Democratizing Rendering for Multiple Viewers in Surround VR Systems

Jirrgen P. Schulze', Daniel Acevedo?, John Mangan', Andrew Prudhomme!, Phi Nguyen', Philip Weber!
1 University of California San Diego, La Jolla, CA, USA
2 King Abdullah University of Science and Technology, Thuwal, Saudi Arabia

ABSTRACT

We present a new approach for how multiple users’ views can be
rendered in a surround virtual environment without using special
multi-view hardware. It is based on the idea that different parts of
the screen are often viewed by different users, so that they can be
rendered from their own view point, or at least from a point closer
to their view point than traditionally expected. The vast majority of
3D virtual reality systems are designed for one head-tracked user,
and a number of passive viewers. Only the head tracked user gets
to see the correct view of the scene, everybody else sees a distorted
image. We reduce this problem by algorithmically democratizing
the rendering view point among all tracked users. Researchers have
proposed solutions for multiple tracked users, but most of them re-
quire major changes to the display hardware of the VR system, such
as additional projectors or custom VR glasses. Our approach does
not require additional hardware, except the ability to track each par-
ticipating user. We propose three versions of our multi-viewer al-
gorithm. Each of them balances image distortion and frame rate in
different ways, making them more or less suitable for certain ap-
plication scenarios. Our most sophisticated algorithm renders each
pixel from its own, optimized camera perspective, which depends
on all tracked users’ head positions and orientations.

Index Terms: 1.3.3 [Computer Graphics]: Picture/Image
Generation—Display Algorithms; 1.3.7 [Computer Graphics]:
Three-Dimensional Graphics and Realism—Virtual Reality

1 INTRODUCTION

The vast majority of existing immersive virtual reality (VR) sys-
tems use a tracking system to track one user’s head, as well as a
hand-held 3D input device. The images on the screens are com-
puted for the tracked user’s eye positions, and the input device
(wand) is used to interact with the 3D environment. Larger VR
systems, such as CAVEs, were designed to be used by more than
one user, and are often used by groups of two to 10 users in a va-
riety of scenarios, ranging from scientific meetings of experts to
group demonstrations. If more than one user are present in a VR
environment which only tracks one, the non-tracked (passive) users
see the images on the screen rendered from the perspective of the
tracked user. Depending on the geometry of the VR system, the
type of data being viewed, and most of all the positions of tracked
and non-tracked users, the visual quality of the rendered image will
range from acceptable to very distorted. The distortion comes from
the fact that the 3D world gets projected onto the display surfaces,
and a key parameter for this projection is the center of it, which is
determined by the viewer position or, more precisely, the user’s eye
position. Depending on the relative positions and orientations of the
users, the distortions can include bent lines between non-coplanar
screens, pseudo-stereo (inverted left and right eye images), or in-
correct size perception. Besides image distortion, another problem
is that when users point at features in the data set with their fingers,
the location pointed at is generally not the same for the other users.

Popular workarounds to these problems include passing the head
tracker around the group so that everybody gets to see the correct
view at some point. Pointing works correctly for everybody when
done with a virtual pointer controlled by the wand. And in certain
scenarios, special rendering techniques can eliminate the pseudo-
stereo effect. Solutions have been presented which render com-
pletely distinct images for two or more users, but they require spe-
cialized hardware.

Our approach does not require additional display or viewing
hardware, and there is no theoretical limit to the number of tracked
users, except that with more users each user’s view tends to get
more distorted. The goal of our method is to make the images for
multiple viewers more perspectively correct than it is traditionally
the case. We require that each user be head-tracked. There are
a variety of tracking technologies, such as electro-magnetic, ultra-
sonic, mechanical, optical, and combinations of the above. While
typically only two points in space are tracked by VR systems (head
and hand), most systems can be extended to track additional points.
With many optical tracking systems it is particularly easy and in-
expensive to add additional tracker targets. Each of them reports a
precise position and orientation to the rendering system.

We present three implementations of our algorithm, all of which
are based on the same basic idea of using different camera positions
when rendering different parts of the screens, depending on what
users look at. The algorithms have different performance charac-
teristics and work differently with different types of data. Our al-
gorithms have in common that they work best in VR systems fully
surrounding the users, or at least cover 180 degrees.

The three implementations we present are all based on the same
idea, and are designed to work around various hardware limitations
in different ways. Our most sophisticated, but also most computa-
tionally expensive algorithm recalculates the optimum camera po-
sition for each pixel, depending on positions and orientations of all
tracked users.

In the following sections, we are going to present prior work
done in this field, describe our three multi-viewer algorithms,
present and discuss visual and performance results, and finally con-
clude with pointers to future work.

2 RELATED WORK

Previously published approaches for multi-viewer systems can be
distinguished by how many viewers an approach scales to, what
usage scenarios are supported, and how specialized the required
hardware is.

The most closely related work was done by Jonathan Marbach.
He introduced the notion of rendering different users’ views in sep-
arate parts of the screen, based on their position and head orienta-
tion [4]. These views are blended together in a blend area between
them. When multiple users look at nearby points, their viewpoints
are averaged and one image is rendered for those users. In subse-
quent work, Marbach applies geometry shaders to improve the ren-
dering rate [3], and runs an extensive user study to compare various
multi-viewer approaches [5]. Our approach differs from Marbach’s
in that we don’t just render one image per user, but gradually vary
the viewpoint across the screen, causing a continuous transition be-
tween the users’ views. Also, we distinguish users’ views not only



along the horizontal axis, but also the vertical axis.

Earlier approaches to support multiple viewers were often based
on the idea of rendering completely distinct views for each user,
utilizing specialized or modified hardware. Agrawla et al. [1] built
atwo-viewer display table which time slices the required four views
(two eyes each for two users) and utilizes modified shutter glasses
to generate images at 36Hz per eye and per user.

Froehlich et al. [2] further improve on the shutter glasses ap-
proach by adding polarization filters, which doubles the number of
users supported at a given shuttering rate.

McGinity et al. [6] created a cylindrical VR theater which is 10m
in diameter and fully immerses up to 20 users at once. It uses Om-
nistereo with discretized viewing strips: 6-8 views per eye and pro-
jector. Because the system uses the Omnistereo approach it does
not require head tracking, and hence sacrifices the ability for indi-
vidual users to look around objects in the 3D world.

To our knowledge, the idea of rendering each pixel from a differ-
ent, optimized view point, has not previously been published. Our
approach does not require specialized display or viewing hardware,
and is thus a step towards a solution to a common problem with
almost all VR systems.

3 APPROACH

Our new multi-viewer rendering approach is designed for a typical
immersive VR system with stereo displays surrounding the user,
with the ability to head track every user. Many VR systems which
currently track only one user can easily and inexpensively be ex-
tended to track multiple users by adding additional tracking targets
Or Sensors.

The issue we address with our approach is that in order to render
a correct image in a VR environment, each screen has to be ren-
dered with the same camera and projection parameters. The camera
parameters are typically obtained by tracking one user who is head-
tracked. This user’s head position is used to calculate the eye posi-
tions, which is done by adding an offset from the head position for
each eye. This concept generates a perspectively correct image for
the head-tracked user only. All other users will see the generated
imagery from the head-tracked user’s perspective, which leads to
artifacts such as distortion and bent lines for the non-tracked users.
This distortion gets worse, the more distant the users are from the
head-tracked user, and the more their head orientation differs from
this user.

Figure 1 illustrates our approach. Two people use a surround
virtual environment. Each user has a position and a head orien-
tation. For practical reasons we consider viewing direction to be
identical to head orientation (hardly any VR systems use eye track-
ing). Our approach aims at rendering the point on the screen a user
looks at (look-at point) from that user’s eye point whenever possi-
ble, while in a user’s peripheral view it is acceptable to have some
degree of image distortion. The algorithm allows for greater dis-
tortion at greater distance from the look-at point. This distortion
is caused by the camera location used to render a certain pixel not
being co-located with the user’s eye point.

Our analogy for the calculation of where to place the camera
point with respect to the users is a scenario where each user car-
ries a flashlight on their heads, pointing along their viewing direc-
tion. Each user’s flashlight uses a different color, but has the same
radial brightness fall-off from the center point. Our algorithm cal-
culates the equivalent of what light intensity each user’s flash light
has at a given point P on the screen. The center point of the flash
light’s cone have a value of 1, while areas unlit by the flashlight
have a value of 0, all other points within the flash light’s cone of
light will have values between 0 and 1. Then each user’s brightness
contribution is divided by the sum of all users’ brightness contribu-
tions at point Ps. The resulting value is interpreted as a generalized
barycentric coordinate to determine a position between all users’

head positions.

For example: in a two-user scenario such as that shown in Fig-
ure 1, let C; be user 1’s contribution to the camera position, and
C user 2’s. Let a and b be user 1 and user 2’s respective flash-
light brightness values at point P;. Then C; = a/(a+ b) and
Cy =b/(a+b). The camera position P will be somewhere on
the line connecting user 1 and 2’s head positions P; and P,. P,
is the location from which P; will be rendered. P. is calculated as
Pe=P +Cox (P —P).

View direction
a=0 a=0

*m*

View dlrectlon

=

View direction
a=1 b=1 b=0 a=0

E

Figure 1: The area on the screens each user looks at is colored in
red and green, respectively. The screen has been unwrapped, and
is shown from the perspective of the users. The topmost line shows
user 1 (red), the middle line shows user 2 (green). The bottom line
shows the blended flashlight contributions. On the left is a top-down
view of the viewer positions and directions.

Our approach is independent of the number of head-tracked
users. It does, however, produce better results with fewer users,
as each user has, on average, more screen area available for a good
camera perspective.

4 NEW ALGORITHMS

We created three implementations of the above described algorithm.
All of them scale, in theory, to as many users as can be head-
tracked, but we only implemented them for two users. The three
implementations vary in the granularity of the size of the screen
area rendered by the same camera position.

4.1 Dynamic Zoning

The first and simplest implementation we created subdivides the
screen surface into a fixed number of zones, based on which viewer
looks at them more directly. We created two versions of the algo-
rithm: one in which the zones have vertical boundaries, and another
in which the boundaries tilt with the user’s head. The zone bound-
aries are calculated with respect to each user’s viewing direction.
A parameter for the algorithm is the horizontal field of view angle,
which determines the area on the screen a user looks at, the core
viewing area. If the core viewing areas of the users do not overlap,
each user sees a perspectively correct image within the entire core
viewing area. If the areas do overlap, the overlapping area is ren-
dered from a camera position exactly in the center of the users. For
two users, this means that four viewing areas exist: the two core
viewing areas of the users which do not overlap, the overlapping
area, and the area outside of both users’ core viewing areas.



This approach is similar to Marbach’s, only that we render di-
rectly to the screen using OpenGL’s stencil buffer, and that we do
not blend the views at their boundaries. We also add the ability to
tilt the edges between the users’ images, depending on their head
tilt.

Our algorithm consists of two steps: first, for each viewer the
stencil buffer is set up. In order to do this, the viewer’s core view
frustum is being intersected with the screen. Then, after setting the
stencil mask, the area covered by the core view frustum is rendered
to initialize the stencil buffer. Each bit in the stencil buffer repre-
sents a unique viewer (which limits this algorithm to the number of
bits in the stencil buffer). After initialization, stencil buffer pixels
with more than one set bit have more than one viewer looking at it.

After setting up the stencil buffer, each user’s view is rendered
from its correct eye position with the assigned stencil bit set, so that
it renders only into those pixels which are part of the user’s core
viewing area.

The final step is to render the area in which the users’ core view-
ing areas fully or partially overlap. For rendering this area, the
camera is set to the point half-way between the eyes (for two users).
Figure 2 illustrates the Dynamic Zoning concept for two users.

Camera betwe;n /

Camera positpon
half-way betwgen

Behind both users:
Switch camera from
User Ato User B

Figure 2: Our Dynamic Zoning algorithm for two users, A and B.

4.2 Dynamic Tiling

Our dynamic tiling implementation subdivides each screen into a
regular 2D grid of equally sized zones. Each grid cell is rendered
from one camera location, calculated by a weighted average be-
tween the users (weighted based off of how directly they are look-
ing at the zone). More grid cells generate smoother images but take
longer to render. This algorithm has the following options:

e Auto Adjust mode: adjusts the grid size dynamically to
achieve a target frame rate range.

e 3D or 2D orientation calculation: allows the contribution of
each user to a zone to be determined either in 3D vector cal-
culations, or only in 2D, by ignoring any vertical angle.

o Orientation/contribution cutoff angle: affects the angle of the
“view cone”, starting at the user and projected out towards the
screen. In general, any zone directly in front of the user will
give that user a weight of 1 in contribution functions, and as a
zone approaches the cutoff angle, the weight will approach 0.

We implemented three different functions to calculate the con-
tribution of each user to the camera position for a given part of the
screen. Each uses an algorithm based on two angles. The first is
the contribution angle created by the vector of the user’s viewing

orientation (from the viewer’s head position) and the vector from
the viewer (eye position) to the center of the zone currently being
calculated. The second angle is the orientation cutoff angle defined
by the user (always greater than 0). For all three functions, the final
weights are divided by the total of the weight for all users, creat-
ing a total sum of 1.0. For instance, if one user has a weight of
.75 and the other has a weight of 0.5, the final weights are adjusted
so that the first user has .6 and the second user has a weight of .4.
The following three functions determine the pre-adjusted orienta-
tion contribution, or weight values per user:

e Linear: weight = 1 — (contribution_angle/cutof f _angle)

e Cosine: weight = cos(contribution_angle/cutof f_angle).
This function achieves a good balance between efficiency and
effect.

e Gaussian: The weight is given by a cumulative distribu-
tion function (CDF) of a normal Gaussian distribution (non-
standard) interpolated by the orientation_angle (mean of the
distribution would be hit when orientation_angle = 0, imply-
ing the zone center is directly in the path of the viewer’s orien-
tation, and the standard deviation of the distribution is given
by the user defined cutoff angle divided by 3, thus approach-
ing the cutoff angle will result in a value just slightly greater
than 0, although being O or less is impossible). This algo-
rithm is the most complex of the three, but it does prevent
“hard edges” in a viewer’s view spectrum, since they have
some contribution on every zone (even those directly behind
them, due to the Gaussian distribution).

Figure 3: Dynamic Tiling algorithm, using extra large tile size.

Figure 3 shows the Dynamic Tiling algorithm with a protein data
set and extra large tiles to illustrate how the algorithm works.

4.3 Per Pixel Cameras

Our most sophisticated implementation, which generates the most
accurate result for our algorithm, albeit at the cost of rendering per-
formance, is based on GLSL shaders and renders the interpolated
view for each pixel. The algorithm renders each triangle through
a shader program consisting of a vertex, geometry, and fragment
shader.

In the vertex shader, the input model-view matrix is set to trans-
form the vertices to world space. The world space points are passed
on with their associated normals, colors and texture coordinates.

In the geometry shader, the view and projection matrices for each
viewer are present in four of the texture matrices. The triangle
points are transformed through the view and projection matrices
from the viewers. Lighting is calculated for each point separately.
A number of triangles are emitted by the shader to cover all the



possible screen fragments between the triangle for the two view-
ers. We support two methods: a brute force method with 7 emitted
triangles, and one with the minimal triangle output of 1 through 4
triangles. We did not find a noticeable performance gain with the
second method so we use the first method by default. Per vertex
color, world space position, texture coordinates and diffuse lighting
multipliers are passed through as flat output values.

The fragment shader first computes the rendered pixel’s screen
position in world space. Then it uses uniform viewer positions and
directions to find the pixel’s weight. Then it finds the line segment
from the near to far planes that intersects the fragment for the inter-
polated viewer position in world space. After that, the algorithm de-
termines if this segment intersects the fragment’s triangle using the
world space points passed from the geometry shader. This process
also results in the barycentric coordinates for the fragment, which
are used to determine color and lighting based on values from the
geometry shader, as well as the texture coordinates if applicable.
The depth value of the fragment is set to its true depth value. This
approach is computationally intensive, but the GPU pipeline is still
much faster than a CPU implementation could be. The frame rate
varies depending on how complex the geometry is and how many
fragments are being processed.

5 RESULTS

Figures 4 and 5 illustrate the Dynamic Zoning approach, showing
how the camera positions are selected for different viewer positions.
On the left are photographs of two users in our VR environment,
the images to the right show top-down views of the users’ locations
within the VR environment and their head directions.

Figure 4: Two users looking in different directions: each user gets
their own, perspectively correct view of the data set.

Figure 5: Two users looking in the same direction: scene rendered
from midpoint between users’ head positions.

The rendering rates for our Dynamic Zoning algorithm are close
to those of the standard case of a single head-tracked user. Dynamic
Tiling adjusts the zoning automatically depending on what target
frame rate the user selects. As an example: rendering a 100k poly-
gon data set with 400 zones per screen happens at interactive frame
rates of about 20 frames per second (fps), using Nvidia Quadro
5600 graphics cards. The Per Pixel approach is the slowest at ap-
proximately 5 fps for a 100k polygon data set.

6 DISCUSSION

In comparison, each of our three algorithms has advantages and
disadvantages. Dynamic Zoning renders the fastest with little im-
pact on rendering performance compared to a single user scenario.
It also works the best when the users are not looking at the same
screen area, because in this case they each get their own dedicated
screen surfaces, and the images get rendered without distortion.

If the users’ viewing directions overlap then the other two algo-
rithms work better because they do not cut the views off at a certain
angle, but instead create a smoother transition between core and
peripheral fields of view. The per pixel algorithm is the ultimate so-
lution for the highest image quality, but until the graphics hardware
for shader calculations are fast enough for it to run at true real-time
frame rates of 20 fps and up, our Dynamic Tiling algorithm is a bet-
ter compromise between real-time frame rates and image quality.

7 CONCLUSION AND FUTURE WORK

We presented a new approach for how multiple users’ views can
be rendered in a surround virtual environment without using spe-
cial multi-view hardware. We discussed three different implemen-
tations of the approach which achieve the same goal, each with
their own advantages over the other two. Our multi-viewer solution
works better for scenarios with small data sets (in terms of size on
the screen), but does not work as well for architectural models and
similar data sets which surround the user and have large amounts
of lines and rectangular structures in them, because the distortion
aspect of our approach can be confusing.

Although our algorithms are not limited in the number of sup-
ported viewers, in practice the number of tracking targets supported
and the size of the VR environment limit the number of users. We
would expect that three users would still benefit from our multi-
viewer approach in a surround environment.

Finally, we would like to conduct a formal user study to evaluate
the effectiveness of our multi-viewer approach.

ACKNOWLEDGEMENTS

This publication is based in part on work supported by Award No.
US 2008-107, made by King Abdullah University of Science and
Technology (KAUST).

REFERENCES

[1] M. Agrawala, A. C. Beers, I. McDowall, B. Frohlich, M. Bolas, and
P. Hanrahan. The two-user responsive workbench: Support for collab-
oration through individual views of a shared space. In Proceedings of
the 24th annual conference on Computer graphics and interactive tech-
niques, SIGGRAPH ’97, pages 327-332, New York, NY, USA, 1997.
ACM Press/Addison-Wesley Publishing Co.

[2] B. Frhlich, R. Blach, O. Stefani, J. Hochstrate, J. Hoffmann, K. Klger,
and M. Bues. Implementing multi-viewer stereo displays. In WSCG
(Full Papers)’05, pages 139-146, 2005.

[3] J. Marbach. Gpu acceleration of stereoscopic and multi-view rendering

for virtual reality applications. In Proceedings of the 16th ACM Sym-

posium on Virtual Reality Software and Technology, VRST ’09, pages

103-110, New York, NY, USA, 2009. ACM.

J. Marbach. Image blending and view clustering for multi-viewer im-

mersive projection environments. In Proceedings of the 2009 IEEE

Virtual Reality Conference, pages 51-54, Washington, DC, USA, 2009.

IEEE Computer Society.

[5] J. Marbach. Supporting multiple users in single-stereo-pair immersive
virtual reality environments. In Doctoral Dissertation, page 104. Uni-
versity of Colorado, 2010.

[6] M. McGinity, J. Shaw, V. Kuchelmeister, A. Hardjono, and D. D.
Favero. Avie: A versatile multi-user stereo 360deg interactive vr the-
atre. In Proceedings of the 2007 Workshop on Emerging Display Tech-
nologies, EDT *07, New York, NY, USA, 2007. ACM.

[4

=



