
Auto-optimization of a Feature Selection Algorithm

Didem Unat1, Han Suk Kim1, Jürgen P. Schulze2, Scott B. Baden1
1Department of Computer Science and Engineering

2California Institute for Telecommunications and Information Technology
University of California San Diego,

La Jolla, California 92093, USA
Email: {dunat, hskim, jschulze, baden}@ucsd.edu

Abstract—Advanced visualization algorithms are typically
computationally expensive but highly data parallel which make
them attractive candidates for GPU architectures. However,
porting algorithms on a GPU still remains a challenging process.
The Mint programming model addresses this issue with its simple
and high level interface. It targets the users who seek real-time
performance without investing in significant programming effort.
In this work, we present automatic CUDA parallelization and
optimizations of the Harris interest point detection algorithm
with Mint. Mint generates highly optimized CUDA C from
annotated C source and performs several optimizations. For
4 well-known datasets in volume rendering, on Tesla C1060
the Mint-generated kernels run under a second and deliver on
average 10 times the performance of OpenMP running with 4
threads on a Nehalem processor.

I. INTRODUCTION

One of the challenges in computer visualization is how
to render data in real-time. Interactive rendering requires at
least 25 frames per second and sporadic long computations
should not exceed one second; otherwise users can sense
the discontinuity in the interaction. On the other hand, many
advanced visualization techniques employ more complex al-
gorithms, with the goal of finding meaningful information
in the 3D datasets. However, advanced algorithms are often
computationally expensive and the number of voxels in 3D
data further raises the computational cost. Graphical Process-
ing Units (GPUs) are an attractive means for accelerating
such computations. They have been employed successfully in
data parallel applications and are commonly used to accelerate
rendering algorithms.

However, an outstanding difficulty is the steep learning
curve encountered when programming GPU architectures and
in the complexity of the required performance programming
techniques. A directive-based programming model for GPU
programming is a promising approach to address this issue
because the user can avoid learning low level programming
by expressing the parallelism at a high level. In this paper,
we describe our experience with a directive-based approach to
GPU programming, called Mint [1]. Mint is simple, compact,
and comes with a source-to-source translator that generates
optimized CUDA C from traditional C source.

The Mint optimizer targets stencil methods, an important
problem domain with a wide range of applications. Stencil
methods arise in finite different solvers and image processing.
In previous work [1], Unat et al. introduced Mint and demon-
strated its effectiveness in treating a variety of commonly used

finite difference kernels. We demonstrate the applicability of
Mint to another field: computer visualization. We consider the
Harris interest point detection algorithm [2], which extracts
information about the visually interesting features in 3D
volume datasets. The algorithm computes a local feature with
convolution and selects corners of an object and areas with
high intensity as “interest points”.

The Harris point detection algorithm is representative of
wide range of computer vision algorithms, including pointwise
and convolution computations [3], [4]. These algorithms con-
stitute the cores of many important applications such as object
recognition and motion detection. Moreover, feature selection
algorithms are commonly applied in computer visualization
to control colors and opacities of objects in the data [5], [6],
[7], [8]. Thus, in demonstrating our approach for the Harris
algorithm, we broaden the scope of applications to which the
Mint programming model applies.

In this paper, we demonstrate the effectiveness of the Mint
translator both in terms of programmer’s productivity and per-
formance of the generated-code. We discuss the details of the
optimization steps carried out automatically by the translator.
Mint greatly improves the productivity of the programmer
since the programmer does not need to learn CUDA or GPU
architecture. Secondly, Mint delivers much higher performance
than OpenMP which requires almost the same level of pro-
gramming effort. For 4 different 3D volume datasets running
on a Tesla C1060, we demonstrate that the translator delivers
6.8 to 11.9 times the performance of OpenMP running with 4
threads on a quad-core Nehalem processor. On a Fermi device,
Tesla C2050, the average speedup reaches 23x over OpenMP.

The remainder of this paper is organized as follows: Sec-II
provides an overview of the Mint programming model. Sec-
III gives background on the feature selection algorithm and
Sec-IV describes the Mint implementation. Sec-V discusses
the translation and optimization steps of the feature selection
algorithm. Sec-VI presents performance results and an evalua-
tion, and the last section presents related work and a summary.

II. MINT OVERVIEW

Simplicity has been our principal design goal for the Mint
model. Mint employs just five directives: 1) parallel to
indicate the start of an accelerated region, 2) for to mark
the succeeding nested loops for GPU acceleration, 3) copy

to express data transfers between the host and device, 4)

barrier and 5) single to synchronize and handle serial
regions.

The indispensable directive of the model is the for direc-
tive since it indicates the most time consuming part of the
code, that benefits most from acceleration. If used with the
nest clause, Mint will create multi-dimensional kernels to
parallelize the specified loop nest. This capability of Mint
is crucial; it enables the user to employ higher dimensional
CUDA thread blocks which are required to use the device
effectively. We introduce two additional clauses to support the
for directive for locality and thread workload management.
The tile clause specifies how the iteration space of a loop
nest is to be subdivided into tiles. In the CUDA context,
a tile corresponds to the number of data points computed
by a thread block. Another important clause is chunksize.
It allows the programmer to easily manage the mapping of
workload to threads and create “tiny” or “fat” threads. This
clause is particularly helpful when combined with on-chip
memory optimizations because it enables re-use of data. Fig 1
depicts how the tile and chunksize clauses are used to establish
the size of a CUDA thread block. These clauses allow non-
experts to incrementally tune the code for GPU acceleration
without explicitly implementing each variation.

.

tile (tx,ty,tz)

 tx tz

 ty

threads (tx/cx, ty/cy, tz/cz)

chunksize (cx,cy,cz)

a Cuda
thread

3D grid, Nx * Ny * Nz

Fig. 1. Tiling and chunking of a 3D grid

Lastly, Mint helps the user manage the separate memory
spaces. However, the Mint programmer specifies transfers at
a high level and does not need to worry about the storage
management. More information about the Mint model can be
found in [1].

III. FEATURE SELECTION ALGORITHM

Feature selection is a very important step in many vision
algorithms. Features are points of interest and interesting
information about the image resides on the feature points;
corners or edges of an object. In order to apply advanced
algorithms, such as object recognition or motion detection, it
is essential to have a good feature detection algorithm.

On the other hand, in volume visualization, where data is
stored in a 3D structured grid, feature detection algorithms
can provide useful information for advanced image process-
ing, such as transfer function manipulation [6], [7], [8]. We
introduce an extension of the Harris interest point detection
algorithm to 3D datasets, as a representative example for
feature selection algorithms for volume datasets.

(a) Engine Block CT Scan Data (b) Foot CT Scan Data

Fig. 2. Feature selection for the Engine Block CT Scan from General Electric,
USA and the Foot CT Scan from Philips Research, Hamburg, Germany.
Identified as corners by the Harris corner detection algorithm are Green
squares at the corners of the engine block and around the joints in the foot
image.

A. Background

The Harris interest point detection algorithm [2] extracts a
set of features from an image by scoring the importance level
of each pixel in the image. Positive score values correspond
to interest points. A pixel is selected as a point of interest
if there is a large change both in the X-axis and Y-axis. For
example, corners of an object or high intensity points get a
large positive score. On the contrary, the algorithm assigns a
score close to zero to homogenous regions and large negative
scores to edges.

The basic idea of computing the score is to measure the
change E around a voxel (x, y, z):

E(x, y, z)

= Σu,v,wg(u, v, w)|I(x + u, y + v, z + w)− I(x, y, z)|2

= Σu,v,wg(u, v, w)|xIx + yIy + zIz|2

=
[
x y z

] g ⊗ I2x g ⊗ IxIy g ⊗ IxIz
g ⊗ IxIy g ⊗ I2y g ⊗ IyIz
g ⊗ IxIz g ⊗ IyIz g ⊗ I2z

xy
z

=
[
x y z

]
M(x, y, z)

[
x y z

]T
(1)

where g is a Gaussian convolution kernel. This equation says
that the matrix M in Eq. 1 defines the changes at point
(x, y, z), and the three eigenvalues of this matrix characterize
the changes on each principal axis. Namely, if the change is
large on all three axes, i.e., all three eigenvalues are large, the
point is classified as a corner. On the other hand, for those
points with a small change, i.e., homogeneous areas, M has
small eigenvalues. If M has one or two large eigenvalues, it
indicates that area is an edge.

The biggest challenge to employ this type of algorithm
in practice, is its high cost because it requires convolution
operation for every data point (voxel). Real-time rendering
performance, e.g. 30 frames per second or more, is critical in
visualization for the sake of interactivity. As we will discuss
in Sec. VI, without the help of many-core architectures, it is
impossible to compute this algorithm in real-time.

Fig. 2 shows results of the 3D Harris interest point detection
algorithm. Fig. 2(a) shows an engine block; we highlighted
the features the algorithm identified with green squares. All
the corners and the two cylinders on the top were detected
as features. Fig. 2(b) shows a foot CT scan data, which does
not have distinct corners. However, the algorithm successfully
identifies the tips and joints of the toes as features.

IV. MINT IMPLEMENTATION

The Mint program that implements the main loop of the 3D
Harris interest point detection algorithm appears in Listing 1.
(For the sake of clarity, we omit some details). Note that
this program can also be compiled by a standard C compiler
because the compiler will simply ignore the pragmas. Hence,
the OpenMP implementation of the algorithm can be obtained
by using simple string substitution.

The code in Listing 1 computes the convolution and obtains
a Harris score for each voxel. In this example, the window
size of the Gaussian convolution is set to 5: we compute the
convolution as the weighted sum of a 5x5x5 patch around
a point (x, y, z). Line 1 copies the data voxel array from the
host memory to device memory. The last two arguments of the
copy directive indicate the dimensions of the image. Line 2
copies the weight vector to the device. Line 4 indicates the start
of the accelerated region. This program accelerates only one
nested loop. However, as in OpenMP, a parallel region in Mint
can have several parallel for loops. The Mint for directive
in line 7 enables the translator to parallelize the loop-nest on
lines 8 through 48. The nest(3) clause specifies that the 3
outmost loops can run in parallel. The 3 inner loops sweep
the 5x5x5 window and will not be parallelized. The translator
subdivides the input grid into 3D tiles for locality, as shown
in Fig. 1. The chunksize clause specifies the workload of a
thread. In this program, a thread is assigned to 64 iterations in
the outmost loop. The for-loop clauses are optional. In the
absence of these clauses, the compiler will choose default
values. Lastly, line 50 copies the Harris scores back to the
host memory.

V. TRANSLATION AND OPTIMIZATION

We have developed a fully automated translation and op-
timization system for the Mint programming model. The
translator is built on top of the ROSE compiler framework [9]
developed at Lawrence Livermore National Laboratory.

A. Mint Baseline Translator

The input to the Mint translator is C source code annotated
with Mint pragmas. We refer to the translation without any op-
timizations as the baseline translation. The baseline translator
creates CUDA kernels by outlining the candidate parallel for-
loops in the parallel region. In the example program provided
in Listing 1, Mint transforms lines 8-48 into a kernel. The
translator moves the body of the loop into a newly-generated
CUDA kernel and replaces the removed statements with a
kernel launch. Variables that need to be passed become ar-
guments to the kernel call. The baseline translator also inserts

the code computing thread IDs into the newly-created kernel
and replaces the original for-loop indices with the thread IDs.
Mint uses these IDs to assign work to CUDA threads.
1 #pragma mint copy(data, toDevice, width, height, depth)
2 #pragma mint copy(w, toDevice, 5, 5, 5)
3
4 #pragma mint parallel default(shared)
5 {
6 // main loop
7 #pragma mint for nest(3) tile(16,16,64) chunksize(1,1,64)
8 for (i = 3; i < depth - 3; ++i) {
9 for (j = 3; j < height - 3; ++j) {

10 for (k = 3; k < width - 3; ++k) {
11
12 float Lx = 0.0f;
13 float Ly = 0.0f;
14 float Lz = 0.0f;
15 float LxLy = 0.0f;
16 float LyLz = 0.0f;
17 float LzLx = 0.0f;
18
19 for (l = i - 2; l <= i + 2; ++l) {
20 for (m = j - 2; m <= j + 2; ++m) {
21 for (n = k - 2; n <= k + 2; ++n) {
22
23 // gradient in x direction
24 float dx = (data[l][m][n+1] - data[l][m][n-1]);
25 // gradient in y direction
26 float dy = (data[l][m+1][n] - data[l][m-1][n]);
27 // gradient in z direction
28 float dz = (data[l+1][m][n] - data[l-1][m][n]);
29
30 const float weight=w[l-i+2][m-j+2][n-k+2];
31
32 // gaussian convolution sum
33 Lx += weight * dx * dx;
34 Ly += weight * dy * dy;
35 Lz += weight * dz * dz;
36 LxLy += weight * dx * dy;
37 LyLz += weight * dy * dz;
38 LzLx += weight * dz * dx;
39 }
40 }
41 }
42 // compute cornerness metric, Harris Scores
43 harrisScores[i][j][k] = ...//computing determinant
44 -sensitivity_factor*(Lx + Ly + Lz)*
45 (Lx + Ly + Lz)*(Lx + Ly + Lz);
46 }
47 }
48 }
49 }//end of parallel region
50 #pragma mint copy(harrisScores,fromDevice,width,height,depth)
51 ...

Listing 1. shows a part of Mint program for the 3D Harris interest
point detection algorithm.

B. Preprocessing and Stencil Analyzer

The output of the baseline translator is CUDA code that
makes all memory references through device memory. When
Mint optimizations are not enabled, the translated code does
not take advantage of on-chip memory: it only uses device
memory. In order to optimize for on-chip memory, Mint
analyzes the structure of the stencils and their neighboring
relations because the shape of the stencil affects ghost cell
loads (halos) and the amount of shared memory needed. This
process would be very cumbersome if managed explicitly
by the programmer. Our analyzer automatically derives this
information from the array access patterns and passes it to the
optimizer. The optimizer then applies various on-chip memory
optimizations by using both shared memory and registers.

The analyzer first determines the stencil coverage by ex-
amining the pattern of array subscripts with a small offset

Input  code: 
C + Mint 

Output file 
Cuda src 

Baseline 
Translator 

Preprocessing 

Optimizer 
Register &  

Shared Memory 
Optimizations 

Unrolling 

Constant Folding 

Variable Substitution 

Stencil Analyzer 

Mint

Fig. 3. Compilation Flow

from the central point. That is, the index expressions are of
the form i ± c, where i is an index variable and c is a small
constant. However, in Listing 1, the array indices are relative
to the Gaussian convolution loops (lines 19-21). The indices
are not a direct offset of the main loops (lines 8-10). This
makes it difficult for a compiler to analyze the nearest neighbor
relations between the points. We implemented a preprocessing
step to allow Mint to handle such cases so that the stencil
analyzer can effectively collect the stencil pattern appearing
in the computation.

The Mint translator preprocesses the CUDA kernels gener-
ated by the baseline translator in order to make indices more
explicit to the stencil analyzer. In the Harris algorithm, an
index to the data array is a function of l, m and n which are
functions of i, j, and k. In order to eliminate the l, m and
n indices from the loop body, Mint rewrites the references to
arrays in terms of i, j and k. First, it determines the unrolling
factor and recursively unrolls the loops. The unrolling factor
is the difference between the upper and lower bounds of
the loop: the window size. In this example, it is 5. Mint
completely unrolls such loops only if the relation between
the indices is based on a small constant. After unrolling,
the translator replaces the instances of l, m and n with
i, j and k respectively. This process introduces expressions
such as i ± c1 ± c2, that involve the index variable and a
number of constants. To simplify the index expressions, we
apply constant folding. This optimization converts, if possible,
the index expressions, into the form i ± c, where c is a
small constant. After preprocessing, the stencil analyzer can
detect the stencil patterns appearing in the loop body. Fig. 3
summarizes the key components of the compilation steps.

C. Optimizer

We have incorporated a number of optimizations into our
optimizer that we have found to be useful in optimizing
stencil methods written in CUDA. On-chip memory, i.e shared
memory and registers, can greatly reduce the number of

Tile

Ghost Cells

window width

window
height

point of interest

Fig. 4. A tile and its respective ghost cells in shared memory. The
black point is the point of interest. The blue region around the black
shows the coverage of the Gaussian convolution.

global memory accesses [10]. The optimizer chooses the most
frequently referenced array(s) as the candidate(s) for registers
and shared memory. For the Harris interest point algorithm,
the input data that stores the voxels is a good candidate for
on-chip memory because it is referenced several times. For
example, in a 3D Harris interest point algorithm with 5x5x5
Gaussian convolution, there are 6 references to the voxel array
in the inner Gaussian loop (2 per axis). This translates into
125*6 references per thread per Gaussian convolution if each
thread is assigned to compute one Harris score. Mint uses
on-chip memory, in particular shared memory, to buffer these
accesses.

The Mint optimizer lets a thread block load a tile of data
and ghost cells into shared memory. Each thread is responsible
for a single load into shared memory with some threads also
loading ghost cells. Fig. 4 illustrates the references for a 2D
case. A thread block reads a tile1 and three neighboring ghost
cells on each side into shared memory. If a thread is assigned
to compute the Harris score for the black point, then the blue
area is the coverage of the convolution. In a 3D case, we
would need six more tiles to cover the ghost cells. Since shared
memory is a scarce resource, the optimizer keeps two tiles for
the slowest varying dimension in addition to the center tile in
shared memory. The rest of the references are through global
memory.

The optimizer detects the shareable references and the ghost
cells needed by a thread block. It automatically determines
which thread should be loading which ghost cells and inserts
conditional loads in the generated kernel. For example, in
a 3D Harris interest point algorithm with 5x5x5 Gaussian
convolution, the optimizer finds 450 shareable references and
135 ghost cells for a 16x16x1 tile and automatically generates
the necessary code to handle global memory loads. As a result,
by using shared memory, Mint eliminates 450 references per
thread out of 750 memory references. A CUDA thread still
performs remaining 300 references through global memory.

The reuse of data in shared memory can be increased further
through the chunksize clause. The programmer can easily

1The tile size is a configurable parameter and can be set through the tile
clause.

Dataset Size Number of Voxels Convolution 3× 3× 3 Convolution 5× 5× 5
Serial OpenMP Mint-1 Mint-2 Serial OpenMP Mint-1 Mint-2

Engine 256× 256× 256 16,777,216 3.298 0.916 0.0924 0.039 15.375 3.927 0.3896 0.169
Lobster 301× 324× 56 5,461,344 1.079 0.339 0.0312 0.012 5.012 1.466 0.1323 0.057
Tooth 94× 103× 161 1,558,802 0.307 0.094 0.0103 0.003 1.427 0.426 0.0439 0.017
Cross 66× 66× 66 287,496 0.059 0.018 0.0024 0.001 0.264 0.072 0.0106 0.004

TABLE I
PERFORMANCE FOR VARIOUS VOLUME DATASETS WITH DIFFERENT CONVOLUTION SIZE. RUNNING TIMES ARE SHOWN IN SECONDS. MINT-1 REFERS TO

THE RESULTS ON TESLA C1060. MINT-2 REFERS TO THE RESULTS ON TESLA C2050.

assign more work to a thread by setting a chunking factor.
In the example provided in Listing 1, the chunksize is set to
64 in the outmost loop. That is, a thread computes 64 Harris
scores in the slowest varying dimension of a 16x16x64 tile.
The optimizer inserts a loop in the generated kernel so that
each thread computes more scores. The optimizer uses a buffer
to hold 3 tiles and rotates their content in the loop until it
processes all 64 iterations.

VI. PERFORMANCE RESULTS

We next demonstrate the effectiveness of Mint by comparing
the performance of Mint-generated CUDA, serial CPU and
OpenMP implementations. Table I lists the running times in
seconds for 4 volume datasets with different convolution sizes.

We used four well-known volume datasets in volume render-
ing. All four datasets have a single byte at each point in the 3D
structured grid. The values range from 0 to 255, indicating the
opacity of each point. The first dataset, Engine, is CT scan data
from General Electric, USA and the second dataset, Lobster, is
also a CT scan, which is released in the VolVis distribution of
SUNY Stony Brook, NY, USA. The Tooth data is scanned with
the GE Industrial Micro CT scanner. Finally, the Cross data is
an artificial dataset created by Ove Sommer, in the Computer
Graphics Group of the University of Erlangen, Germany.

We obtained the performance results on an Nvidia Tesla
C1060 GPU with 4GB device memory and an Nvidia Tesla
C2050 GPU with 2.5GB device memory. The serial and
OpenMP codes were compiled with gcc 4.3.3 and run on a
quad-core Intel Xeon Nehalem processor. The OpenMP results
were obtained by 4 OpenMP threads. We used the version
CUDA v3.2 of the CUDA toolkit. All computations were run
in single precision.

The convolution size affects the accuracy of the feature
selection algorithm. Larger windows result in more accurate
solution but longer running times. For example, the serial
implementation of the Engine dataset takes 3.3 sec if 3x3x3
patches are used in the convolution. However, it takes over 15
sec to detect the features when the Gaussian convolution uses
5x5x5 patches. The GPU acceleration of the feature selection
algorithm allows the users to detect features much faster with-
out sacrificing accuracy. Since all the Mint-generated kernels
run under 1 sec, Mint achieves real-time feature selection.

We consider that both Mint and OpenMP require a similar
amount of programming effort but Mint delivers a substantial
performance improvement because it enables the annotated
code to be accelerated on the GPU. On Tesla C1060 (Mint-1),

Mint delivers 6.8 to 11.9 times the performance of OpenMP
running with 4 threads on a multicore architecture. The
speedup is larger for large datasets (over 10x) because we
can effectively occupy all the stream processors on the GPU
device and hide the memory latency better. On the Fermi-based
GPU (Mint-2), Mint delivers 18 to 25.7 times the performance
of OpenMP. Both Fermi and Tesla results were obtained with
the same tile and chunksize parameters without modifying the
translator.

Another benefit of using Mint is the programmer’s pro-
ductivity. The programmer has to make modest number of
modifications in the input code to enable GPU acceleration.
For example, we have simply inserted 5 lines of Mint code
into the original C implementation of the Harris interest point
algorithm. Compared to the 389 lines of the original code,
this is negligible. Moreover, the programmer can easily change
the convolution size in the input program and regenerate the
CUDA code with Mint. It would be cumbersome for the
programmer to implement the CUDA variants of the algo-
rithm using different convolution sizes because each variant
requires a different number of ghost cell loads and sharing
between threads. The translator automatically determines the
communication between threads with the help of the stencil
analyzer in the preprocessing step and applies optimizations
accordingly.

A. Optimization Levels

Next we discuss the impact of the Mint optimizer on the
performance. Fig. 5 shows the performance improvements as
a result of cumulative optimizations for 3x3x3 convolution
applied to 4 datasets. OpenMP 4 indicates the performance of
the OpenMP implementation running with 4 threads. Baseline
refers to the performance of the codes generated by the Mint
baseline translator. This variant resolves all array references
through device memory. Register turns on the register op-
timization that uses registers to accommodate a part of the
global memory references. Shared uses shared memory in
addition to the registers to further improve the reuse of data
by buffering memory accesses. Lastly, chunksize indicates the
performance when a chunking factor is set for the nested-loop
in the input program. In this variant, each thread computes
a number of elements in the outmost loop as opposed to a
single element as in previous variants. We set the chunking
factor to 64 to obtain results for this optimization. In all Mint
variants, loops are annotated with nest(3) to create multi-
dimensional thread blocks.

0 

20 

40 

60 

80 

100 

120 

OpenMP 4  baseline  register  register                   
shared 

register 
shared 

chunksize 

G
flo

ps
 

Performance for Different Optimization Levels 

Engine 

Lobster 

Tooth 

Cross 

Fig. 5. Effect of the Mint optimizer on the performance on Tesla
C1060. Convolution 3x3x3.

The baseline Mint code outperforms the OpenMP code run-
ning on 4 CPU cores and provides on average a 3.5x speedup.
When the optimization flag is turned on, Mint improves the
performance still further. As shown in Fig. 5, both register
and shared memory optimizations substantially improve the
performance of the baseline translation because they reduce
the redundant memory accesses to the device memory. We
observed performance improvements in the range of 40-50%
with register optimization and 140-160% when combined with
shared memory optimization. The chunksize optimization is
effective but not as effective as on-chip memory optimizations.
The main reason for the modest performance improvement
is that assigning more elements to a thread highly increases
the register usage per thread. Since the number of registers
is limited on the device, this optimization may lead to fewer
concurrent thread blocks. However, we still observe the benefit
of applying this optimization on all test data. The overall
optimizations provide on average a 2.6x speedup for four 3D
volume datasets over the baseline translation. The speedup
ranges from 2.5 to 2.9.

VII. RELATED WORK

In order to facilitate CUDA programming, several source-
to-source translators have been proposed [11], [12]. Open-
MPC [12] takes a directive-based approach and supports an
extended OpenMP syntax for GPUs. However, one of the
limitations of the model is that OpenMPC only parallelizes
the outmost loop of a loop-nest causing severe performance
penalties. Similar to Mint, the PGI compiler [11] can paral-
lelize loop-nest and applies on-chip memory optimizations. By
comparison, Mint can use the on-chip memory resources more
effectively because Mint uses domain-specific knowledge to
reduce the large optimization space. This results in improved
performance for the selected application domain.

Micikevicius [10] focused on order-k space stencils of
wave equation and examined the single GPU optimizations
of stencil computation. We greatly benefitted from his work
and integrated the optimizations into the Mint translator.
Our contribution is to make the translation and optimization
processes entirely automated. In addition, we implemented a
broader set of optimizations, such as unrolling and constant
folding to improve our stencil analyzer. Consequently, Mint
lifts the burden of CUDA programming from the user while
still offering competitive application performance.

VIII. CONCLUSION

We have studied auto-parallelization and optimization of the
3D Harris interest point algorithm with Mint. Mint simplifies
the view of the GPU hardware while providing competitive
performance. On an Nvidia Tesla C1060 the Mint-generated
kernels achieve 10 times the performance of OpenMP. We
incorporated a number of optimizations in the translator in-
cluding unrolling, constant folding and on-chip memory opti-
mizations. Although we discuss with a single feature detection
algorithm, the convolution is widely used in computer vision
algorithms. We believe that the applicability of Mint is much
broader and expect that Mint to be used as a tool for non-
experts to get started with GPU programming while avoiding
a lot of low level programming.

REFERENCES

[1] D. Unat, X. Cai, and S. Baden, “Mint: Realizing CUDA performance
in 3D stencil methods with Annotated C,” in International Conference
on Supercomputing, ICS’11, 2011.

[2] C. Harris and M. Stephens, “A combined corner and edge detector,” in
Proceedings of the 4th Alvey Vision Conference, pp. 147–151, 1988.

[3] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,”
International Journal of Computer Vision, vol. 60, pp. 91–110, 2004.
10.1023/B:VISI.0000029664.99615.94.

[4] P. Kube and P. Perona, “Scale-space properties of quadratic feature de-
tectors,” Pattern Analysis and Machine Intelligence, IEEE Transactions
on, vol. 18, pp. 987 –999, Oct. 1996.

[5] B. Lorensen, C. Bajaj, L. Sobierajski, Machiraju, and J. Lee, “Visu-
alization viewpoints: The transfer function bake-off,” IEEE Computer
Graphics and Applications, vol. 21, 2001.

[6] H. Pfister, B. Lorensen, W. Schroeder, C. Bajaj, and G. Kindlmann, “The
transfer function bake-off,” in VIS ’00: Proceedings of the conference
on Visualization ’00, (Los Alamitos, CA, USA), pp. 523–526, IEEE
Computer Society Press, 2000.

[7] J. Kniss, G. Kindlmann, and C. Hansen, “Multidimensional transfer
functions for interactive volume rendering,” IEEE Transactions on
Visualization and Computer Graphics, vol. 8, no. 3, pp. 270–285, 2002.

[8] H. S. Kim, J. P. Schulze, A. C. Cone, G. E. Sosinsky, and M. E. Martone,
“Dimensionality reduction on multi-dimensional transfer functions for
multi-channel volume data sets,” Information Visualization, vol. 9, no. 3,
pp. 167–180, 2010.

[9] D. J. Quinlan, B. Miller, B. Philip, and M. Schordan, “Treating a user-
defined parallel library as a domain-specific language,” in Proceedings of
the 16th International Parallel and Distributed Processing Symposium,
IPDPS ’02, pp. 324–, IEEE Computer Society, 2002.

[10] P. Micikevicius, “3D finite difference computation on GPUs using
CUDA,” in GPGPU-2: Proceedings of 2nd Workshop on General
Purpose Processing on Graphics Processing Units, pp. 79–84, ACM,
2009.

[11] M. Wolfe, “Implementing the PGI Accelerator model,” in Proceedings
of the 3rd Workshop on General-Purpose Computation on Graphics
Processing Units, GPGPU ’10, pp. 43–50, ACM, 2010.

[12] S. Lee, S.-J. Min, and R. Eigenmann, “OpenMP to GPGPU: a compiler
framework for automatic translation and optimization,” SIGPLAN Not.,
vol. 44, pp. 101–110, February 2009.

