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Abstract
In the first 5 years of virtual reality application research at the California

Institute for Telecommunications and Information Technology (Calit2), we

created numerous software applications for virtual environments. Calit2 has

one of the most advanced virtual reality laboratories with the five-walled

StarCAVE and the world’s first passive stereo, LCD panel-based immersive

virtual reality system, the NexCAVE. The combination of cutting edge hard-

ware, direct access to world class researchers on the campus of UCSD, and

Calit2’s mission to bring the first two together to make new advances at the

intersection of these disciplines enabled us to research the future of scientific

virtual reality applications. This chapter reports on some of the most notable

applications we developed.
1.
 I
ntroduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
1
.1.
 V
R Hardware at Calit2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
1
.2.
 V
R Software Applications . . . . . . . . . . . . . . . . . . . . . . . . . . 221
2.
 V
irtual Reality Technology . . . . . . . . . . . . . . . . . . . . . . . . . 223
2
.1.
 H
igh-Resolution Video Playback in Immersive Virtual Environments . . . . 223
3.
 S
cientific Visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
3
.1.
 I
mmersivePDB: A Protein Browser . . . . . . . . . . . . . . . . . . . . . 234
4.
 R
eal-Time Data Visualization . . . . . . . . . . . . . . . . . . . . . . . . 242
4
.1.
 T
he Virtual Data Center . . . . . . . . . . . . . . . . . . . . . . . . . . . 242
5.
 I
nformation Visualization . . . . . . . . . . . . . . . . . . . . . . . . . . 246
5
.1.
 H
ow Much Information . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
6.
 C
ultural Heritage Visualization . . . . . . . . . . . . . . . . . . . . . . . 253
6
.1.
 W
alking into a da Vinci Masterpiece . . . . . . . . . . . . . . . . . . . . 253
7.
 C
onclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258
A
cknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258
R
eferences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258
1. Introduction

The term virtual reality (VR) first made it to the mainstream about 25 years ago,

when Scott Fisher’s group at the NASA Ames Research Center presented the virtual

interface environment workstation (VIEW) system, a head-mounted display with
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headphones and gloves [1]. However, at the time, technology was not advanced

enough for VR to be economical for real-world applications, and even the video

game industry gave up on it after several attempts in the 1990s at bringing the

technology into video game arcades, for instance, the Trocadero in London.

Today’s VR systems consist, at a minimum, of the following components:

l Graphics rendering units: The computer hardware to compute the virtual scene

and render it to a frame buffer, ready to be sent to a display device. This is

typically a high-end graphics PC.

l 3D stereo display units: Serve as the interface from the computer to the user.

These used to be projectors and screens, but with the advent of 3D flat panel

LCD or plasma displays these are more and more common.

l Tracking system: Serves as the interface from the user to the computer.

VR made a comeback in the past decade, when consumer graphics computers

became powerful enough to compete with high-end, specialized graphics main-

frames. This development brought the cost for graphics rendering down by more

than one order of magnitude, while increasing image fidelity at the same time.

Today, graphics mainframes are no longer being manufactured; they have been

replaced by professional versions of computer gaming hardware, which are based on

their consumer counterparts and thus only marginally more expensive than con-

sumer solutions.

Similar developments have been happening with display and tracking technology.

Tracking systems used to be either wireless and very expensive, or tethered and still

expensive. Today, wireless optical tracking systems are available at a cost similar to

a high-end PC. And with the advent of consumer 3D TVs, VR displays have finally

made it to the consumer market. It remains to be seen if 3D is going to survive in the

consumer market, and if the trend toward making VR feasible in the home is going

to continue.
1.1 VR Hardware at Calit2

At Calit2, we built a number of novel 3D VR display systems over the past

5 years. The most notable ones are the StarCAVE, the NexCAVE, and the AESOP

wall. The StarCAVE [2], as seen in Fig. 1, is a room-sized immersive VR system

with about 10 ft diameter. The user wears polarized glasses and stands in the center

of an array of 15 screens, each driven by two projectors for passive stereo. A cluster

of 18 high-end graphics PCs renders 3D images on 34 HD (high definition) projec-

tors (1920�1080 pixels each) with Nvidia Quadro 5600 graphics cards. We use

passive stereo, so the user has to wear glasses with polarizing filters. In order to give



FIG. 1. The StarCAVE with two users looking at a protein structure.
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a 360 viewing angle, the screens are rear projected. For head and hand tracking, we

use a wireless, optical tracking system with four infrared cameras, mounted at the

top of the StarCAVE. For surround sound output, we have a 5.1 channel surround

sound system.

The NexCAVE [3], shown in Fig. 2, is the first tiled, immersive VR system based

on flat panel displays. The LCD displays use micropolarization to create a stereo

image viewable with polarizing glasses. The system consists of ten 46 in. HD

displays, six high-end graphics PCs, and a two-camera optical tracking system. A

Yamaha 5.1 channel digital sound bar can deliver spatialized sound. The displays

are mounted with overlapping bezels, to minimize the space the bezels cover.

The AESOP wall, shown in Fig. 3, is a monoscopic tiled display wall, consisting

of a 4�4 array of LCD displays, driven by a cluster of five high-end graphics PCs.

The screens have ultrathin bezels, with only about 7 mm bezel space between two

displays. This allows the system to run applications which do not need to worry

about significant parts of the screen not permitting to display pixels, as it is the case

with previous tiled display walls. The AESOP wall also features a two-camera

optical tracking system and a 5.1 channel digital sound bar.



FIG. 2. NexCAVE: 10 overlapping passive stereo LCD displays.
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1.2 VR Software Applications

This chapter is not going to focus on VR hardware, but instead at our recent

developments in VR software. At the Calit2 center of UCSD, we have been

researching and developing VR software since 2005. The VR center at Calit2 is in

a unique position, as it was created, like many other laboratories at Calit2, to be a

shared resource for researchers on the entire UCSD campus to allow them to utilize

VR approaches without having to make the investment in expensive VR hardware

themselves.

The software framework we use in all our VR systems is called COVISE [4]; its

VR renderer is called OpenCOVER [5]. VR applications are written in Cþþ as

COVISE plugins, multiple of which can run at the same time. COVISE abstracts the

fact that the application is running in parallel over many machines and multiple

OpenGL contexts, and automatically handles things such as stereo perspective

calculations and OpenGL context management so that the application developer

does not need to worry about them.

The Calit2 VR group has been working with researchers from a variety of

disciplines at UCSD, but it has also conducted its own independent research into

VR software applications, especially real-time immersive rendering and 3D user

interfaces. In this line of work, we have been focusing on getting away from the



FIG. 3. AESOP Wall: 16 large, monoscopic narrow-bezel LCD displays with tracking and sound.
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traditional mouse and keyboard interface, toward intuitive, immersive 3D interfaces.

To us, good VR software applications use surround visualization and immerse the

user in the data; 3D objects can be found at all possible distances from the user, from

an arm’s length to infinity; and user interaction does not just mean navigation of a

static scene, but it means to interact directly with individual objects in the 3D scene

with as much direct, object-oriented interaction as possible, without using menus or

similar abstract constructs.

This chapter reports on some of the most innovative VR software applications we

have created at Calit2. We are going to present one application from each of the

following five topic areas:

l VR technology: Orthogonal developments of algorithms which do not stand

alone, but are used in conjunction with other applications.

l Scientific visualization: The visualization of data sets which have inherent 3D

structure, so that the mapping of data to the three spatial dimensions and

sometimes also time is given.

l Real-time data visualization: The real-time visualization of data acquired by

sensors and sent over networks.
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l Information visualization: The visualization of data sets which do not have

inherent 3D structure, where the mapping of data to the three spatial dimensions

and time has to be created artificially and sometimes dynamically by the user.

l Cultural heritage: Applications aiming at preserving or investigating objects

and places of a country’s cultural heritage.
2. Virtual Reality Technology

In this section, we report on a project in which we created software infrastructure

which can be used by other VR applications. The project enables high-resolution

video display in multiscreen VR environments. The video can coexist with other 3D

data, so that it can be mapped on other geometry such as virtual screens or buildings.
2.1 High-Resolution Video Playback in

Immersive Virtual Environments

Today, most new feature films, TV shows and documentaries, and a rapidly

growing number of home and professional videos are shot in HD. The most popular

HD resolutions are 720 pixel (1280�720 pixels) and 1080 pixel (1920�1080 pix-

els). In addition to HD, there is the new digital cinema standard, called “4K,” which

describes resolutions from exactly four times HD (3840�2160 pixels) up to

4096�2400 pixels. While no cameras exist for even higher resolution video, it

can be created by stitching together video from lower resolution cameras, or it can

be rendered in the computer.

Real-time graphics applications, such as computer games and VR applications,

often embed video in their virtual worlds. Examples could be a computer game

which intends to realistically visualize Times Square in New York City with its

video screens, or an architectural walk-through of a 3D model of a movie theater

with a movie playing (see Fig. 4), or a surveillance system with many camera feeds.

Integrating video into 3D applications can increase the level of realism, and it can

bring important information into the virtual world.

Because of the large data rate of high-resolution video, easily exceeding hard disk

throughput rates, it is not straightforward to display high-resolution video in real

time. Playing back HD video is already CPU and GPU intensive for today’s

computers, even when it is displayed on a 2D monitor with software like Windows

Media Player or Apple QuickTime. While these video players benefit from hard-

wired, optimized circuits on the graphics card and special operating system routines,



FIG. 4. The video playback plugin embedded into a virtual theater VR application. Users can navigate

into the theater and watch high-resolution videos. The virtual theater application renders 201,688

polygons.
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3D applications which display video in a virtual 3D world cannot benefit from these

optimizations because the video is not aligned with the screen.

Our approach limits the video source to prerecorded material, because we apply a

non-real-time preprocessing step to the data. Our algorithm can display HD and 4K

video, and even higher resolutions as well in a 3D virtual environment, where the

video’s projection on the screen is not rectangular, but a general quadrangle whose

shape depends on the viewing angle and the orientation of the virtual screen plane

with respect to the physical display. Shape and location of this quadrangle change as

the tracked user moves around. Our algorithm is based on mipmapping [6] and tiling

(clip mapping [7]) of the video frames, on top of which we add several optimizations

to maintain a constant frame rate. Mipmapping means that we render the video at as

low a resolution as possible, matching or slightly exceeding the physical display

resolution. This minimizes the data bandwidth during playback. Predictive prefetch-

ing of data further enhances the performance of our system. Our approach is entirely

software-based and only assumes a more recent graphics card. Our demonstration

algorithm is based on the VR framework COVISE and OpenSceneGraph [8].

Besides high resolutions, our algorithm supports the simultaneous rendering of

multiple video streams, each of which can be independently positioned within the

virtual world.
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2.1.1 Related Work
Tiling and mipmapping have often been combined [9–14]. An important variable in

mipmapping is how the appropriate mipmap level is selected. Two approaches are

commonly used: one thatmatches the screen resolution as closely as possible across the

entire screen and one that uses a point of interest to use higher resolution around

the point of interest. LaMar et al. [9] constructed a spatial data structure, a quadtree,

to store multiresolution data sets. The generation of a proper level-of-detail is deter-

mined by two factors: (1) the distance from view point p to a tile and (2) the area a tile
covers in projected space. Given point p, a tile is selected if the distance from the center

of the tile to p is greater than the length of the diagonal of the tile. As the projection

transformation matrix transforms objects closer to p to appear larger and those further
from p smaller, data points closest to the view point have the highest resolution.

Blockbuster [15] is a movie player for high-resolution videos, which runs on tiled

display walls under the DMX (Distributed Xinerama) window manager. It plays

movies in Lawrence Livermore National Labs’ SM format, which supports tiled

images, multiple levels of detail, and several types of intraframe image compression.

The main difference to our approach is that Blockbuster assumes a flat display wall

and renders the video parallel to the screens.
2.1.2 System Overview
DVDs are meant to be played at a constant frame rate: 60 interlaced frames per

second in the NTSC standard. The frame rate for digital cinema is typically 24

frames per second. We refer to these frame rates as the video frame rate, with every

frame being a video frame. We assume the video frame rate to be constant and only

to vary between different video clips.

In interactive computer graphics applications, each frame, which we call an image
frame, typically takes differently long to render, depending on how complex the

scene is. This image frame rate is not variable.
Our video display algorithm needs to solve the problem of rendering a video at a

variable image frame rate. Our strategy is that if rendering an image frame takes longer

than the duration of a video frame,we skip video frames as needed to play the video at a

constant pace, which is a requirement for synchronization with audio, and it keeps

naturalmotions at their natural pace. If rendering an image is faster than the durationof a

video frame, we display the same video frame again in the next image frame.

2.1.2.1 Bandwidth Considerations. An uncompressed 4K

video clip of 10 min at 24 frames per second uses more than 400 GB of disk

space. The bandwidth required to load the entire video easily exceeds the
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performance limit of even today’s high-end PCs. However, our VR display systems

rarely need to render the entire video at full resolution, because the video extends

across multiple screens and the physical resolution of an individual screen is often

much lower than 8 megapixels. Our approach optimizes the loading bandwidth by

loading only those mipmap tiles which are actually going to be rendered.

2.1.2.2 Multiple Instances. One goal we had for our algorithm is

the ability to display multiple video streams concurrently and also to display 3D

geometry along with the videos. For instance, we want to be able to display a virtual

surveillance center with a control room which displays a multitude of videos. This

requires that our algorithm uses a reduced amount of memory for each video stream,

depending on how many streams there are and how much bandwidth they require, so

that it can coexist with the other video streams, as well as the rendering of the 3D

geometry.
2.1.3 Software Design
Figure 5 shows the main components of our system. The video playback renderer
cooperates with three other components: frame manager, mipmapped tile manager,
and LOD mesh generator. Frame manager controls which image frame has to be

rendered at a given time to synchronize with the video frame rate. Mipmapped tile
manager manages a large number of tiles. It first loads metainformation for all tiles,

and whenever the renderer requests a tile for metadata or texture data, it returns all

the necessary data to the renderer. Due to the typically large size of these videos, it is
OpenSceneGraph Plugin

GPU CPU Main memory
GPU video

memory

Video playback
renderer

OpenGL Library OpenSceneGraph

Frame manager

Brick manager

Mesh generator

FIG. 5. System overview.
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impossible to load all data into main memory at once. Thus, the mipmapped tile
manager swaps requested tiles into main memory and then texture memory and

removes the expired tiles. The decision about cache eviction is also made here.Mesh
generator computes the best possible LOD for each region of the playback screen so

that the smallest possible amount of data is copied into the texture, which utilizes

memory resources and bandwidth more efficiently. We integrated the renderer and

its accompanying three components into an OpenSceneGraph plugin for the COV-

ISE software.
2.1.4 Rendering Algorithm
The rendering algorithm for a video stream consists of four steps: (1) mesh

generation, (2) data loading, (3) prefetching, and (4) tile rendering. This routine is

called once for every image frame, and it gets as its input the image frame to render

from the frame manager. The mesh generation algorithm is presented in

Section 2.1.6, and data loading and prefetching are discussed in Section 2.1.7.

Once the algorithm completes mesh generation and data loading, it is ready for

rendering the tiles. The final step is to iterate over the tiles which have to be rendered

in the current image frame to draw them with their corresponding texture data.
2.1.5 Mipmap Generation and Tiling
In our approach, we preprocess the video frames in an off-line step. First, we

extract the frames from the video clip. Then we downsample these frames to a set of

consecutively smaller images by downsizing by 50% at every step, until the size is

smaller or equal to an empirically determined tile size.

Figure 6 shows the layout of the tiles, which are stored in separate TIFF files. An

image is divided into a 2D grid, and the origin of the grid is shown at the bottom left.

Tiles at the rightmost column and at the topmost row are padded with zeros so that

all tiles have a uniform size. Using a uniform size simplifies the rendering process.
2.1.6 Mesh Generation
The first step of rendering is to subdivide the playback screen into a set of tiles,

which we call the mesh. The mesh comprises multiple tiles of different mipmap

levels. The goal of subdividing the screen is to allocate the best possible mipmap

level to each region with a limited number of tiles overall, because the number of

tiles determines the amount of data to be loaded from disk or network.

We render areas closer to the viewer at higher resolution than those farther away.

Rendering at lower resolution does not hurt the overall image quality because, after



FIG. 6. Layout of tiles at multiple mipmap levels. The image is from NASA’s Blue Marble data

set [16].
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perspective projection, the tiles farther from the viewer occupy fewer pixels on the

screen, and the downsampled mipmap texture is still detailed enough to render this

tile correctly without a noticeable change of the image quality. Our algorithm is

based on quadtree traversal. Starting from the root node, which is the maximum

mipmap level of the image, the algorithm checks whether or not the tile visited can

be subdivided further. The area, area(b), of tile b after transformations, that is,

model view, perspective projection and viewport transformation, is used in the

decision rule for the subdivision. Let tileSize denote the size of a tile. Then, if one

tile of a certain mipmap level occupies about tileSize� tileSize pixels on viewport

screen, the subdivision of this tile cannot further improve the image quality of the

region. In virtual environments, the decision rule can be relaxed by adding a constant

value a as follows:

areaðbÞ > a � tileSize � tileSize ð1Þ
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where a can be any float value larger than 1. The algorithm subdivides a tile if

Predicate 1 is true and stops if false. The constant a controls how detailed the image

is rendered. If a is 1, the texel to pixel ratio of the rendered tiles is near 1. However, a
large a makes the mesh algorithm stop the subdivision even if 1 texel of each tile

maps to more than 1 pixel, which creates an image of lower resolution. a is

introduced to control the system between high frame rate and the best image quality.

Another variable, tileLimit, controls the number of tiles to be rendered on a

physical display screen. Tiles in the output list grow exponentially along the

traversal of the quadtree. However, tileLimit guarantees that the rendering system

does not have excessively many tiles on the rendering list. The ideal number for

tileLimit is different from hardware configurations, and a realistic number often used

is around 40�1282 tiles. That is, 40 tiles on one display screen correspond to

40�128�128 texels, which is about 640K texels.

With tileLimit, not all tiles can have the most desired mipmap level. Some tiles

still can be subdivided into four smaller tiles to have higher resolution. Our algo-

rithm, therefore, has to rank all tiles so that it can choose one tile among multiple

possible choices of tiles given the bounded tileLimit value. In order to give priorities
to each tile, a cost function is employed as follows:

cost bð Þ ¼ area bð Þ
distance e; bð Þ ð2Þ

cost(b) denotes the cost for tile b and distance(e, b)measures the distance between

the viewer’s location and the center of tile b. The viewer’s location is given by the

tracking position in the VE. Intuitively, tiles occupying a large area on screen have

higher priorities so that no large tiles of low resolution are left on the list. The

denominator, distance(e, b), gives higher priority to tiles closer to the viewer.

Namely, this term provides a point of interest mechanism; as the viewer walks

toward a specific part of the playback screen, the region around the viewer is set to

higher resolution.

Figure 7 shows an example of a mesh generated by our rendering algorithm. The

image plane is tilted in such a way that the bottom right corner of the plane is closer

to the viewer. Tiles around the bottom right corner have a smaller size, which results

in a higher resolution.

Due to the viewer’s constant movement registered by the head tracker, distance
(e, b) returns updated and normally different values than in the last image frame.

This generally does not allow reusing the mesh generated for the previous frame, so

we have to recompute the mesh for every image frame. Our view frustum culling test

reduces the cost of the quadtree traversal by removing offscreen mesh cells. The

quadtree optimizes this process by culling a culled parent’s child nodes along with it.



FIG. 7. Dynamically generated multiresolution tiled 2D volume.
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Therefore, when the video is very large and spans multiple physical displays, a large

portion of the quadtree is getting culled. As the video gets smaller, the traversal does

not need to go down the quadtree as far anymore. This approach keeps the number of

tiles rendered relatively constant.
2.1.7 Data Loading and Prefetching
The next step is to load the texture data from disk. Loading several megabytes of

video data from disk as well as transferring them to texture memory for every frame

slows down the rendering process as the bandwidth for data reads from hard disk is

much lower than others in the system. We implemented three optimization methods

to mitigate the disk bottleneck: prefetching, asynchronous disk I/O, and DXT

compression.

2.1.7.1 Prefetching. When videos are displayed in the StarCAVE,

users either walk around the scene without paying particular attention to the videos,

or they stop to watch a video clip. Even if they stop, there is always a slight change

of the viewer position due to head tracking, but it is much smaller than when the user

walks around. Therefore, our algorithm optimizes for a stationary viewer, for whom

we found that mipmap meshes differ only by about four tiles.

Another issue is to predict the video frame from which the tiles are to be

prefetched. After rendering video frame n, with n being the index of the video

frame on disk, we calculate the next video frame to be displayed to be (nþk). This
means that we skip video frames (nþ1) to (nþk�1). At every rendering step, k has
to be estimated as correctly as possible, or the system will prefetch unnecessary tiles.
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Again, we adopted a simple, computationally light scheme based on reinforcement

learning [17]. We estimate the next frame by looking at the history of image frame

durations. If the system has been skipping, for instance, every other video frame, we

estimate that in the next image frame we are going to skip a video frame again. More

formally, let An denote the current estimate of how many frames the system will skip

and an be the current observation of the skip. Then, the next estimation of Anþ 1 is

the weighted average between An and an.

Anþ1 ¼ aan þ 1� að ÞAn

where a is a parameter representing how fast the algorithm adapts to new informa-

tion an as opposed to the history An. We use the rounded values of An for the

estimation of how many steps to skip. In order to further improve the accuracy,

the (nþk�1)th and (nþkþ1)th frames are also prefetched. The number of tiles

prefetched is conservatively kept low, from one to four tiles, to prevent prefetching

from generating too much load for the entire system and to utilize only the idle time

of the I/O thread without delaying immediate requests from the rendering process

even in the case of misprediction.
2.1.7.2 Asynchronous Disk I/O. In order to accelerate data trans-

fers between main memory and texture memory, a separate thread is dedicated

to asynchronous disk read operations. Every disk read request is sent to the I/O

thread via a message queue and the I/O thread reads data whenever it finds a

message in the queue. There are two queues: a tile request queue and a prefetch

request queue. The tile request queue contains the request from the main thread,

which is for texture data of a tile that is needed to render the current frame. The

prefetch request queue contains requests for texture data of a tile which will be

needed in the near future. The messages from the tile request queue always have a

priority over the messages from the prefetch request queue. In addition, the request

for data loading is made as soon as the main thread finds a tile which will be needed

for rendering. By posting disk read requests as early as possible, the parallelism

between the rendering process and disk operations can be maximized. Another

message used for communication between the main thread and the disk read thread

forwards the current frame number.
2.1.7.3 DXT Compression. DXT is a lossy compression standard

which allows us to reduce the data rate by a factor of four, without a noticeable loss

of image quality. This compression method works well for video because, due to the

quick frame updates, it is hard for the eye to perceive the compression artifacts.
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2.1.8 Synchronization
The time for rendering an image frame varies between frames, mostly depending

on the number of tiles loaded for each frame. This causes two types of synchroniza-

tion problems: synchronization (1) between frames and (2) between StarCAVE

nodes. The first problem is that, without a synchronization scheme, the video

frame rate changes depending on how many tiles are rendered for the frame,

which varies depending on the viewer’s location.

The second synchronization problem occurs because in a multinode virtual

environment all nodes generally have different workloads and cause an imbalance

in rendering times. For those display nodes that do not render much data, the

rendering time is short, whereas other nodes might need more time for an

image frame update than the video frame rate allows for, so that video frames

have to be skipped. In our StarCAVE system, which consists of 17 rendering

nodes, we update the images on all nodes at the same time, so that the update rate

is equal to the image frame rate of the slowest node.

Our software provides a synchronized time which is the same on all nodes. Using

this clock, we measure the time passed since the start of rendering the first frame,

telapsed. Then, the desired video frame number, d, can be easily computed with the

following formula for a 24-frames per second video clip:

d ¼ dbase þ telapsed
1=24

� �

dbase denotes the frame number of the first frame. dbase will change when a video

stream is paused and later continued. This approach solves the two problems because

the above formula enforces frames to change neither too fast nor too slow, which

solves the first problem, and because telapsed is measured from the globally synchro-

nized clock, which is the solution for the second synchronization problem.
2.1.9 Results
We tested three different videos in the StarCAVE. We distributed the entire video

to the local hard disks of the rendering nodes to avoid network bottlenecks. We used

three different video clips: (1) A 1200 frame 4K clip showing a tornado simulation

created by the National Center for Supercomputing Applications (NCSA); (2) The

same tornado clip at a quarter of its original resolution; (3) A set of 24 microscopy

images (14914�10341 pixels) from the National Center for Microscopy and Imag-

ing Research (NCMIR). We preprocessed each of the video clips with our tiling and

mipmapping tool and used a tile size of 512�512 pixels. Each display panel has full

HD 1080 pixel resolution. Figure 8 shows the tornado clip in the StarCAVE.



FIG. 8. The VR video playback application in the StarCAVE with creator Han Suk Kim.
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Table I shows the frame rates for various settings. Because the StarCAVE dis-

plays stereoscopic images, the frame rate here is defined as the time to render two

images. Note that right eye images are rendered faster than left eye images, because

they are rendered second and can thus benefit from the cached tiles loaded for the

left eye. All measurements were averaged over a full playback cycle of each clip.
2.1.10 Conclusion
We showed and discussed the design and implementation of high-resolution video

textures in virtual environments. In order to achieve a constant video frame rate, we

created multiple levels of detail and dynamically subdivide the video into a set of

tiles with different levels of detail. For efficient disk read operations, we assume that

the plane will not change too much between image frames and prefetch tiles for the

next frame. This helps overlap rendering with texture copying. In addition, synchro-

nization was considered to sync the speed of rendering image frames and the video

frame rate. Our experiments showed that our system provides constant frame rates

and usable video playback performance.



Table I

FRAME RATES FROM THREE DIFFERENT VIDEO SOURCES

Video clip 2K Video 1920�1080 4K Video 3840�2160 Microscopy 12,941�10,341

Configuration Opt No opt LOD Opt No opt LOD Opt No opt LOD

2�2 panels 23.7 7.5 44.2 9.4 2.7 26.0 8.9 2.8 26.7

Single panels 20.4 5.0 59.6 18.0 4.9 45.1 21.8 6.1 58.4

Frame rate (frames per second) is the reciprocal of the time to render two images (stereoscopic

image from left and right eye) and is averaged over a full playback cycle of each clip. We tested video

playback on four (2�2) panels and on a single panel.
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3. Scientific Visualization

Scientific visualization is the general term for almost all of the visualization

projects we do at Calit2. This section reports on a very typical, albeit particularly

sophisticated application we developed in close collaboration with scientists at

UCSD. It is also our most successful application in a sense of how many scientists

have used it for real work.
3.1 ImmersivePDB: A Protein Browser

To offer a new way of looking at molecular structure, we created a VR application

to view data sets of the Protein Data Bank (PDB) [18] from the Research Colla-

boratory for Structural Bioinformatics (RCSB). The application can display the 3D

macromolecular structures from the PDB in any of our virtual environments. Using

the program ImmersivePDB, the viewer can move through and around a structure

projected in VR. Structures can be compared to one another, they can be automati-

cally aligned, and a variety of visualization modes can be selected from. The

software has an interface that makes a connection to the RCSB PDB Web site to

download and display files. Both single user and collaborative modes are supported.

To our knowledge, ImmersivePDB is the most fully featured protein browser for

virtual environments, which is fully controllable from within the 3D world. In other

approaches, for instance, PyMOL’s [19] CAVE module, the virtual environment is

only used to view and navigate the protein structures, but all other interaction like

selecting the visualization mode, etc. is done at the head node in a 2D mouse/

keyboard-controlled application.
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3.1.1 Data Bank Access
The PDB currently contains over 60,000 protein structures, each of which has a

unique, four-letter identifier. For hemoglobin, for instance, the identifier is 4HHB.

The user can specify the protein ID in one of two ways: either during a VR session

with the Loader window, or in the COVISE configuration file to add a preset menu

item for the structure (Fig. 9).

Once the user selects a PDB ID, the system first checks the local cache for the

PDB file. If the file is already in the cache, it will not be downloaded or converted to

VRML again. If the file is not in the cache, it will be downloaded from the PDB

server to the local visualization system with the following command line for

hemoglobin:

wget www.pdb.org/pdb/files/4HHB.pdb

After the download, the file will automatically be converted to three visual

representations: cartoon view, stick view, and surface view. All three representa-

tions will be stored on disk as VRML files. The conversion happens using a Python

script which calls functions of the molecular visualization toolkit PyMOL [19]. The

script is called with the following command:

pymol.exe -qcr batch.py -- 4HHB.pdb
FIG. 9. A StarCAVE user dialing the PDB ID for hemoglobin into the ImmersivePDB loader

window.
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This command calls the following Python script to create three VRML files for

the three supported visual representations.

from pymol import cmd

from pymol import preset

from pymol import util

from glob import glob

import sys

import os

path = ""

params = []

basepath = os. getcwd()

try:

index = sys. argv. index ("--")

params = sys. argv [index:]

if (len(params) == 2):

path = params [1]

cmd. cd (path)

else:

print "No Path specified"

except ValueError:

print "No Path specified"

for file in glob("*.pdb"):

listname = file. split(".")

name = listname[0];

cmd. load(file, name)

cmd. hide("all")

cmd. show("sticks")

cmd. save(name + "stix.wrl")

cmd. hide ("all")

preset. pretty(name)

cmd. save (name + "cart. wrl")

cmd. hide ("all")

cmd. show ("surface")

cmd. save (name +"surf. wrl")

cmd. delete ("all")

cmd. system ("rm -f"+ file)

print "Created " + name + " models"

cmd. cd(basepath)
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3.1.2 Protein Morphs
In addition to proteins from the PDB, our system can visualize protein morphs

from the Morph Server of the Database of Macromolecular Movements (Mol-

movdb) at Yale University. For instance, the calcium pump will be downloaded

with the following command line:

wget -np www.molmovdb.org/tmp/396506-12995.tar.gz

Once the tar file has been downloaded, the time steps will be extracted as PDB

files. The PDB files will be processed by the same PyMOL script as individual

structures. The resulting VRML files will be loaded into an OpenSceneGraph

Switch node, so that by switching through the time step models, the system can

animate the morph.
3.1.3 Visualization Modes
Our PDB viewer supports three visualization modes for protein structures:

cartoon, stick and surface. These can be selected from a VR menu which comes

up when the user right clicks on a protein.

Our system is not limited to displaying one protein at a time. Instead, whenever

the user loads a protein, it will be loaded in addition to what has already been loaded

and displayed. Each protein can be moved around in 3D space independently, so the

user can arrange many proteins around him to compare them or explore their

differences.

When it comes to selecting a protein with the input device, we use a special

selection mode for the proteins. Normally, in our VR system, users select objects

with a virtual laser pointer or stick, by intersecting the pointer with an object.

However, in the case of proteins, this is more difficult because the proteins are not

solid objects, but they have rather large open areas in between the carbon chains.

Hence, the user will often point at the protein without actually intersecting its

geometry. We solved this problem by not intersecting with the geometry, but instead

intersect with the protein’s bounding box. We call the data structure, we use for this

selection, the PickBox. Every protein is loaded into its own PickBox, so that the user

can select individual proteins when multiple are loaded.

Once multiple proteins are loaded into the system, the user can choose to either

lay them out manually by moving them to where the user wants them, or an

automatic layout manager can be selected from a VR menu. We offer two different

layouts: grid layout, which arranges the proteins in an array, or cylinder layout,

where the proteins are arranged around the user on a virtual cylinder (e.g., Fig. 10).

Radius and density of proteins on the cylinder are configurable.
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3.1.4 Gradual Fading Between Visualization
Modes
In some situations, the user wants to switch between two or all three protein

visualization modes we support (cartoon, surface, stick). This can either be

done manually, but checking selecting the respective boxes in the property sheet

of the protein. Or, this can be done automatically as follows. If automatic mode

is selected, the software will switch automatically between the selected visualization

modes, based on the user’s distance from the protein. Switches between modes

do not occur suddenly, but the modes are faded in and out gradually, as the user

moves. This, for instance, will allow the user to select surface and cartoon mode, and

then gradually fade between them by moving closer to the protein, in which case it

fades to cartoon mode, or farther away, and it will fade to surface mode. The

parameters for this mode, for instance, the starting distance for the fade and the

distance by which the visualization mode has fully switched to the next, are user

configurable.
FIG. 10. Cylinder layout mode: all proteins are equally spaced on the surface of an invisible cylinder

around the user.
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3.1.5 Collaborative Mode
The software framework we use for the development of our application proto-

types, COVISE, natively supports collaboration between multiple sites. Custom

applications written for COVISE can utilize the collaboration API to support

collaborative modes within the application. We used this API to make our Immersi-

vePDB application collaborative, which means that we can run instances of it at

multiple sites (there is no theoretical limit to the number of supported sites) and

collaboratively view protein structures.

COVISE will automatically offer three collaboration modes: loose, tight, and

master/slave mode. In loose mode, the collaborators can view a data set indepen-

dently, which means that they all look at the same data set, but their camera positions

are independent from one another. In tight mode, all users share the same camera

view. In master/slave mode, they also share the same camera view, but one user’s

camera motion dominates over the others. This is useful in training situations where

the trainees should not be able to modify the instructor’s view. In loose coupling

mode, each user can see the other user positions indicated by a set of 3D glasses, a

checkerboard pattern with an optional institutional logo where the user’s feet are,

and a 3D model of a hand with a pointer. This simple indication of an avatar for the

collaborators shows what they look at and point to, which is useful when an audio

connection is available to the collaborators as well.

Collaborative mode does not require particularly fast network connections. Even

standard internet is normally fast enough for smooth collaboration. The bandwidth

requirements are minimal, because only the user locations are sent over the network.

Protein data sets need to be stored locally in each collaborator’s cache, or down-

loaded from the PDB when a protein is selected.

Figure 11 shows a collaborative session between our booth at the International

Supercomputer Conference (ISC) 2010 in Hamburg, Germany and our collaborators

at King Abdullah University of Science and Technology (KAUST) in Saudi Arabia.
3.1.6 Amino Acid Sequence Browser
The amino acid browser is a dialog window in the virtual world, which lists all the

amino acid chains of the selected protein structure in textual form. The user can

interact with it in two ways: one is that the user can select a specific amino acid in

the dialog window, and upon selection see where in the protein, the corresponding

molecule is located, indicated by a cone-shaped marker. This also works the other

way around: the user can move the marker to a place in the protein to find the place

in the amino acid sequence it corresponds to.



FIG. 11. Collaboration between two sites. Monitor in front shows video of collaborator’s virtual

environment at KAUST University. Stereo goggles, hand with pointer, and checkerboard pattern indicate

collaborator’s location in virtual world.

240 J.P. SCHULZE ET AL.

Author's personal copy
3.1.7 Alignment
The alignment of protein structures helps scientists understand the differences

between them and is an important tool for them. The VR environment is very useful

for the presentation of aligned proteins because it is easier to see the differences

between two aligned proteins in 3D than in 2D, since the aligned offsets between the

proteins generally occur in all three dimensions.

We integrated the multiple structural alignment program MAMMOTH-mult

algorithm [20] into ImmersivePDB. In order to align two proteins, the user

first selects Alignment Mode and loads the two proteins he wants to align. Their

IDs will then be listed in a window, and copies of them are created and put on the

alignment point interactor, a small cube the user can move to a convenient place to

put the aligned proteins. The proteins copied to the alignment point are being

colored in solid colors, with different colors for each protein, so that it is easy to

distinguish them. These colors are user selectable. The alignment itself happens

almost instantaneously and, in our experience, never takes longer than a few

seconds.
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3.1.8 TOPSAN Integration
The Open Protein Structure Annotation Network (TOPSAN) is an open annota-

tion platform, created to provide a way for scientists to share their knowledge about

functions and roles of proteins in their respective organisms. Researchers can add

comments to the data bank through a Deki Wiki interface.

Whenever a structure is loaded by the user, ImmersivePDB connects to the

TOPSAN server to see if information about the structure is available. If so, this

information will be downloaded to the VR viewer and displayed in a floating

window (see Fig. 12).
3.1.9 Conclusions
The ImmersivePDB application has been our oldest, but also our most “polished”

and most used VR application. Researchers from the campus of UCSD, but also

from other universities in Southern California, come to our laboratory to explore

their protein structures interactively in 3D. They have told us time and again that

they often see features of protein structures which they did not see at the desktop,

and they develop a better understanding of the way these proteins function than by

using monitor and mouse.
FIG. 12. TOPSAN creator Sri Krishna Subramanian with the ImmersivePDB team in the

StarCAVE.



242 J.P. SCHULZE ET AL.

Author's personal copy
4. Real-Time Data Visualization

In this section, we are going to present an application which is based on real-time

sensor input. Real-time sensor data is more and more available globally over the

internet, so that monitoring and data processing tools based on these sensors do not

have to be colocated with the sensors, but can be located where the users are.

4.1 The Virtual Data Center

In project GreenLight [21], which has been funded by the National Science

Foundation (NSF) with $2 million over 3 years, researchers at Calit2 purchased

and then populated a Sun Modular Datacenter (Sun MD [22]) with computing,

storage, and networking hardware to measure the energy usage of computing

systems under real-world conditions. The container can accommodate up to 280

servers, with an eco-friendly design that can reduce cooling costs by up to 40%when

compared to traditional server rooms. The Sun MD’s closed-loop water-cooling

system uses built-in heat exchanges between equipment racks to channel air flow.

This allows the unit to cool 25 kW per rack, roughly five times the cooling capacity

of typical data centers.

The power consumption of each component in the Sun MD container is constantly

being measured by networked Avocent power strips, and the data is sent to a central

server. The measurements include data from temperature sensors in 40 locations

around the container, to study the energy flow through the system. The goal of

project GreenLight is to learn how computer hardware and software can be made

more energy efficient. Early results for computer graphics hardware and software

are already available [23]. In the following sections, we are going to report

on the technical details of the implementation of our virtual reality monitoring

application in greater detail.
4.1.1 3D Model
To help researchers understand power consumption and temperature distribution

in the SunMD container, we developed a 3D model of the SunMD to visualize these

measurements spatially. The 3D model, which is depicted in Fig. 13, is based on a

CADmodel of the data center from SunMicrosystems. To this, we added 3D models

of the installed computer systems, such as servers, network switches, and storage

systems. The model of the data center is a complete replica of the container, which

allows the user to open the doors, enter the container, and pull out the computer

racks, all by directly interacting with the 3D objects in VR. We even included a few



FIG. 13. Our 3D model of the Sun Mobile Data Center. Left: Bird’s eye view. Right: View from the

front in the StarCAVE.
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dynamic elements like spinning fans and conduits which move with the racks when

they get pulled out, to make the model as realistic as possible. We embedded the 3D

model of the container in an aerial image of the campus of UCSD, where we placed

it in the location it was physically installed. Around the container, we display a

cylindrical view of the surrounding area, so that when the user is located at the

container, the view around resembles what it is in reality. This is similar to the

panoramic view “bubbles” Google Earth’s Streetview mode uses.

We created the 3D model of the container and its content with Autodesk 3ds Max,

which we also used for many of the interactive components. 3ds Max allows to

connect VRML TouchSensors to geometry, which provide a way to trigger Java-

Script code when the user clicks on them. JavaScript controls all interactions which

cause geometry displacement in the model, such as doors which open or racks which

get pulled out. Other interactions, such as the selection of individual components,

were implemented in Cþþ, referencing geometry in the container. In order to

reference this geometry correctly, we use a common scheme of unique names for

the geometry of the scene between the 3ds Max model and the VR application.

The VR application was created as a plugin for the VR software framework

COVISE [4], which we use for the development of most of our VR applications.

COVISE uses the OpenSceneGraph library [8] for its graphics subsystem. We

exported the 3ds Max model with COVISE’s own VRML exporter to a .wrl file.

Our COVISE plugin loads that VRML file and adds its geometry to the scene graph.

In addition to the static model of the container, this file also contains the touch

sensor nodes with their associated JavaScript functions to control animation.
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Our VR application connects via Web services to the central data server [24],

which collects and stores the real-time information from the different types of

sensors in the container and retrieves the status of the container in real time.

Once received, this data is stored in XML files on our visualization server. We

then parse these files to extract the sensor data to display in the VR model. Figure 14

shows two examples of how the instrumented components in the container are

displayed using different colors depending on the type of measurement selected.

For instance, when looking at temperature data, the components in the container

may be depicted in red to indicate a high temperature, and green when they are

running cool. This gives the user a quick overview of the state of the devices in the

container. We implemented this functionality with an OpenSceneGraph node visi-

tor, which traverses only the part of the scene graph with the computer components

and changes their material properties depending on the measured data values. The

connection between the data values and the geometry is established by the unique

naming scheme mentioned above.

Our 3D application allows a user to visit the data center in VR, without having to

physically go to the container. This saves on transportation cost and time but also has

further reaching consequences—by allowing technicians and researchers to view the

status of the container without having to go there, open it and thus allowing the cool

air to escape from it, the measurements will not be interrupted. Many routine

maintenance jobs, such as checks for available space, the status of a component,

or repairs, can be avoided or at least optimized this way.
FIG. 14. Left: Bird’s eye view of the container with translucent walls, using the same camera

perspective as in Fig. 13. Right: The container displayed in the StarCAVE.
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The main purpose of the virtual container is to allow scientists who measure the

power consumption and performance of their algorithms, to view these measure-

ments spatially. The virtual environment can give clues on whether one hardware

component affects another by, for instance, blowing warm air into the other

machine’s air intake, in which case that machine might run warmer than it would

without the hot machine. These side effects can be much more easily detected in a

spatial model of the hardware components than in the Web interface. The 3D

visualization application can also be used for educational purposes or to reduce

maintenance times, by indicating to technicians, the hardware that exhibits

problems.
4.1.2 Data Visualization
One result of our research on how to effectively display the data from the

GreenLight instrument is about the display of this data in the 3D model. Whereas

we first implemented a method to display the data as 2D graphs, which we displayed

in the 3D environment, we found that this method made it hard to associate the graph

with a certain component in the container, even if the component was highlighted.

Also, only a limited number of graphs can be displayed at the same time. Therefore,

we decided to put the information about the devices directly on their visual repre-

sentation by coloring their surface with an appropriate color scheme. This approach

makes it harder to see small differences in the data because it is hard to distinguish

small differences in color; however, it allows the state of all the hardware to be

displayed in the container at once.

Our visualization method of coloring the components in the container led to

implementation of the “X-ray mode.” Originally, all of the geometry of the container

and its components was opaque, so the user had to pull out the computer racks to see

the components; this was cumbersome and did not allow simultaneous viewing of all

devices. Making the noninstrumented geometry in the container translucent, allowed

for simultaneous viewing of all the instrumented geometry, without the need for

moving racks. The user is allowed to switch between opaque and X-ray mode

because it is sometimes useful to see the container the way it looks in reality, for

example, technicians can train for where to find defective components and how to

get to them. The user of the interactive system can choose which types of IT

components should be selected: all components in the container; or only a subset:

switches, storage systems, rack PCs; PC towers; or other components.

During our research and development of the virtual data center, we found that the

configuration of the components in the container changes quite frequently, mostly

when new components are added and old ones get replaced. Previously, our human

3D modeler updated the 3D model with a CAD tool to represent the new
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configuration of devices, and in addition, the sensor data was remapped to reflect

these changes. To allow a system administrator without 3D modeling skills to make

these changes, and to make them much faster, a database was implemented to

describe the configuration of the devices in the container. This approach allows

devices to be added, moved, and removed quickly and easily without the need for a

3D modeling tool. The 3D modeling tool is still needed when new types of devices

are added to the container for which a 3D model has not yet been created.
4.1.3 Conclusions
We presented a visualization tool to view live data from a Web server, mapped

onto geometry in a virtual 3D replica of Calit2’s mobile data center. This approach

allows users to easily view the data acquired by the power consumption sensors in

the data center, and it shows clearly where exactly the hardware is installed. This can

reduce the amount of in-person visits to the data center, which can play an important

role if the data center is located far away from the scientists and engineers using it.

The current version of the interactive software application leaves various things to

be desired. In the future, we plan to use the virtual environment not only to view the

state of our data center, but also to actively control it. This will require the addition

of a data path back to the data center, along with access control mechanisms, but it

will be a very intuitive, yet powerful way to administer a data center. We also plan to

install additional sensors to be able to obtain a more accurate spatial map of the

temperature distribution in the Sun MD. This will help optimize the spatial arrange-

ment of the IT devices in the container to minimize the HVAC requirements.
5. Information Visualization

This section showcases an application designed to display data in VR which does

not have inherent 2D or 3D structure. This type of data visualization is often called

“information visualization.” The challenge of this type of data is to find effective

mappings from the multidimensional data domain to the three spatial dimensions in

VR systems, as well as time which can sometimes be used as a fourth, independent

dimension. We also utilize the unique features of VR, such as 3D stereo, immersion,

surround, high-resolution screens, head tracking, and 3D input, to make the higher-

dimensional data set more accessible.
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5.1 How Much Information

Data is being created at exponentially increasing rates, driven in part by the

decreasing costs and increasing number of embedded processors sold each year.

Stories abound of scientific data streams are not analyzed due to lack of time.

Commercial enterprises have for decades collected operating data in manufacturing,

sales, and elsewhere that they were unable to analyze further.

In an attempt to exploit this profusion of data, enterprises now invest in “Business

Intelligence” (BI) capability. This typically includes a data warehouse with the

ability to retrieve data very flexibly, and software to search for patterns and trends,

both by machine learning and by assisting human analysts. This “data analytics”

software, however, is primarily still based on old models of information presenta-

tion, such as spreadsheets.

The plunging cost of digital hardware now enables alternative ways of presenting

and interacting with information. Office workers have access to hardware more

powerful than engineering workstations a decade ago; megapixel color displays

driven by powerful 3D graphics cards (hundreds of parallel processors running at

speeds >1 GHz [25]) and attached to terabyte storage now add less than $1000 to

the cost of an office computer.

Our research project looks beyond the current desktop environment, to what will

be available in a few years. Falling costs should enable dramatically new interfaces.

However, application-level analytic software is moving only slowly to take advan-

tage of these interfaces. We therefore built prototypes of an application for visual

analytics for the StarCAVE, building on the following key features of it: 3d

graphics, stereo vision, 360� surround projection, and user head tracking. Our

hypothesis is that immersive VR systems can display complex nonspatial data

more effectively than 2D monitors. While we have yet to do a formal user study

on this hypothesis, others did similar studies [26] and found that 3D visualization

can have measurable benefits over 2D visualization.

The StarCAVE costs approximately $1 million when it was built in 2007.

Commercial off-the-shelf versions of most of its components, albeit with signifi-

cantly lower resolution and less immersion, are now accessible for a few thousand

dollars per screen. An example of such a system is the NexCAVE.
5.1.1 Nonspatial Data
The StarCAVE and other VR systems have generally been used for scientific data,

and particularly data with a natural spatial layout. Examples include the data sets

used in the rest of this chapter, as well as architectural models, machine parts,

medical CT and MRI data, or simulation results of blood flow in arteries. It is natural
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to show such data in 3D space, because the mapping from data values to 3D

coordinates is inherent in the underlying problem.

However, with other kinds of scientific problems, and for most enterprise pro-

blems, the data does not have a natural arrangement in a 2D or 3D pattern. For

example, each observation could be an individual in a company, a unit on a

production line, or a different product. Each observation has multiple columns of

quantitative data, again with no natural spatial organization. The question is then

how to take advantage of enhanced spatial visualization in the StarCAVE to better

understand the data.
5.1.2 Data Set
We analyzed a large data set with over 60,000 top-level and 5 billion low-level

observations. It provided the hard drive structure of employees’ computers at

Microsoft over 5 years [27]. This data set gives the topology of the file systems of

each computer, including number of files in each directory, parent directory,

and children directories if any. For each file, it includes the file type, file size, and

various time-stamp information, including creation date, last modification date,

and last access date. This data set allowed us to analyze how employees organized,

and to a limited extent how they used, their computers.
5.1.3 Related Work
Ware and Mitchell [28] showed that on interactive 3D displays, graphs can be an

order of magnitude larger than in 2D and still be read with the same accuracy by

users. We employ this idea by displaying the file system hierarchy as a 3D graph and

add 6� of freedom navigational interaction and head tracking, far exceeding the

rotational effect they used. Our system is based on the idea that large multidimen-

sional databases are best queried by using an interactive visualization tool, as

previously discovered by Stolte et al. [29].

A similar approach to our graph layout algorithm was published by Robertson

et al., who created cone trees [30] for a similar purpose. Our approach differs in that

our graphs are centered around a selected node and grow around it in all directions,

more like Lamping et al.’s hyperbolic tree browser [31], but in 3D. Cone trees grow

in a linear direction, not utilizing 3D space as equally balanced as our graphs. Our

general idea of mapping nonspatial data into a 3D space, however, is not new. Russo

Dos Santos et al. [32] did this for cone trees and other visualization metaphors, but

their approach does not involve 3D interaction beyond navigation, whereas we

support direct interaction with the data as well.
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Parker et al. [33] suggested that using direct 3D interaction and 3D widgets can

have benefits over more traditional visualization methods. Our system was built

with the same motivation, but for a different type of data, and with a very different

implementation of visualization methods.

We also implemented box graphs, which map multidimensional data into a lower

dimensional space. In this case, we map 6D data into 3D space. This general idea is

not new, a good overview of such mappings for 2D was given by Ward [34] in his

XmdvTool. Our approach differs in that we map into 3D space instead of 2D. Our

box graph is similar to an interactive 3D scatterplot [35,36], but it uses box glyphs

instead of points, allowing six dimensions to be displayed for each observation.
5.1.4 Our Visualization System
Queries over more than 60,000 data records are best done by a database. We use a

MySQL database with custom indices to allow for real-time queries from the

StarCAVE. For the visualization of the directory trees, and their analysis, we created

three novel visualization methods: a hyperbolic node graph, a stat box, and a box

graph.

5.1.4.1 Hyperbolic Node Graph. Similar to Lamping et al.’s

hyperbolic tree browser [31], we created a 3D tree which at the beginning is centered

around the root directory of the selected user’s hard disk. Directories are displayed

as spheres, with lines connecting parent and children directories. The user can then

choose to add another user’s directory tree, whose directories will be displayed in a

different color than the first user’s. Common directories will be displayed in a third

color. Even though the data set we had was anonymized, it used consistent hash

codes so that we were able to identify common directories and file extensions.

As opposed to a hyperbolic tree, we map our directory nodes onto invisible,

concentric, and evenly spaced spheres around the root directory. Since we use a

surround visualization system, there is no need to limit the virtual width, as opposed

to 2D graphs which cannot extend beyond the edge of the screen or paper they are

displayed on.

When the user clicks on a directory node, the graph automatically recenters on

this directory. This allows the user to study a particular part of the tree, even one that

is deep down in the tree, while still taking advantage of the 3D space around the user

to spread out the nodes of interest.

As shown on the screenshot in Fig. 15, a click on a directory node with a different

button brings up four wheel graphs, showing information about the file types in the

selected directory, as well as in the entire subtree including and below the selected



FIG. 15. Screenshot of our 3D hyperbolic graph with node and edge highlighting, as well as wheel

graphs and menus.
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directory. For each of the above, there is one graph showing the number of files, and

one showing the accumulated file size. The wheel graphs are cylinders with bars

extending out from the center, the length of the bars indicating file size or number of

files of a certain type. We distinguish 11 different file types, based on file exten-

sions: audio, binary, library, text, code, compressed, internet, office, image, video,

and other. The user can select between a linear scale and a logarithmic scale for the

length of the bars. We find that the wheel graphs occlude less of the scene than

traditional bar graphs would, while still conveying the data similarly well. In

addition to the wheel graphs, we display a text box which lists file sizes and other

information about the selected directory in numeric form. Figure 16 shows what our

hyperbolic graph looks like in the StarCAVE.
5.1.4.2 Stat Box. In order to answer questions about how many of the

files on disk were accessed more recently, we created a novel visualization widget,

which we call the stat box. The stat box consists of a height field where the last file

access date is mapped to the x-axis (starting on left with date of directory scan, older
files to the right), the user’s directories mapped to the y-axis, and the number of files

per directory mapped to the z-axis (height). File age can be selected to be one of the
three dates associated with each file: creation date, last modification date, or last

access date.



FIG. 16. Hyperbolic graph with wheel graphs in the StarCAVE.
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In addition to viewing the stat box as it is, the user can choose to select a certain

position on the x-axis to set a boundary for file age. Once the user selects this value,
it is visually shown as a translucent plane parallel to the y/z-plane. This plane can be
moved along the x-axis with the analog joystick on the 3D input device. Whenever

this plane is displayed, all those directories containing files with less than the

selected value will be highlighted in the corresponding hyperbolic graph; files

with greater values will be dimmed.

5.1.4.3 Box Graph. The box graph (see Fig. 17) is similar to a scatter

plot, but with rectangular boxes instead of points. The boxes are large enough for the

user to distinguish differences in shape and color. This graph type allows us to

visualize seven dimensions of data records in one graph: three dimensions for the

location of the box; three for width, height, and depth of the box; and one for the

color. We designed our box graph to map data dimensions to visual parameters

as follows. x-axis¼ file type, y-axis¼user bin, z-axis¼average file age,

width¼average number of files per directory, height¼number of directories,

depth¼average file size, color¼ file type. We map file type both to the x-axis
coordinate and box color, so that it is easier to distinguish different rows in the

graph from one another. We choose the depth of the boxes to be the average file size,

so that the box volume indicates the total number of bytes a user has of the respective



FIG. 17. Box graph in the StarCAVE.
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file type. (Total bytes¼number of directories�average number of files per direc-

tory�average number of bytes per file.)

Note that we do not draw a box for the file types of individual users, but groups of

users. For example, we sort the users of each year’s survey by the total number of

bytes they store on their hard disk. We then bin a number of users together and

map them to one unit on the y-axis. This way we can view the data of an entire year

in one graph.

We find that when looking at the box graph in the StarCAVE, we can visualize a

much larger amount of data thanwe can at the desktop.We believe that this is because

of the surround nature of the StarCAVE, which allows us to get close to one part of the

graph, but still see all the rest of it in the distance. Also, head tracking allows us to

“look around” boxes which would otherwise occlude other boxes behind them.

In the menu, the user can interactively scale the box size, or any of the grid

coordinate axes to find a good balance between size of the graph and its density.

In addition, the user can choose to use a logarithmic scale for these values. The user

can also choose to display a striped grid at the bottom of the graph, which helps

estimate distance from the viewer. Another option are base lines, which are vertical

lines connecting each box to the bottom of the graph. Rulers can be selected to help

judge the size of the boxes in each dimension. However, they also considerably

impact the frame rate because every box gets a set of lines attached to it.
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5.1.5 Conclusions
We created an interactive visualization system for file systems, with the ability to

compare many users’ file systems to one another and to display up to 6.5 variables

simultaneously for each observation. Through a combination of direct interaction

with data points and menus for more abstract functionality, we are able to use the

system entirely from within our virtual environment, without the need to resort to

keyboard and mouse. Our visualization system makes good use of the immersive

quality of surround VR systems, as well as direct 3D interaction.
6. Cultural Heritage Visualization

In this section, we describe a project we did with Calit2’s cultural heritage

researcher Maurizio Seracini. It exemplifies how this science can benefit frommodern

visualization technology, even if the objects studied are hundreds of years old.
6.1 Walking into a da Vinci Masterpiece

The Adoration of the Magi is an early painting by Leonardo da Vinci 18.

Leonardo was given the commission by the Augustinian monks of San Donato a

Scopeto in Florence, but departed for Milan the following year, leaving the painting

unfinished. It has been in the Uffizi Gallery in Florence since 1670. Three hundred

and thirty three years later, in 2003, cultural heritage researcher Maurizio Seracini,

sponsored by the Kalpa Group of Loel Guinness, got exclusive access to this

masterpiece and took very high-resolution photographs of it under different wave

lengths. Under each wave length, he took hundreds of overlapping close-up pictures

of the artwork and carefully stitched them together to high-resolution image files

with up to 25,267�11,581 pixels (�292 megapixels; Fig. 18).

In order to display them in our VR environments, we use OpenSceneGraph’s

terrain rendering engine VirtualPlanetBuilder [37] and treat the images as if they

were terrains with an elevation of zero. VirtualPlanetBuilder uses the GDAL [38]

library to subdivide the large image into smaller sections, called tiles, and stores

these at a number of different resolutions, so that the rendering engine can use

mipmapping to render them. This engine is designed to dynamically load the tiles in

as needed and automatically select an appropriate mipmap level, while strictly

sustaining an interactive frame rate of at least 20 frames per second. The tiled and

mipmapped images are created with OpenSceneGraph’s osgdem tool [37], which

creates .osga files as its output, which encapsulate all tiles and mipmap levels in one



FIG. 18. Leonardo da Vinci: Adoration of the Magi. As seen at Uffizi Gallery, Florence, Italy.
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file. The osgdem application is a command line program. A sample call to convert

TIFF file Adoration-IR.tif looks like this:

osgdem -t Adoration-IR.tif -1 6

-o Adoration-IR.ive -a Adoration-IR.osga
6.1.1 The Application in a 3D Virtual
Environment
Our COVISE plugin can load and display multiple such high-resolution spectral

image at the same time and still operate at interactive frame rates. Each image can be

separately positioned in the 3D world, and the user can click on them to move them

around, as seen in Fig. 19A. Alternatively, the user can choose to display the images

as a set, which means they will be stacked up and aligned with one another

(Fig. 19B). The distance between the images can be adjusted with a dial and can

be reduced to practically zero (exactly zero would introduce z-buffer fighting).

If in stack mode the images do not align well, the user can get into manual

alignment mode. In this mode, one can place a cone-shaped marker on a feature

point which occurs in each spectral image, as seen in Fig. 20. Once all cones are



FIG. 19. Philip Weber at Calit2’s stereo display wall, viewing four spectral versions of da Vinci’s “The

Adoration of the Magi” (visible light, ultraviolet, infrared, X-ray). On the left (A), they are being viewed

individually, on the right (B), as a set.

FIG. 20. Philip Weber placing alignment markers on “The Adoration of the Magi.”
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placed, the images are shifted so that the selected feature points align. With this

method, we can only compensate for translational misalignment. Scale, rotation, and

potential intraimage warping cannot be compensated for with our system but would

be feasible to implement; we simply did not encounter such misalignment with

our images.
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When the images are all in one plane, the user can switch to amode inwhich they can

be made translucent, depending on the viewer position, in the following way: the

physical space the viewer operates in is subdivided into as many zones as there are

images. Each zone corresponds to one of the spectral images and is characterized by its

distance from the screen. The software then dynamically adjusts the opacity of the

images such that the images which corresponds to the zone the user is in will be

displayed fully opaque when the user is in the center of the zone, and it will be more

translucent the further the user is away from the center. At the edge of the zone,

the image will be at 50% of its opacity, and in the next zone’s center, the image will be

entirely transparent, making it invisible. This allows the user to select one of the images

by adjusting their distance from the screen, while the transitions in between are smooth.

Inmany demonstrations wherewe let the visitors try out the application, this showed to

be a very intuitive way to explore the various spectral images. Figure 21 shows a detail

view of the Adoration of the Magi in visible light and infrared.
6.1.2 The Application on a 2D Display

with 3D Input
We first created this application for 3D display systems, which make it an

immersive experience, especially in free-floating image mode where all spectral

images can be moved separately, so that the user can put them side by side to

compare them with one another, or even arrange them around the user. However, in

stack mode when the user looks at the stack perpendicularly, 3D plays no longer a

role, a 2D display system would do just as well at displaying the images.
FIG. 21. Detail view of the “Adoration of the Magi” under different spectra of light. Left: visible light.

Right: infrared. Images provided by Maurizio Seracini, copyright by Loel Guinness.
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This led us to install the application in our auditorium, where it runs on a high-end

graphics PC with dual Nvidia Quadro 4500 graphics cards. A 10,000 lumen Sony

SRX-R110 projector displays the image on the 32�18 ft screen at full 4K resolution

of 3840�2160 pixels. On the stage, we installed a tethered Ascension Flock of

Birds tracking system with a Wanda input device to allow the presenter to interact

with the high-resolution painting in real time, using the same 3D input method as in

the initially used 3D VR environment. Only now, user and audience do not need to

wear glasses, which helps given that the auditorium can hold up to 200 people.

Because the auditorium environment requires us to use a fixed viewpoint when

rendering the image, given the size of the audience, we do not use head tracking in it.

Therefore, the user position cannot be derived from the head position. Instead, we

use the wand position as the user position for our fading effect. We adjusted the

width of the viewing zones to match the size of the stage, so that the user can “walk

into the da Vinci masterpiece.” The user can also use the 3D input device to pan the

images left/right and up/down by clicking on a point in the painting with the virtual

stick, and dragging it into the desired direction. Scaling is implemented by twisting

one’s hand. Clockwise rotation scales the image up, anticlockwise scales it down.

Figure 22 shows a typical demonstration situation with a narrator and a separate

system operator.
FIG. 22. “Walking into a da Vinci masterpiece” demonstration on the 4K screen in Calit2’s

auditorium.
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This combination of a 2D display and 3D input has shown to be very effective in

demonstrations and motivated us to consider it again for future applications. The

main benefit is that the software can be shown to a much larger audience than in, say,

the StarCAVE. The 3D input device with its six degrees of freedom allows for a

much greater variety of input than a traditional mouse.
7. Conclusion

We presented five software applications developed at Calit2 over the past 5 years,

which we consider best practice within five application categories. Each of these

applications utilizes the unique features of VR and could not be used equally well at

the desktop with keyboard and mouse. We believe that, especially with dropping

cost for VR hardware, software will more and more be developed specifically for

VR environments, as opposed to first for desktop systems, and then adapted to VR at

a later point. This development is going to give researchers, engineers, and con-

sumers powerful software applications to solve their day-to-day problems in new,

more intuitive, and more efficient ways. We are excited to be part of this develop-

ment at this important time when VR is no longer cost prohibitive.
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