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Abstract 
The possible achievements of accurate and intuitive 3D 

image segmentation are endless. For our specific research, we 
aim to give doctors around the world, regardless of their 
computer knowledge, a virtual reality (VR) 3D image 
segmentation tool which allows medical professionals to better 
visualize their patients' data sets, thus attaining the best 
understanding of their respective conditions. 

We implemented an intuitive virtual reality interface that 
can accurately display MRI and CT scans and quickly and 
precisely segment 3D images, offering two different 
segmentation algorithms. Simply put, our application must be 
able to fit into even the most busy and practiced physicians' 
workdays while providing them with a new tool, the likes of 
which they have never seen before. 

Introduction 
While the idea of displaying medical image stacks in 3D is 

not a novel concept, we add to it a user-friendly 3D interface for 
viewing and manipulating them in head-mounted display-based 
VR, as well as allowing for real-time image segmentation. There 
is a multitude of software for medical imaging available, but few 
of them render in 3D stereo with head tracking, and most require 
heavy amounts of training to use. The ability to manipulate a 3D 
image to a high degree is there, but the intuitive nature is 
missing. To get this important tool into the hands of all 
physicians, especially non-radiologists such as surgeons and 
primary care physicians, focus must be shifted to the ease of use 
of such applications. Our research yields a 3D image 
segmentation tool in virtual reality, which introduces user 
intuition and 3D input devices while maintaining accuracy, as a 
solution to the important task of medical image comprehension 
and feature detection.  

To accomplish such a task, our software takes a series of 
slices (2D medical images taken at differing levels in the body) 
and stacks them, one on top of the other, in front of the user in 
the virtual space. By transforming these squares of pixels into a 
cube of voxels (3D pixels), we can sample the data in 3D space, 
allowing for a more intuitive representation of the subject of the 
images. Each voxel is therefore represented by a 3D texture 
coordinate, a color value, and a mask value. The latter being an 
on or off value which represents whether the voxel is to be 
displayed or not. 

However, because our data no longer lives in 2D screen 
space, we need to decide how to determine the color of each 
pixel on the headset's lenses. To do this we use volumetric ray 
casting by shooting rays from the eye position out into the data. 
The voxels intersected by these rays are then sampled and 
blended to determine the resulting color for the pixel through 
which the ray was originally shot from. 

With the data now mirroring a 3D object and the portion of 
the body that the scans were initially taken of, we allow the user 
to reach out in the virtual space and touch the data. They can 
translate it, rotate it, scale it, and even reach into it to look 

inside, all by using their hands like they would in the real world. 
In fact, our application goes beyond simulating what one could 
do in the real world by allowing the user to reach into the data 
set as if it is a hologram. 

Finally, to more particularly examine one aspect of the 
data, our program allows for segmentation of this 3D image. For 
humans, looking at an image and deciphering foreground vs. 
background is in most cases trivial. Whereas for computers, it 
can be one of the most difficult and computationally taxing 
problems. For this reason, we will introduce several 
segmentation solutions, each of which is tailored to a specific 
application of medical imaging. 

Related Work 
As mentioned previously, 3D images, volume rendering, 

and their segmentation are not new concepts. Some of the most 
popular and polished 3D image segmentation tools are 3D 
Slicer, ImageJ, ITK-SNAP, TurtleSeg, and Amira/Avizo. While 
these have been highly refined to offer hundreds of manipulation 
options for data sets, they each have many pages of 
documentation to accompany them, which a user must read 
through to learn how to successfully utilize their software. 

For example, 3D Slicer can be a very useful tool, but only 
in the hands of someone who knows how to use it. The Slicer 
Welcome Tutorial [Pujol 2018] alone is twenty-two pages long 
and teaches you nothing about the application, just on how to 
use the documentation to answer all the questions you are 
guaranteed to have in the future. ITK-SNAP on the other hand, 
claims to feature “seamless 3D navigation”, and “emphasizes 
interaction and ease of use, with the bulk of the development 
effort dedicated to the user interface” [Gerig 2018] The effort is 
quite noticeable, and the application does feature a more 
forgiving learning curve, but to a seasoned surgeon who has 
learned to live with traditional 2D scans, there is no room for 
such a tool in their refined work flow. 
 

 
Figure 1: A typical example of the complexity of a 3D Slicer 
project [Harris2017]. 
 

In order to make the cut, the software must be incredibly 
intuitive and provide something needed and new. While 
software like ITK-SNAP can make efforts to simplify their user 



 

interface, their user's inability to enter the same space the 3D 
image occupies creates a separation from the data which 
requires unintuitive input to accomplish simple tasks. 

3D Input Devices 
While most of us have become comfortable with a mouse 

and keyboard, which accomplishe 2D tasks well, such as email 
checking and Facebook scrolling, when we enter the 3D space 
sometimes these input methods are insufficient. For instance, 
when one wishes to cohesively edit a model of a car, the two 
degrees of freedom of mouse movement along a pad can only 
cover two dimensions. To indicate a traversal in a third axis 
would require additional input such as a mouse click or 
keyboard press, not to mention how one would alter camera or 
view positioning as well. A simple task such as selecting the 
moon roof of a 3D car model can require lots of application 
knowledge. 

This is where 3D input devices can make things easier. 
They can be described as “a form of human-machine interaction 
where users are able to move and perform interaction in 3D 
space” [Wikipedia 2018]. While these take many shapes, most 
allow for users to have access to six degrees of freedom, three 
for translation and three for rotation. For manipulation of 3D 
images specifically, the value of these cannot be overstated and 
the use of one 3D controller allows for easy and intuitive spatial 
manipulation of the data. 

Virtual Reality 
With modern advances in graphics cards, access to virtual 

reality applications has become both affordable to consumers 
and profitable for businesses who can uniquely incorporate them 
into their daily workflow. VR offers the ability to view and 
interact with 3D objects in the same space they occupy, opening 
the door for every facet of 3D computation to utilize its 
potential. In essence, VR is not primarily for entertainment 
anymore. 

When these head-mounted displays are coupled with 3D 
input devices, the user can be transported to the same space as 
the 3D object they are editing, allowing for incredibly intuitive 
selection and manipulation of their target objects. It is through 
this one to one correspondence in editing and display that image 
segmentation can find new ground for accessibility to all users, 
and our application strives to use the best this medium has to 
offer. 

Unity 3D 
One of the most widely used software programming 

environments for VR applications today is Unity 3D. Unity’s 
expansive features for image loading, image management, and 
shader construction have given this project the perfect base for 
its creation. As opposed to graphics software that is built on top 
of lower level libraries such as OpenGL, Unity allowed for this 
entire project to be created in a matter of months, allowing for 
aspiring computer graphics researchers to study complex 
components of medical image and virtual reality interface 
construction. 

Representation of Data 
By integrating 3D image manipulation with virtual reality, 

our research removes the barrier of having to mentally stack up 
many 2D images and allows all users to interact with the data as 

if it was present in the real world. Each scan of the image will 
fill layers of a cube in front of the user, thus representing a 3D 
image as a 3D object in the user's space. These images will only 
be loaded once, requiring a shader program and the GPU to 
determine which pixels to draw each frame. This makes the data 
look accurate quickly, regardless of the viewing perspective. 

 
Figure 2: A 3D image (multiple 2D images of equal size and 
resolution), stacked horizontally (laterally) [Benassarou 2005]. 

 
Thinking ahead towards the requirement of segmentation of 

this data, we associate a mask structure of equal proportions and 
size. Rather than containing color values, this has a simple 
toggle, 0 or 1. By multiplying this value with its associated 
location's color in the 3D image, we can choose to draw or not 
draw the voxel. By editing this structure when we segment, we 
only have to set this small value and can avoid needing to alter 
the entire loaded texture as a whole. This dramatically saves 
time when segmenting. 
 

 
Figure 3: Program running with 128 slices of a colon dataset. 

Rendering 
When drawing we face the issue of projecting our 3D 

image representation back onto the 2D screen of the viewer. 
Specifically in our virtual reality application, we have to 
determine what color to make each pixel on the lenses of the 
headset. To do this we use volume ray casting, which can be 
broken down into the four main steps below. 

1.) Ray Casting - For each pixel we send out a ray from the 
eye position and into the scene by sending it through the pixel. 
This gives a unique direction for each ray and results in a color 
for each pixel.  

2.) Sampling - With this ray now cast into the scene we 
determine which voxels were intersected and therefore which 
will contribute to the resulting pixel color by their proximity to 
the ray. 



 

3.) Shading - The contributing voxels are then shaded based 
on their color value from the original scans, multiplied by their 
mask factor. This ensures that those that are a part of the current 
segmentation are factored in, and those that are not don't 
contribute. 

4.) Compositing - Finally the left-over voxels' color values 
are blended to determine the color of the pixel the ray was 
initially cast through. 

 

 
Figure 4: Schematic of our rendering algorithm. 

Manipulation 
To move the data set, the user can grab it with their 3D 

input device and its position and rotation will be mapped to that 
of the user's wrist and hand. By grabbing the data with both 
hands, they can pull them apart or together to resize the 3D 
image. To remove complexity, all functions will be accessible 
from a menu which is always attached to the left hand and 
within reach of the user. 

When reaching into the data, all of the voxels between the 
user's hand and eye will not be rendered, allowing them to cut 
into the data with their hand as they go. For example, if the data 
is of a patient’s chest, the doctor can easily examine the heart by 
extending their arm into the 3D image. They can also position 
their body and head to view the image from any angle, allowing 
collaborators to examine data simultaneously from different 
perspectives. 

 
Figure 5: Heart data set with right-hand cutting plane activated. 

 

Segmentation 
Segmenting a medical data set is easy when the contrast 

between desired and surrounding materials is high, such as bone 
in CT scans. It is much harder when the contrast difference is 

minimal, such as in MR images without contrast agent. To 
address the variety in segmentation scenarios, we implemented 
different segmentation algorithms, each of which have their 
advantages and disadvantages. In the following sections we 
describe the algorithms we implemented in our VR image 
segmentation tool. 

Cube Cut 
A common manipulation of 3D images is to cut the data so 

that it removes that which you are not concerned with. To make 
this as easy to use as possible, when called, this method will 
start with an interior cube which cuts the data. All that falls 
inside will be displayed whereas the data outside will not. The 
user can grab and move this cube, confirming the cut when it 
contains the desired data. For non-cubic cuts, they can also grab 
any of the faces of the cube and push or pull them in or out. 

 
Figure 6: Unaltered heart data, initial cube cut, cube cut with 
adjusted cutoff planes. 

Region Grow 
With points of origin (seed points) and a threshold specified, 

this algorithm looks at neighboring voxels and their difference in 
color value, and if they are within the tolerance, adds them to the 
segment. On high-contrast medical images, the results of this 
algorithm are quick and accurate. For tasks such as segmenting 
large bones or organs, this is the preferred method. 



 

 
Figure 7: Region Grow algorithm [Kim 2017]. 

Max-Flow Min-Cut 
This approach requires the user to place seed points for both 

the foreground of what they wish to select (source) and the 
background (sink). A weighted graph is created where each node 
corresponds to a voxel from the image data and neighboring voxels 
are connected by edges with weight inversely proportional to the 
difference in their color intensities. Two special nodes are added to 
the graph, a source and a sink, with connections of weight 1 or 0 to 
the user-specified foreground and background voxel nodes. A 
minimum graph cut is computed between the source and the sink to 
segment the image at the frontier with the weakest edge, or sharpest 
change in color intensity. Because this method of segmentation 
uses the relative difference between voxel intensities instead of 
relying on absolute magnitudes it is able to process data with poor 
contrast and gradual edges. 

 
Figure 8: Schematic of the Max-Flow algorithm [Chen 2012]. 

Conclusion 
Virtual Reality provides a one-to-one correspondence 

between a user’s input and the manipulation of their data, 
allowing for simple access to normally complicated image 
views. Specifically, the structure of our software provides rapid 
and accurate 3D image loading, rendering, and segmentation. By 
shifting the focus of medical imaging away from feature 

saturation and towards intuitive 3D user interfaces, our 
application places the powerful tool of 3D image segmentation 
into the hands of doctors who lack the time to learn the 
intricacies of today’s solutions. 

Future Work 
Currently we are working on shifting the program logic and 

segmentation methods to the GPU. While the CPU will still load 
the data and set up the environment, we are hoping to transition 
the bulk of the application to shaders. 3D image segmentation 
and virtual reality are some of the most taxing commands on a 
computer, and the speed increase gained from this shift in 
structure will greatly improve the project and open doors for 
more computationally intensive methods to be added. 

However, our largest focus is to bring our application to the 
point where it is a tool every doctor would be happy to 
incorporate in their daily process. Segmenting 3D 
representations of a patient's body in virtual reality can be an 
incredibly useful tool in the pre-operation and visualization 
phase. However, it is difficult to picture a surgeon using a 
headset during the actual operation. This is why we have our 
sights set on implementing a 2D counterpart which gives 
surgeons access to saved viewpoints and segmentations from 
their VR pre-operation stages. Our program offers a unique way 
to visualize a patient's data set and this would allow physicians 
to take these views with them into applications where a headset 
would be a hindrance. As virtual reality offers groundbreaking 
results for medical imaging while traditional 2D views provide a 
portable familiar solution, it is the combination of the two that 
would be an incredibly powerful asset for doctors worldwide. 
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