
Summary

Goal:
Render four channel data sets and allow real-time 
changes of colors and intensities.

Premise:
The majority of voxels contain data of only one chan-
nel.

Method:
•	Store three channels in red, green, and blue texture 

components.
•	Store fourth channel in alpha component of texture.
•	Use pixel shader to map fourth channel data value 

to user defined color.
•	Works best with maximum intensity projection.

Figure 1: Sample of Drosophila larva with four data 
channels, obtained with a confocal laser microscope.

Real-Time Volume Rendering of Four Channel Data Sets
Jürgen P. Schulze and Alexander C. Rice

Brown University, Providence, RI
{schulze,acrice}@cs.brown.edu 

Conclusion

References
•	J. Kniss, S. Premoze, M. Ikits, A. Lefohn, C. Hansen, and E. Praun, 

Gaussian Transfer Functions for Multi-Field Volume Visualization, IEEE 
Visualization ‘03 Proceedings, pp. 65-72, 2003.

•	Leica TCS SP2, Leica Microsystems home page, 2004. URL: 
http://www.leica-microsystems.com

•	Nvidia Cg Toolkit, Nvidia developers’ home page, 2004. URL: 
http://developer.nvidia.com/page/cg_main.html

•	With our software, our collaborators can explore new and complex data sets 
quickly on the desktop and in virtual environments.

•	No more need to merge the fourth channel into slice images with standard 
image processing software.

•	Color mappings can be changed in real-time from within the desktop 
software or the virtual environment.

•	Future work: Improve results achieved when rendering with alpha blending.

Results
•	Integrated shader code with Brown’s Cave software: 4th channel’s hue and 

channel intensities can be controlled directly from within the virtual reality 
Cave.

•	For the performance test we compared three versions of a 512 x 512 x 28 
voxels data set: one with one channel, one with three channels, one with 
four channels (see Figures 1, 2, and 3).

•	We observed a ~30 % performance penalty for rendering four channels vs. 
three (see Table 2).

•	Test conditions: 1024 x 768 pixels resolution, data set reconstructed with 
155 textured polygons, running on Nvidia Quadro FX 3000g.

Introduction
•	This research has emerged from a collaboration with biologists at Brown 

University who work with images from confocal laser scanning microscopes 
(CLSM).

•	CLSM generate stacks of images (z-stacks) from specimen that had been 
stained with up to four different fluorescent proteins.

•	Sample sizes at typically tens of micrometers.
•	Scans with different laser wavelengths result in separate intensity images, 

the voxels (=volumetric pixels) are perfectly co-registered between images.
•	Voxels are located on a cartesian grid.
•	“Channel” is data scanned at a particular wavelength.
•	Biologists are used to seeing the reconstructed samples rendered with 

maximum intensity projection (MIP), when using the CLSM software.
•	Our collaborators use a Leica TCS SP2 [2]. It scans up to four data 

channels and outputs them as one TIFF image per channel and per slice.
•	Slice images typically have 512x512 pixels and are taken at a few dozen 

depths.
•	Before our software had been developed, the biologists used to reconstruct 

the samples with standard image processing software. They used the 
following procedure:

	 -	Map three channels to red, green, blue (RGB, see Figure 2).
	 -	Map fourth channel (Figure 3) to a hue that does not (or not abundantly)
	 	 exist in the RGB data set.
	 -	Alpha-blend image of 4th channel with images of other three channels
	 	 (Figure 1).
•	The above procedure was cumbersome and time consuming, and often had 

to be done several times with the same data set to try different color 
mappings.

Rendering
•	Our algorithm reconstructs the volume with view-aligned textures.
•	Real-time changes of the color mapping (transfer function) are possible 

with a pixel shader, written in Nvidia’s Cg language [3], see Table 1.
•	By using maximum intensity projection (MIP) we do not need to calculate 

opacity: multi-dimensional transfer functions as in Kniss et al. [1] are not 
necessary.

•	The first three channels of volume are stored in the red, green, blue 
components of a 3D texture. The OpenGL extension GL_EXT_texture3D 
is required.

•	Rendering with MIP requires the OpenGL extension 
GL_EXT_blend_minmax.

•	The fourth channel is stored in the alpha channel.
•	The first three channels are stored and rendered in fundamental colors 

(RGB).
•	Fourth channel is rendered with user defined color: Can be selected from 

24 bit color space; for optimum results a color with maximum intensity 

Figure 2: Three channels of Drosophila larva. Figure 3: Fourth channel of Drosophila larva.

should be used, so the renderer can use the full intensity range to map the 
fourth channel.

•	Good choices for the fourth color are: gray, yellow, purple, cyan: all colors 
with equal amounts of two or three fundamental colors.

•	Shader parameters:
	 -	3D texture of RGBA volume data set (pix3dtex).
	 -	Transfer function that maps intensity to data values (pixLUT).
	 -	Color of fourth channel at maximum intensity (pixModifier).
•	Shader first computes color of fragment as if no shader was active 

(origColor).
•	Then it computes intensity of fourth channel (modColor).

several times 

Table 1: Pixel shader code written in Nvidia’s Cg language.

struct PIN 
{
	 float3 coord3d : TEXCOORD0;
};

float4 main(
	 const sampler3D in uniform pix3dtex : TEXTURE0,
	 const sampler2D in uniform pixLUT,
	 const float3 in uniform pixModifier,
	 const PIN in pin) : COLOR0
{
	 uniform float4 origColor = tex3D(pix3dtex, pin.coord3d);
	 uniform float4 surfColor;
	 uniform float modColor = tex2D(pixLUT, float2(0, origColor.w)).w;
	
	 surfColor.x = tex2D(pixLUT, float2(0,origColor.x)).x + pixModifier.x * modColor;
	 surfColor.y = tex2D(pixLUT, float2(0,origColor.y)).y + pixModifier.y * modColor;
	 surfColor.z = tex2D(pixLUT, float2(0,origColor.z)).z + pixModifier.z * modColor;
	 surfColor.w = max(surfColor.x, max(surfColor.y, surfColor.z))
	
	 return surfColor;
}

Table 2: Rendering performance. Data set: 512x512x28 voxels, ren-
dered full screen (1024x768 pixels) with 155 textures.

	Channels	Frame Rate (fps)

	 1	 4.3
	 3	 1.8
	 4	 1.4


