the slices of the dataset cannot be rasterized independently

142 SUMMARY

from one another, but the slabs between them are rendered. Therefore, an efficient im-
plementation of buffer memory is required. The buffer memory is used twice in each
rendering pass, once as the front, and once as the back side of a slab. This dissertation
compares two different types of buffer memory implementations: slice aligned and inter-
mediate image aligned buffer memory.

A further aspect of this section is the application of the pre-integration table. It showed
that bilinear interpolation of the table values does not yield visual improvements, so that
it suffices to use nearest neighbor interpolation.

Also, opacity and color correction are discussed in this section. They are required to avoid
artifacts if the viewer does not look at the dataset from the direction of a coordinate axis.

The last part of this section contains a comparison of both rendering speed and image
quality with different variations of the algorithm. The result is that the shear-warp algo-
rithm with pre-integration improves the image quality noticeably and reaches 34% to 88%
of the speed of the traditional shear-warp algorithm.

Chapter 4: Interaction Methods

Chapter 4 discusses the research that was conducted with respect to user interaction with
volume data in virtual environments. This chapter is subdivided into two main sections:
the development of a device independent user interface, and the investigation of interac-
tion elements suitable for volume visualization.

Section 4.1 explains the development of device independent widgets and a menu system
for both the desktop and virtual environments. The basic idea is that the user should be
able to develop user interfaces for virtual reality applications with a single API, which
can then be used with arbitrary combinations of input and output devices without specific
adaptations. Due to the lack of suitable existing user interfaces a new system had to be
developed. Both its API and its visual appearance resemble those of the widgets in tradi-
tional window managers. However, there are important distinctive features, for instance
the arbitrary placement of menus in three-space, and the introduction of rotary knobs as
an alternative to sliders.

The new user interface widgets can be used with a variety of graphics APIs, because all
graphics routines are detached from the actual graphics API by an intermediate layer.
As a proof of concept, example implementations for OpenGL Performer and OpenGL
Optimizer were built.

The other main section of this chapter discusses research on interaction elements for vol-
ume visualization (Section 4.2). A two-step approach was used for the development of
these elements, both steps comprising user studies.

One of the most important interaction elements in volume rendering is the transfer func-
tion editor. It was developed with a focus on issues with imprecise input devices in virtual
environments, as well as the low resolution relative to the screen size. It distinguishes
itself in that, in contrast to earlier editors, both the opacity and the color transfer functions

SUMMARY 143

are not drawn as lines, but they are composed of a number of basic elements, which are
well manageable in virtual environments.

In the case of the opacity the basic elements are the trapezoid, the ramp, and the blank.
These elements are adjustable in their width and some in other parameters. The opacity
transfer function is composed by the superposition of combinations of these elements.
The advantage of this method is, as opposed to freehand drawing techniques, that by
the limitation of the degrees of freedom more exact work is possible. Additionally, the
exploration of a dataset is substantially facilitated for instance by moving a triangular peak
through the data value range, in contrast to traditional techniques, where the peak has to
be constructed from multiple vertices or a freehand line.

The basic elements of the color transfer function are control points in the value range of
the scalar data. For each control point an arbitrary color can be selected from a colored
disk, with an option to select the brightness. The color values between the control points
are interpolated in color space.

The new user interface for volume visualization is not limited to the transfer function
editor, but it offers further functionality in menus. The user can load datasets from disk,
or save the current dataset and the state of its transfer function.

An important functionality of the menu is the selection of the frame rate. It affects in-
directly the image quality of the volume dataset. In contrast to a direct selection of the
rendering quality, this option was chosen because in virtual environments it is crucial to
maintain a constant frame rate in order not to disrupt the effect of immersion.

Another menu option is a flashlight-like probe mode. In this mode, only a cubic subset
of the dataset is displayed, so that one can see the inside of the volume object without
changing the transfer functions. An alternative to this option is the clipping plane, which
cuts off a part of the dataset. Both methods are based on direct interaction in data space.

Two user studies were carried out, in which twelve and ten participants were invited,
respectively. The majority of them came from institutes of the University of Stuttgart and
had some prior knowledge about volume rendering. In each study the participants should
work with volume datasets and our new user interface in two scenarios. Before and after
working in the virtual environment they had to fill out questionnaires, and at the end an
interview was conducted. The time in the virtual environment was recorded on video tape.

Most of the suggestions for improvement from the first study were put into practice. In the
second study the participants were asked explicitly about the usability of the new version.
It turned out that the developed volume visualization software is well suited for use with
volume data, however, for professional applications in the medical or engineering fields
specific adaptations would be desirable.

Chapter 5: Parallelization and Distribution Methods

In virtual environments with multiple stereo display screens the serial shear-warp algo-
rithm is inferior to hardware accelerated texturing approaches with respect to rendering

144 SUMMARY

speed. However, in these cases even the hardware accelerated texturing techniques reach
their limits because they are constrained by the hardware’s pixel fill rate. Therefore, this
chapter investigates the potential of a parallelization of the perspective shear-warp algo-
rithm.

After an introduction in Section 5.1 and a look at previous work in Section 5.2, Section
5.3 describes the parallelized algorithm.

The efficient application of the parallelized shear-warp algorithm requires a parallel com-
puter. In the general case parallel computers do not contain visualization hardware, but
they can be linked to a visualization system via a network connection. The approach that
is described in this dissertation assumes that both of these systems are available.

The idea of the parallelized perspective shear-warp algorithm which is described here is
based on the compositing being done on the parallel computer. It transfers the resulting
intermediate image to the visualization system, which displays the image with a texturing
hardware accelerated warp. Because typically the intermediate image is smaller than the
output image, less data has to be transferred using this approach.

The parallelization of the algorithm is similar to Lacroute’s parallelization of the orthogo-
nal projection algorithm [52]: the intermediate image is subdivided into sections of scan-
lines that are distributed to the nodes of the parallel computer, which do the compositing
for their sections and return the result to the master node. In order to use this approach on
parallel computers with distributed memory, the volume dataset has to be replicated on all
nodes. An optimization of the memory requirements is difficult because the further back
the volume slices are located, with respect to the viewer, the more intermediate image
lines their voxels contribute to.

Because the intermediate image transfer is a bottleneck when the network is slow, the
intermediate image is run-length encoded before its transfer. However, not the entire
image is encoded, but only the rectangular window which contains the actual volume.
The size of this area is computed from the shear-warp transformation matrix. With this
method, depending on the dataset, the viewing angle and the network speed, the transfer
speed can be improved by up to 90%.

The visualization system decodes the intermediate image and transfers it to texture mem-
ory. In order to correctly blend other objects with the volume dataset, not only color, but
also opacity has to be transferred for each pixel. Along with the warp’s feature of pro-
jecting the texture to the correct Z position, which is described in Chapter 3, the volume
dataset can be displayed concurrently with the user interface elements.

Besides rendering, the visualization system has to transfer user commands to the paral-
lel computer. Therefore, a protocol was developed, which allows the transfer of volume
datasets, matrices, and changes of the viewing parameters, for instance the interpolation
mode. Furthermore, the image computation on the parallel computer and the user interac-
tion on the visualization system are nested, so that the visualization system can display the
other objects of the scenegraph and process user input instead of waiting for the parallel
computer.

SUMMARY 145

The resulting system was tested on three different types of parallel computers: an SGI
Onyx2, a SUN Fire 6800 node, and a cluster of Linux PCs. The Onyx2 achieves 3.4
frames per second with 14 processors, which are reached by the SUN Fire with 6 proces-
sors already. The PC cluster renders 7.4 frames per second with 12 processors. Further
measurements analyze the load of the processors, the speed of the intermediate image
transfer, and the rendering speed in comparison to the texturing hardware accelerated ap-
proach.

Chapter 6: Volume Visualization System

The developments of Chapters 3 to 5 were integrated with the visualization framework
COVISE, in order to evaluate their practical usability. Previously, COVISE did not of-
fer volume visualization. In Chapter 6 implementational issues and their solutions are
described.

The chapter is subdivided into the following sections: the first section shortly describes
the software environment which was used for the development of the new algorithms,
which is the basis for the integration. Section 6.2 describes why COVISE was selected as
the visualization framework in which the new algorithms were to be integrated.

Section 6.3 investigates which previously existing COVISE data formats could be used to
represent volume data. In this context, 8 and 16-bit scalar data, as well as 24 and 32-bit
data formats for pre-classified or photographic volume data are considered.

Section 6.4 analyzes how the previously existing COVISE file formats could be used to
store volume data. Furthermore, new data formats are presented, which were specifically
developed for the use with virtual environments, for instance they can store the position
of the dataset in space.

The visualization of volume data with different user interfaces for the desktop and virtual
environments is described in Section 6.5. Specific facts that result from the features of the
input and output devices are elaborated on. For instance, at the desktop the visualization
of the dataset can be refined when there is no user input, which cannot be done in a virtual
environment because, due to the head tracking, the image never stands still.

Chapter 7: Conclusions

Chapter 7 summarizes the results of this dissertation, discusses their scientific relevance,
and gives ideas for future work. The goal of the dissertation was to improve interactive
direct volume visualization. This task was approached with three topics: faster visualiza-
tion algorithms, practical and intuitive interaction techniques, and efficient parallelization
methods.

In the field of rendering algorithms the perspective shear-warp algorithm was adapted to
virtual environments, so that now a very fast CPU-based visualization approach can be

146 SUMMARY

used. Furthermore, the approach of pre-integration was combined with the shear-warp
algorithm, which improved image quality significantly.

The research in the field of interaction techniques with volume data resulted in a usable
user interface for the work with volume data in virtual environments. User studies verified
and optimized the results.

The parallelization of the perspective shear-warp algorithm allows the efficient application
of the algorithm in virtual environments that have access to a parallel computer.

Finally, it is demonstrated how the developed algorithms and techniques can be combined
to a visualization system, in order to allow the interactive direct visualization of volume
data in virtual environments.

Section 7.1 shows that in this dissertation all the components of an interactive volume
visualization system are discussed. The components are put in relation to each other by
explaining a typical visualization procedure. Furthermore, the prerequisites for the usage
of the developed visualization algorithm are mentioned.

Future work, which is proposed in Section 7.3, could address further performance im-
provements of the perspective shear-warp algorithm by its combination with level of de-
tail or data reduction approaches. Also, an improved load balancing could increase the
performance. Furthermore, the algorithm could be adapted to hybrid memory architec-
tures, which will be used more and more in the future, by a combination of OpenMP and
MPI.

Also, the interaction with volume data could be improved by more research for methods
of direct interaction or additional functionality for the transfer function editor. Some
participants of the user studies requested special functionality, which is required only in
their professional fields.

German Summary: Zusammenfassung

In den folgenden Abschnitten werden die Inhalte der einzelnen Kapitel dieser Dissertation
in deutscher Sprache zusammengefasst dargestellt. Es werden auch die jeweils angespro-
chenen Abschnitte der Arbeit genannt, um dem Leser bei Bedarf den schnellen Zugriff
darauf zu ermöglichen.

Kapitel 1: Einführung

Kapitel 1 beginnt mit einer Erläuterung der hinter den durchgeführten Forschungsarbeiten
stehenden Motivation (Abschnitt 1.1). Diese ergab sich vor allem daraus, dass zwar seit
einigen Jahren virtuelle Umgebungen zur Visualisierung dreidimensionaler Daten zur Ver-
fügung stehen, diese jedoch zu Beginn der Forschungsarbeiten dieser Dissertation haupt-
sächlich zur Visualisierung polygonaler Daten eingesetzt wurden. Die direkte Darstellung
dreidimensionaler Skalarfelder (Volumendaten) war sehr rechenzeitintensiv, so dass es
schwierig war, damit interaktive Bildraten zu erreichen. Darüberhinaus gab es nur wenige
und nicht besonders effektive Ansätze, die Änderungen der Transferfunktionen oder an-
dere Möglichkeiten zur Erkundung der Daten direkt von der virtuellen Umgebung aus zu
erlauben.

In Abschnitt 1.2 werden die wichtigsten wissenschaftlichen Beiträge dieser Arbeit ge-
nannt. Diese sind:

• Der perspektivische Shear-Warp-Algorithmus zur Volumenvisualisierung.

• Der Einsatz von Parallelrechnern zur Volumenvisualisierung in virtuellen Umge-
bungen.

• Eine geräteunabhängige Benutzerschnittstelle für virtuelle Umgebungen.

• Eine Benutzerschnittstelle für Volumenvisualisierung in virtuellen Umgebungen.

• Der Einsatz von Vorintegration im Shear-Warp-Algorithmus zur Volumenvisuali-
sierung.

147

148 GERMAN SUMMARY: ZUSAMMENFASSUNG

Weiterhin werden in Abschnitt 1.3 die im Rahmen der Dissertation betreuten Diplom- und
Masterarbeiten, sowie Semesterarbeiten aufgelistet.

Abschnitt 1.4 erläutert schließlich den Aufbau der Dissertation. Hierzu ist besonders zu
erwähnen, dass die Kapitel 3, 4 und 5 bezüglich inhaltlicher Zusammenhänge in beliebiger
Reihenfolge stehen könnten. Diese Kapitel präsentieren die durchgeführten Forschungs-
arbeiten in den Gebieten Darstellung, Interaktion und Parallelisierung. Die Ergebnisse
dieser drei Kapitel fließen in Kapitel 6 zusammen zu einem Volumenvisualisierungssy-
stem.

Kapitel 2: Grundlagen

In Kapitel 2 werden die Grundlagen für alle Gebiete gelegt, in denen im Folgenden
von Forschungsarbeiten berichtet wird. Abschnitt 2.1 beschreibt die bekanntesten Ansät-
ze zur Volumenvisualisierung: Strahlverfolgung, Splatting, Shear-Warp, texturhardware-
basiert und den Einsatz spezieller Hardware. Strahlverfolgung berechnet im Bildraum
für jedes Pixel den entsprechenden Farbwert, indem Sehstrahlen durch das Volumen ge-
schickt werden. Der Shear-Warp-Algorithmus ist eine Variante der Strahlverfolgung, nur
dass hier durch Umrechnung der Koordinatensysteme im Objektraum gerechnet werden
kann, wodurch Cache-Speicher effizient genutzt werden kann. Splatting ist ein reines
Objektraumverfahren, da für jedes Volumenelement mehrere Pixel auf den Bildschirm
eingefärbt werden. Mit hardwarebeschleunigter Texturdarstellung können die Schichten
von Volumendaten sehr schnell auf den Bildschirm gebracht werden, während spezielle
Volumenvisualisierungs-Hardware ein beliebiges dieser Verfahren implementieren kann.
Die neusten Grafikkarten können als schnelle Vektorprozessoren aufgefasst werden, mit
denen sogar hardwarebeschleunigte Strahlverfolgung möglich ist. Am Schluss werden
Fourier und kompressionsbasierte Volumenvisualisierungsverfahren präsentiert.

Abschnitt 2.2 beschreibt den aktuellen Stand der in virtuellen Umgebungen eingesetzten
Geräte. Der Abschnitt ist unterteilt in Eingabe- und Ausgabegeräte. Als Eingabegeräte
werden genannt: die Maus, der Datenhandschuh, sowie mechanische, elektromagneti-
sche, optische und hybride Tracking-Systeme. Als Ausgabegeräte werden beschrieben:
der Monitor, das Head Mounted Display, die Workbench, die Power Wall, die gekrümmte
Projektionswand und die CAVE.

Abschnitt 2.3 führt in Hardware und Programmiermodelle ein, die beim Parallelrechnen
eingesetzt werden. Die Hardware wird unterschieden in Computer mit verteiltem Spei-
cher, gemeinsamem Speicher, sowie mit hybridem Speicher, der eine Kombination der
beiden erstgenannten Methoden darstellt. Die Programmiermodelle werden unterschieden
in Threading, was auf Architekturen mit gemeinsamem Speicher eingesetzt wird, sowie
Message Passing, was auf Computern mit verteiltem Speicher benötigt wird.

Der letzte Abschnitt, in dem Grundlagen erläutert werden, stellt zum einen die im Be-
reich der Visualisierung eingesetzten Programmierschnittstellen (APIs) vor, zum anderen
eine Reihe von Visualisierungsprogrammen. Die Programmierschnittstellen werden un-
terschieden in eine niedrige und eine höhere Ebene, relativ zur Hardware. Auf niedriger

GERMAN SUMMARY: ZUSAMMENFASSUNG 149

Ebene befinden sich die APIs OpenGL und DirectX, wobei OpenGL auf allen Syste-
men, DirectX jedoch nur auf Windows-Systemen verfügbar ist. Auf höherer Ebene befin-
den sich die APIs OpenGL Performer, OpenGL Optimizer, OpenGL Volumizer, Java 3D,
Open Inventor, sowie das Visualization ToolKit (VTK).

Visualisierungsprogramme werden unterschieden in modulare und integrierte Werkzeuge.
In modularen Programmen wie COVISE, AVS, Amira und OpenDX wird der Datenfluss
graphisch repräsentiert, wobei unterschiedliche Module eingesetzt werden, um Daten zu
lesen, zu filtern oder darzustellen. Ein integriertes Werkzeug wie Ensight bietet nicht die
Darstellung des Datenflusses, dafür wird jedoch die jeweilige Funktionalität in Menüs zur
Verfügung steht.

Kapitel 3: Darstellungsmethoden

In Kapitel 3 werden die erzielten Forschungsergebnisse im Bereich der Darstellungsme-
thoden und -algorithmen erläutert. Ziel war es dabei, die interaktive und direkte Visualisie-
rung von Volumendaten mit Hilfe effizienter Algorithmen zu beschleunigen. Das Kapitel
ist gegliedert in drei Abschnitte, die jeweils einen Arbeitsschwerpunkt zum Thema haben.
Abschnitt 3.1 berichtet über spezielle Anpassungen der hardwarebeschleunigten Darstel-
lung von Volumendaten mit Texturen an die Gegebenheiten virtueller Umgebungen. Hier
wird erläutert, wie man mit Multiresolution-Techniken eine konstante Bildrate erzielen
kann, und es wird darauf eingegangen, wie die Orientierung der Texturen gewählt werden
sollte.

Abschnitt 3.2 beschreibt die Erweiterung des Shear-Warp-Algorithmus, der zu Beginn der
Arbeiten zu dieser Dissertation nur für Parallelprojektion zur Verfügung stand, auf per-
spektivische Projektion. Diese wurde zwar zuvor bereits von Lacroute [51] beschrieben,
jedoch fehlerhaft hergeleitet. Die korrekte mathematische Herleitung wurde insbesondere
durch die Einführung zweier neuer Koordinatensysteme erleichtert.

Ein weiterer Beitrag dieser Dissertation ist der Beweis der Vertauschbarkeit von Projekti-
on und Warp für den Fall der perspektivischen Projektion. Dies ist eine Voraussetzung für
die allgemeine Anwendbarkeit des perspektivischen Shear-Warp-Algorithmus. Weiterhin
wird in diesem Abschnitt die Komplexität des perspektivischen Warp mit dem Warp bei
Parallelprojektion verglichen. Unterschiede ergeben sich daraus, dass der perspektivische
Warp eine nicht-affine Abbildung ist, im Gegensatz zum Warp bei Parallelprojektion.

Der zweite Teil von Abschnitt 3.2 behandelt Erweiterungen des perspektivischen Shear-
Warp-Algorithmus, die dessen Einsatz in virtuellen Umgebungen optimieren. Die erste
Erweiterung betrifft das Erstellen des Zwischenbildes (Compositing). Aufgrund der Tat-
sache, dass beim perspektivischen Algorithmus die Größe des Zwischenbildes nicht durch
die Größe des Volumens vorgegeben ist, weil jede Schicht unterschiedlich skaliert wird,
folgt, dass man die Größe des Zwischenbildes dynamisch an die gewünschte Bildrate an-
passen kann. Dies beeinflusst jedoch direkt die Detaillierung des Ausgabebildes.

Eine weitere Optimierung ist die Durchführung des Warp mit Hilfe von hardwarebe-
schleunigter Texturdarstellung. Hierbei wird das Zwischenbild in eine Textur geladen und

150 GERMAN SUMMARY: ZUSAMMENFASSUNG

die Warp-Matrix als Abbildungsmatrix benutzt. Somit kann der Warp-Schritt bei vorhan-
dener Grafikbeschleunigung sehr effizient ausgeführt werden und die Bildberechnungs-
dauer ist nahezu unabhängig von der Größe des Ausgabebildes.

Im allgemeinen Fall ist ein großer Nachteil des perspektivischen Shear-Warp-Algorith-
mus, dass vor dem Compositing der Datensatz in mehrere pyramidenförmige Teilvolu-
mina aufgeteilt werden muss. Abschnitt 3.2.2.4 zeigt, dass dies zumindest im Fall einer
CAVE-artigen virtuellen Umgebung nicht notwendig ist, da aufgrund der hier vorkom-
menden Sichtwinkel kaum Bildfehler auftreten können.

Weitere angesprochene Forschungsthemen sind die Berücksichtigung einer Schnittebene,
die auch dazu eingesetzt werden kann, dass der Betrachter in den Datensatz hineinge-
hen kann, sowie eine Betrachtung der simultanen Darstellung von mit dem Shear-Warp-
Algorithmus erzeugten Datensätzen und polygonalen Objekten.

Im letzten Teil des Abschnitts 3.2 werden Ergebnisse mehrerer Leistungsmessungen prä-
sentiert. Es wird insbesondere darauf eingegangen, wie die Bildberechnungszeit von der
Zwischenbildgröße abhängt, wie sich perspektivische und Parallelprojektion zueinander
verhalten, wie sich der softwarebasierte und der texturhardwarebasierte Warp unterschei-
den, und welchen Anteil der Warp an der gesamten Bildberechnung hat.

Abschnitt 3.3 erklärt, wie die Technik der Vorintegration mit dem Shear-Warp-Algorith-
mus kombiniert werden kann. Da hierzu nicht mehr die einzelnen Schichten des Datensat-
zes unabhängig voneinander gerastert werden, sondern die Bereiche zwischen den Schich-
ten (Scheiben), wird für eine effiziente Implementierung ein Pufferspeicher benötigt. Die-
ser wird jeweils zwei Mal hintereinander benutzt, einmal als Vorderseite und einmal als
Rückseite einer Scheibe. Die Dissertation vergleicht zwei unterschiedliche Methoden zur
Implementierung des Pufferspeichers: schichtbezogene und zwischenbildbezogene Puf-
ferspeicher.

Ein weiterer Aspekt dieses Abschnitts ist die Einsatzweise der Vorintegrationstabelle.
Hierbei zeigte sich, dass eine bilineare Interpolation der Tabellenwerte keine sichtbaren
Vorteile brachte, so dass es genügt, den nächsten Nachbarwert zu benutzen.

Auch die Korrektur der Opazitäts- und Farbwerte wird in diesem Abschnitt betrachtet,
die notwendig ist, um Bildfehler zu vermeiden, wenn der Datensatz in einem schrägen
Winkel zum Betrachter steht.

Der letzte Teil des Abschnitts enthält eine Betrachtung sowohl der Darstellungsgeschwin-
digkeit, sowie der Bildqualität mit unterschiedlichen Varianten des Algorithmus. Ein Er-
gebnis ist, dass der Shear-Warp-Algorithmus mit Vorintegration die Bildqualität erhöht
und je nach Datensatz und Darstellungsparametern zwischen 34% und 88% der Geschwin-
digkeit des herkömmlichen Shear-Warp erreicht.

Kapitel 4: Interaktionsmethoden

Kapitel 4 betrachtet die Forschungsarbeiten, die im Bezug auf die Interaktion des Benut-
zers mit Volumendaten in virtuellen Umgebungen stattfanden. Dieses Kapitel ist aufgeteilt

GERMAN SUMMARY: ZUSAMMENFASSUNG 151

in zwei große Abschnitte: die Erstellung einer geräteunabhängigen Benutzerschnittstelle,
sowie die Erforschung von Interaktionselementen zur Volumenvisualisierung.

Abschnitt 4.1 erläutert die Entwicklung von Benutzungselementen und eines Menüsy-
stems für den geräteunabhängigen Einsatz am Arbeitsplatz und in virtuellen Umgebun-
gen. Die Grundidee ist, dass Anwendungen mit einer einheitlichen Programmierschnitt-
stelle erstellt werden und dann mit beliebigen Kombinationen von Ein- und Ausgabegerä-
ten aus dem Bereich der virtuellen Realität eingesetzt werden können. Mangels geeigneter
vorhandener Benutzerschnittstellen für virtuelle Umgebungen musste ein neues System
erstellt werden. Sowohl dessen API, als auch das visuelle Erscheinungsbild der Benut-
zungselemente wurden hierbei an herkömmliche Fenster-Manager angelehnt. Es gibt je-
doch wichtige Unterscheidungsmerkmale, wie die freie Positionierbarkeit von Menüs im
Raum, sowie die Einführung von Drehknöpfen als Alternative zu Schiebereglern.

Die erstellten Benutzungselemente können darüberhinaus mit unterschiedlichen Grafik-
APIs eingesetzt werden, da die Grafikroutinen durch eine allgemeine Zwischenschicht
von der eigentlichen Implementierung abgesetzt sind. Zur Demonstration dieser Funk-
tionalität wurden Implementierungen für OpenGL Performer und OpenGL Optimizer er-
stellt.

Der zweite große Abschnitt dieses Kapitels behandelt die Erforschung von Interaktions-
elementen für die Volumenvisualisierung (Abschnitt 4.2). Die Entwicklung dieser Ele-
mente wurde in zwei Stufen durchgeführt, die jeweils eine Benutzerstudie enthalten.

Eines der wichtigsten Interaktionselemente bei der Volumenvisualisierung ist der Trans-
ferfunktionseditor. Dieser wurde besonders im Hinblick auf die Problematik der unge-
nauen Eingabegeräte in virtuellen Umgebungen, sowie der dort häufig anzutreffenden für
die Bildgröße geringen Auflösung entwickelt. Er zeichnet sich dadurch aus, dass im Ge-
gensatz zu bisherigen Editoren sowohl die Opazitäts- als auch die Farb-Transferfunktion
nicht als eine Linie gezeichnet, sondern aus unterschiedlichen Grundelementen zusam-
mengesetzt wird, die in virtuellen Umgebungen gut handhabbar sind.

Diese Grundelemente sind im Fall der Opazität das Trapez, die Rampe, sowie der Aus-
blender. Diese Elemente sind in ihrer Breite und ggf. anderen Parametern verstellbar. Die
Transferfunktion entsteht durch die Überlagerung beliebiger Kombinationen dieser Ele-
mente. Der Vorteil dieser Methode ist gegenüber Freihand-Techniken, dass durch die Ein-
schränkung der Freiheitsgrade ein exakteres Arbeiten möglich ist, und dass das Erkunden
eines Datensatzes beispielsweise durch das Verschieben einer Dreiecksfunktion im Ska-
larwertebereich wesentlich gegenüber herkömmlichen Techniken erleichtert wird, wobei
die Dreiecksfunktion aus mehreren getrennt anzupassenden Eckpunkten oder einer Frei-
handlinie besteht.

Die Grundelemente der Farb-Transferfunktion sind Kontrollpunkte im Wertebereich der
Skalardaten. Für diese Kontrollpunkte kann anhand eines Farbkreises und einer Möglich-
keit zur Einstellung der Helligkeit eine beliebige Farbe ausgewählt werden. Die zwischen
den Kontrollpunkten liegenden Werte werden im Farbraum interpoliert.

Die neue Benutzerschnittstelle zur Volumenvisualisierung beschränkt sich jedoch nicht
auf den Transferfunktionseditor, sondern bietet weitere Funktionen über Menüs an. So

152 GERMAN SUMMARY: ZUSAMMENFASSUNG

können Datensätze vom Massenspeicher geladen werden, oder es können der aktuelle
Datensatz und seine Transferfunktion gespeichert werden.

Eine wichtige Funktionalität des Menüs ist die Wahl der Bildrate. Durch diese wird indi-
rekt festgelegt, in welcher Qualitätsstufe der Volumendatensatz dargestellt werden kann.
Im Gegensatz zu einer direkten Wahl der Darstellungsqualität wurde diese Variante ge-
wählt, weil es in virtuellen Umgebungen wichtig ist, die Bildrate konstant zu halten, um
den Immersionseffekt nicht zu gefährden.

Eine weitere Menüfunktion ist der taschenlampenähnliche Erkundungsmodus (Probe Mo-
de). Darin wird ein würfelförmiger Ausschnitt des Datensatzes dargestellt, wodurch man
auch ohne spezielle Transferfunktion in das Innere des Datensatzes hineinsehen kann.
Eine Alternative dazu ist die Schnittfläche, die einen Teil des Datensatzes abschneidet.
Beide Funktionen basieren auf direkter Interaktion im Datenbereich.

Zu den beiden Benutzerstudien wurden zwölf bzw. zehn Probanden eingeladen, von de-
nen die Mehrzahl von Instituten der Universität Stuttgart stammte und Grundwissen über
Volumenvisualisierung hatte. Die Probanden sollten in jeweils zwei Szenarien mit Volu-
mendatensätzen und mit der erstellten Benutzerschnittstelle arbeiten. Vor und nach der
Arbeit in der virtuellen Umgebung mussten die Benutzer Fragebögen ausfüllen, und am
Ende wurde zusätzlich ein Interview durchgeführt. Zudem wurden Audio- und Videoauf-
nahmen der Arbeit in der virtuellen Umgebung angefertigt.

Die meisten der aus der ersten Studie hervorgegangenen Verbesserungsvorschläge wur-
den umgesetzt, und die Probanden wurden in der zweiten Studie gezielt danach gefragt,
wie gut die neue Version benutzbar ist. Es stellte sich am Ende heraus, dass die erstellte
Software im allgemeinen Fall gut zur Arbeit mit Volumendaten einsetzbar ist, jedoch für
spezielle Anwendungsfelder wie Medizin oder Ingenieurwesen individuelle Anpassungen
wünschenswert sind.

Kapitel 5: Parallelisierungs- und Verteilungsmethoden

Im Umfeld einer virtuellen Umgebung mit mehreren Projektionsflächen und Stereodar-
stellung erweist sich der serielle Shear-Warp-Algorithmus hardwarebasierten Techniken
wie der Volumenvisualisierung mit Texturen als in der Rechengeschwindigkeit unterle-
gen. Bei den hier auftretenden großen Ausgabefenstern gerät allerdings auch die hard-
wareunterstützte Technik an ihre Grenzen, da sie durch die Pixel-Füllrate limitiert ist. In
diesem Kapitel wird daher das Potential der Parallelisierung des perspektivischen Shear-
Warp-Algorithmus erforscht.

Nach einer Einführung in Abschnitt 5.1 und einer Betrachtung früherer Arbeiten in Ab-
schnitt 5.2 beschreibt Abschnitt 5.3 die entwickelte Visualisierungsmethode.

Der effiziente Einsatz eines parallelisierten Shear-Warp-Algorithmus setzt einen Parallel-
rechner voraus. Im allgemeinen Fall besitzen leistungsfähige Parallelrechner jedoch keine
Visualisierungshardware, sie können jedoch über eine Netzwerkverbindung an ein Visua-
lisierungssystem angebunden werden. Der in dieser Dissertation beschriebene Ansatz zur
parallelisierten Volumenvisualisierung setzt das Vorhandensein beider Systeme voraus.

GERMAN SUMMARY: ZUSAMMENFASSUNG 153

Die hier beschriebene Idee des parallelisierten perspektivischen Shear-Warp-Algorithmus
basiert darauf, dass das Compositing auf dem Parallelrechner stattfindet, dieser das Zwi-
schenbild an das Visualisierungssystem überträgt, und letzteres mit einem in Hardware
ausgeführten Warp den Volumendatensatz darstellt. Da typischerweise das Zwischenbild
kleiner ist als das Ausgabebild ergibt sich daraus der Vorteil einer geringeren Datenüber-
tragungsmenge über das Netzwerk.

Die Parallelisierung des Algorithmus wurde angelehnt an die von Lacroute durchgeführ-
te Parallelisierung des parallel projizierenden Algorithmus [52]: das Zwischenbild wird
zeilenweise in Abschnitte unterteilt, die von den Knoten des Parallelrechners bearbei-
tet werden. Um diesen Ansatz auf Parallelrechnerarchitekturen mit verteiltem Speicher
durchführen zu können, muss der Volumendatensatz auf allen Knoten zur Verfügung ste-
hen. Eine Optimierung des Speicherbedarfs ist hierbei problematisch, da weiter hinten
liegende Volumenschichten auf weniger Bildzeilen abgebildet werden müssen als Voxel-
zeilen vorhanden sind.

Da die Bildübertragung bei langsamen Netzwerken den Flaschenhals darstellt, wird das
Zwischenbild vor der Übertragung mit einem Lauflängencodierungsverfahren kompri-
miert. Hierbei wird nicht das gesamte Zwischenbild codiert, sondern lediglich der Be-
reich, in dem sich das Volumen befindet. Dieser wird anhand der Shear-Warp-Transforma-
tionsmatrix ermittelt. Dadurch konnte je nach Datensatz, Betrachtungswinkel und Netz-
werkgeschwindikgeit eine Beschleunigung der Datenübertragung um bis zu 90% erzielt
werden.

Auf der Seite des Visualisierungssystems wird das Zwischenbild entschlüsselt und in eine
Textur geladen. Damit andere dargestellte Objekte korrekt vom Volumendatensatz ver-
deckt werden, müssen nicht nur die Farb-, sondern auch die Opazitätswerte des Zwischen-
bilds übertragen werden. Zusammen mit der in Kapitel 3 beschriebenen Eigenschaft des
Warp, die Textur an die Z-Position des eigentlichen Datensatzes zu projizieren, kann da-
mit der Volumendatensatz zusammen mit Elementen der Benutzerschnittstelle dargestellt
werden.

Das Visualisierungssystem hat neben der Grafikdarstellung auch die Aufgabe, die Be-
nutzerkommandos an den Parallelrechner weiterzuleiten. Hierzu wurde ein Protokoll er-
stellt, mit dem Volumendatensätze, Matrizen, sowie Änderungen der Darstellungspara-
meter, wie z.B. der Interpolationsmodus, übertragen werden können. Die Vorgänge der
Bildberechnung und der Benutzerinteraktion wurden verschachtelt, so dass das Visuali-
sierungssystem, anstatt auf den Parallelrechner zu warten, die übrige Szene darstellt und
Benutzereingaben verwaltet.

Das resultierende System wurde auf drei unterschiedlichen Parallelrechnern getestet: ei-
ner SGI Onyx2, einem SUN Fire 6800 Knoten, sowie einem Cluster aus Linux-PCs. Hier-
bei wurde auf der Onyx2 mit 14 Prozessoren eine Bildrate von 3,4 Bildern pro Sekunde
erzielt, die auf der SUN Fire bereits mit 6 Prozessoren erreicht wurde. Der PC-Cluster
erreichte mit 12 Prozessoren 7,4 Bilder pro Sekunde. Weitere Messreihen untersuchen die
Auslastung der Prozessoren, die Übertragungsgeschwindigkeit der Zwischenbilder, so-
wie die Darstellungsgeschwindigkeit im Vergleich mit dem texturhardwarebeschleunigten
Ansatz.

154 GERMAN SUMMARY: ZUSAMMENFASSUNG

Kapitel 6: Volumenvisualisierungssystem

Um die praktische Anwendbarkeit der in den Kapiteln 3 bis 5 beschriebenen Entwicklun-
gen beurteilen zu können, wurden sie in das bestehende Visualisierungssystem COVISE
integriert, welches zuvor keine Möglichkeit zur direkten Volumenvisualisierung bot. In
Kapitel 6 werden die bei diesem Vorgang aufgetretenen Schwierigkeiten und deren Lö-
sungsmöglichkeiten beschrieben.

Das Kapitel ist unterteilt in die folgenden Abschnitte: der erste Abschnitt beschreibt die
zur Entwicklung der Algorithmen eingesetzte Softwareumgebung, die die Basis des In-
tegrationsvorgangs darstellt. Abschnitt 6.2 begründet die Auswahl von COVISE als das
Visualisierungssystem, in das die entwickelten Algorithmen integriert werden sollten.

Abschnitt 6.3 untersucht, welche ursprünglichen Datenformate von COVISE zum Spei-
chern von Volumendaten eingesetzt werden können. Hierbei werden 8- und 16-bit Skalar-
datenformate, sowie 24- und 32-bit Datenformate für vorklassifizierte oder photographi-
sche Volumendaten betrachtet.

In Abschnitt 6.4 wird untersucht, wie die bestehenden Dateiformate von COVISE zur
Speicherung von Volumendaten eingesetzt werden können. Darüberhinaus werden neue
Datenformate vorgestellt, die sich besonders zur Speicherung von Volumendaten eignen,
die in virtuellen Umgebungen betrachtet werden sollen. Besonderheiten sind hier bei-
spielsweise die Speicherung der Position des Datensatzes im Raum.

Die Darstellung der Volumendaten mit unterschiedlichen Benutzerschnittstellen für den
Arbeitsplatz und für virtuelle Umgebungen wird in Abschnitt 6.5 beschrieben. Hierbei
wird auf die jeweiligen besonderen Gegebenheiten eingegangen, die sich durch die Eigen-
schaften der Ein- und Ausgabegeräte ergeben. So ist beispielsweise am Arbeitsplatz eine
verfeinerte Darstellung des Datensatzes möglich, sobald keine Benutzereingaben mehr
erfolgen, während dies in virtuellen Umgebungen nicht möglich ist, da das Bild durch die
permanent neu abgefragte Benutzerposition nicht still steht.

Kapitel 7: Ergebnisse

Kapitel 7 fasst die Resultate dieser Dissertation zusammen, betrachtet ihre wissenschaft-
liche Bedeutung und gibt einen Ausblick auf weitere Forschungsarbeiten auf diesem Ge-
biet. Die Dissertation hatte zum Ziel, die interaktive direkte Volumenvisualisierung zu
verbessern. Diese Aufgabenstellung wurde auf drei Ebenen bearbeitet: mit schnelleren
Darstellungsalgorithmen, mit geeigneten und möglichst intuitiven Interaktionstechniken
und mit effizienten Parallelisierungsmethoden.

Auf dem Gebiet der Darstellungsalgorithmen wurde der perspektivische Shear-Warp-
Algorithmus an virtuelle Umgebungen angepasst, wodurch darin ein sehr schneller CPU-
basierter Visualisierungsansatz zur Verfügung steht. Weiterhin wurde die Technik der Vor-
integration mit dem Shear-Warp-Algorithmus kombiniert, wodurch sich die Bildqualität
signifikant verbessern liess.

GERMAN SUMMARY: ZUSAMMENFASSUNG 155

Die Forschungsarbeiten im Bereich der Interaktionstechniken mit Volumendaten führten
dazu, dass nun eine gut zu bedienende Benutzerschnittstelle zur Arbeit mit Volumendaten
in virtuellen Umgebungen zur Verfügung steht. Durch die durchgeführten Benutzerstudi-
en konnten diese Ergebnisse verifiziert und optimiert werden.

Die Parallelisierung des perspektivischen Shear-Warp-Algorithmus erlaubt den effizien-
ten Einsatz des Algorithmus in virtuellen Umgebungen, wenn diese Zugriff auf einen
Parallelrechner haben.

Schließlich wurde gezeigt, wie die untersuchten Algorithmen und Techniken zu einem
Visualisierungssystem zusammengeführt werden können, um damit die interaktive direkte
Volumenvisualisierung in virtuellen Umgebungen zu ermöglichen.

Abschnitt 7.1 verdeutlicht, dass diese Dissertation alle Komponenten eines interaktiven
Volumenvisualisierungssystems behandelt. Die einzelnen Komponenten werden anhand
eines typischen Visualisierungsablaufs in Bezug zueinander gesetzt, und es wird angege-
ben, wie der geeignetste Visualisierungsalgorithmus ausgewählt werden kann.

In zukünftigen Arbeiten, die in Abschnitt 7.3 vorgeschlagen werden, könnte der perspekti-
vische Shear-Warp-Algorithmus durch die Kombination mit unterschiedlichen Detailstu-
fen oder Datenreduktionsmethoden weiter beschleunigt werden. Eine verbesserte Lastver-
teilung könnte den parallelisierten Algorithmus noch schneller machen. Weiterhin könnte
der Algorithmus durch Kombination von OpenMP und MPI an die in Zukunft häufiger
eingesetzten hybriden Parallelrechner angepasst werden.

Auch die Interaktion mit Volumendaten könnte verbessert werden, indem weitere Tech-
niken zur direkten Interaktion untersucht werden, oder der Transferfunktionseditor wei-
tere Funktionalität erhält. Auch an einer Spezialisierung auf bestimmte fachliche Ein-
satzgebiete könnte durchgeführt werden, wie verschiedentlich in den Benutzerstudien ge-
wünscht.

156 GERMAN SUMMARY: ZUSAMMENFASSUNG

Curriculum Vitae

EDUCATION

08/2003 Ph.D., Computer Science, University of Stuttgart

03/1999 Diplom-Informatiker (M.Sc. equivalent), Computer Science, University of
Stuttgart

01/1998 Master of Science, Computer Science, University of Massachusetts at
Dartmouth, USA

11/1995 Vordiplom (undergraduate degree), Computer Science, University of
Stuttgart

05/1993 Abitur (high school diploma), Geschwister-Scholl-Gymnasium Stuttgart

WORK EXPERIENCE

04/1999 – Present Research assistant in the visualization group at the High Perfor-
mance Computing Center Stuttgart (HLRS)

12/1998 – 02/1999 Intern at IBM Research and Development, Böblingen

12/1994 – 12/1998 Self-employed software developer for office and entertainment
applications

02/1994 – 04/1994 Intern at Daimler-Benz, Stuttgart

09/1993 – 03/1995 Research assistant at the Fraunhofer Institute for Production
Technology and Automation (IPA), Stuttgart

06/1993 – 07/1993 Intern at the Fraunhofer IPA

157

