

3D Medical Image Segmentation in Virtual Reality

Shea B. Yonker, Oleksandr O. Korshak, Timothy Hedstrom, Alexander Wu, Siddharth Atre, Jürgen P. Schulze

University of California San Diego, La Jolla, CA

Abstract
The possible achievements of accurate and intuitive 3D

image segmentation are endless. For our specific research, we
aim to give doctors around the world, regardless of their
computer knowledge, a virtual reality (VR) 3D image
segmentation tool which allows medical professionals to better
visualize their patients' data sets, thus attaining the best
understanding of their respective conditions.

We implemented an intuitive virtual reality interface that
can accurately display MRI and CT scans and quickly and
precisely segment 3D images, offering two different
segmentation algorithms. Simply put, our application must be
able to fit into even the most busy and practiced physicians'
workdays while providing them with a new tool, the likes of
which they have never seen before.

Introduction
While the idea of displaying medical image stacks in 3D is

not a novel concept, we add to it a user-friendly 3D interface for
viewing and manipulating them in head-mounted display-based
VR, as well as allowing for real-time image segmentation. There
is a multitude of software for medical imaging available, but few
of them render in 3D stereo with head tracking, and most require
heavy amounts of training to use. The ability to manipulate a 3D
image to a high degree is there, but the intuitive nature is
missing. To get this important tool into the hands of all
physicians, especially non-radiologists such as surgeons and
primary care physicians, focus must be shifted to the ease of use
of such applications. Our research yields a 3D image
segmentation tool in virtual reality, which introduces user
intuition and 3D input devices while maintaining accuracy, as a
solution to the important task of medical image comprehension
and feature detection.

To accomplish such a task, our software takes a series of
slices (2D medical images taken at differing levels in the body)
and stacks them, one on top of the other, in front of the user in
the virtual space. By transforming these squares of pixels into a
cube of voxels (3D pixels), we can sample the data in 3D space,
allowing for a more intuitive representation of the subject of the
images. Each voxel is therefore represented by a 3D texture
coordinate, a color value, and a mask value. The latter being an
on or off value which represents whether the voxel is to be
displayed or not.

However, because our data no longer lives in 2D screen
space, we need to decide how to determine the color of each
pixel on the headset's lenses. To do this we use volumetric ray
casting by shooting rays from the eye position out into the data.
The voxels intersected by these rays are then sampled and
blended to determine the resulting color for the pixel through
which the ray was originally shot from.

With the data now mirroring a 3D object and the portion of
the body that the scans were initially taken of, we allow the user
to reach out in the virtual space and touch the data. They can
translate it, rotate it, scale it, and even reach into it to look

inside, all by using their hands like they would in the real world.
In fact, our application goes beyond simulating what one could
do in the real world by allowing the user to reach into the data
set as if it is a hologram.

Finally, to more particularly examine one aspect of the
data, our program allows for segmentation of this 3D image. For
humans, looking at an image and deciphering foreground vs.
background is in most cases trivial. Whereas for computers, it
can be one of the most difficult and computationally taxing
problems. For this reason, we will introduce several
segmentation solutions, each of which is tailored to a specific
application of medical imaging.

Related Work
As mentioned previously, 3D images, volume rendering,

and their segmentation are not new concepts. Some of the most
popular and polished 3D image segmentation tools are 3D
Slicer, ImageJ, ITK-SNAP, TurtleSeg, and Amira/Avizo. While
these have been highly refined to offer hundreds of manipulation
options for data sets, they each have many pages of
documentation to accompany them, which a user must read
through to learn how to successfully utilize their software.

For example, 3D Slicer can be a very useful tool, but only
in the hands of someone who knows how to use it. The Slicer
Welcome Tutorial [Pujol 2018] alone is twenty-two pages long
and teaches you nothing about the application, just on how to
use the documentation to answer all the questions you are
guaranteed to have in the future. ITK-SNAP on the other hand,
claims to feature “seamless 3D navigation”, and “emphasizes
interaction and ease of use, with the bulk of the development
effort dedicated to the user interface” [Gerig 2018] The effort is
quite noticeable, and the application does feature a more
forgiving learning curve, but to a seasoned surgeon who has
learned to live with traditional 2D scans, there is no room for
such a tool in their refined work flow.

Figure 1: A typical example of the complexity of a 3D Slicer
project [Harris2017].

In order to make the cut, the software must be incredibly
intuitive and provide something needed and new. While
software like ITK-SNAP can make efforts to simplify their user

interface, their user's inability to enter the same space the 3D
image occupies creates a separation from the data which
requires unintuitive input to accomplish simple tasks.

3D Input Devices
While most of us have become comfortable with a mouse

and keyboard, which accomplishe 2D tasks well, such as email
checking and Facebook scrolling, when we enter the 3D space
sometimes these input methods are insufficient. For instance,
when one wishes to cohesively edit a model of a car, the two
degrees of freedom of mouse movement along a pad can only
cover two dimensions. To indicate a traversal in a third axis
would require additional input such as a mouse click or
keyboard press, not to mention how one would alter camera or
view positioning as well. A simple task such as selecting the
moon roof of a 3D car model can require lots of application
knowledge.

This is where 3D input devices can make things easier.
They can be described as “a form of human-machine interaction
where users are able to move and perform interaction in 3D
space” [Wikipedia 2018]. While these take many shapes, most
allow for users to have access to six degrees of freedom, three
for translation and three for rotation. For manipulation of 3D
images specifically, the value of these cannot be overstated and
the use of one 3D controller allows for easy and intuitive spatial
manipulation of the data.

Virtual Reality
With modern advances in graphics cards, access to virtual

reality applications has become both affordable to consumers
and profitable for businesses who can uniquely incorporate them
into their daily workflow. VR offers the ability to view and
interact with 3D objects in the same space they occupy, opening
the door for every facet of 3D computation to utilize its
potential. In essence, VR is not primarily for entertainment
anymore.

When these head-mounted displays are coupled with 3D
input devices, the user can be transported to the same space as
the 3D object they are editing, allowing for incredibly intuitive
selection and manipulation of their target objects. It is through
this one to one correspondence in editing and display that image
segmentation can find new ground for accessibility to all users,
and our application strives to use the best this medium has to
offer.

Unity 3D
One of the most widely used software programming

environments for VR applications today is Unity 3D. Unity’s
expansive features for image loading, image management, and
shader construction have given this project the perfect base for
its creation. As opposed to graphics software that is built on top
of lower level libraries such as OpenGL, Unity allowed for this
entire project to be created in a matter of months, allowing for
aspiring computer graphics researchers to study complex
components of medical image and virtual reality interface
construction.

Representation of Data
By integrating 3D image manipulation with virtual reality,

our research removes the barrier of having to mentally stack up
many 2D images and allows all users to interact with the data as

if it was present in the real world. Each scan of the image will
fill layers of a cube in front of the user, thus representing a 3D
image as a 3D object in the user's space. These images will only
be loaded once, requiring a shader program and the GPU to
determine which pixels to draw each frame. This makes the data
look accurate quickly, regardless of the viewing perspective.

Figure 2: A 3D image (multiple 2D images of equal size and
resolution), stacked horizontally (laterally) [Benassarou 2005].

Thinking ahead towards the requirement of segmentation of

this data, we associate a mask structure of equal proportions and
size. Rather than containing color values, this has a simple
toggle, 0 or 1. By multiplying this value with its associated
location's color in the 3D image, we can choose to draw or not
draw the voxel. By editing this structure when we segment, we
only have to set this small value and can avoid needing to alter
the entire loaded texture as a whole. This dramatically saves
time when segmenting.

Figure 3: Program running with 128 slices of a colon dataset.

Rendering
When drawing we face the issue of projecting our 3D

image representation back onto the 2D screen of the viewer.
Specifically in our virtual reality application, we have to
determine what color to make each pixel on the lenses of the
headset. To do this we use volume ray casting, which can be
broken down into the four main steps below.

1.) Ray Casting - For each pixel we send out a ray from the
eye position and into the scene by sending it through the pixel.
This gives a unique direction for each ray and results in a color
for each pixel.

2.) Sampling - With this ray now cast into the scene we
determine which voxels were intersected and therefore which
will contribute to the resulting pixel color by their proximity to
the ray.

3.) Shading - The contributing voxels are then shaded based
on their color value from the original scans, multiplied by their
mask factor. This ensures that those that are a part of the current
segmentation are factored in, and those that are not don't
contribute.

4.) Compositing - Finally the left-over voxels' color values
are blended to determine the color of the pixel the ray was
initially cast through.

Figure 4: Schematic of our rendering algorithm.

Manipulation
To move the data set, the user can grab it with their 3D

input device and its position and rotation will be mapped to that
of the user's wrist and hand. By grabbing the data with both
hands, they can pull them apart or together to resize the 3D
image. To remove complexity, all functions will be accessible
from a menu which is always attached to the left hand and
within reach of the user.

When reaching into the data, all of the voxels between the
user's hand and eye will not be rendered, allowing them to cut
into the data with their hand as they go. For example, if the data
is of a patient’s chest, the doctor can easily examine the heart by
extending their arm into the 3D image. They can also position
their body and head to view the image from any angle, allowing
collaborators to examine data simultaneously from different
perspectives.

Figure 5: Heart data set with right-hand cutting plane activated.

Segmentation
Segmenting a medical data set is easy when the contrast

between desired and surrounding materials is high, such as bone
in CT scans. It is much harder when the contrast difference is

minimal, such as in MR images without contrast agent. To
address the variety in segmentation scenarios, we implemented
different segmentation algorithms, each of which have their
advantages and disadvantages. In the following sections we
describe the algorithms we implemented in our VR image
segmentation tool.

Cube Cut
A common manipulation of 3D images is to cut the data so

that it removes that which you are not concerned with. To make
this as easy to use as possible, when called, this method will
start with an interior cube which cuts the data. All that falls
inside will be displayed whereas the data outside will not. The
user can grab and move this cube, confirming the cut when it
contains the desired data. For non-cubic cuts, they can also grab
any of the faces of the cube and push or pull them in or out.

Figure 6: Unaltered heart data, initial cube cut, cube cut with
adjusted cutoff planes.

Region Grow
With points of origin (seed points) and a threshold specified,

this algorithm looks at neighboring voxels and their difference in
color value, and if they are within the tolerance, adds them to the
segment. On high-contrast medical images, the results of this
algorithm are quick and accurate. For tasks such as segmenting
large bones or organs, this is the preferred method.

Figure 7: Region Grow algorithm [Kim 2017].

Max-Flow Min-Cut
This approach requires the user to place seed points for both

the foreground of what they wish to select (source) and the
background (sink). A weighted graph is created where each node
corresponds to a voxel from the image data and neighboring voxels
are connected by edges with weight inversely proportional to the
difference in their color intensities. Two special nodes are added to
the graph, a source and a sink, with connections of weight 1 or 0 to
the user-specified foreground and background voxel nodes. A
minimum graph cut is computed between the source and the sink to
segment the image at the frontier with the weakest edge, or sharpest
change in color intensity. Because this method of segmentation
uses the relative difference between voxel intensities instead of
relying on absolute magnitudes it is able to process data with poor
contrast and gradual edges.

Figure 8: Schematic of the Max-Flow algorithm [Chen 2012].

Conclusion
Virtual Reality provides a one-to-one correspondence

between a user’s input and the manipulation of their data,
allowing for simple access to normally complicated image
views. Specifically, the structure of our software provides rapid
and accurate 3D image loading, rendering, and segmentation. By
shifting the focus of medical imaging away from feature

saturation and towards intuitive 3D user interfaces, our
application places the powerful tool of 3D image segmentation
into the hands of doctors who lack the time to learn the
intricacies of today’s solutions.

Future Work
Currently we are working on shifting the program logic and

segmentation methods to the GPU. While the CPU will still load
the data and set up the environment, we are hoping to transition
the bulk of the application to shaders. 3D image segmentation
and virtual reality are some of the most taxing commands on a
computer, and the speed increase gained from this shift in
structure will greatly improve the project and open doors for
more computationally intensive methods to be added.

However, our largest focus is to bring our application to the
point where it is a tool every doctor would be happy to
incorporate in their daily process. Segmenting 3D
representations of a patient's body in virtual reality can be an
incredibly useful tool in the pre-operation and visualization
phase. However, it is difficult to picture a surgeon using a
headset during the actual operation. This is why we have our
sights set on implementing a 2D counterpart which gives
surgeons access to saved viewpoints and segmentations from
their VR pre-operation stages. Our program offers a unique way
to visualize a patient's data set and this would allow physicians
to take these views with them into applications where a headset
would be a hindrance. As virtual reality offers groundbreaking
results for medical imaging while traditional 2D views provide a
portable familiar solution, it is the combination of the two that
would be an incredibly powerful asset for doctors worldwide.

References
[Benassarou 2005] Benassarou, Aassif & Bittar, Eric & John,
Nigel & Lucas, Laurent. (2005). MC Slicing for Volume
Rendering Applications. Lecture Notes in Computer Science.
3515. 47-84.

[Boykov 2006] Boykov, Y., & Funka-Lea, G. (2006). Graph
cuts and efficient ND image segmentation. International journal
of computer vision, 70(2), 109-131.

[Chen 2012] Chen, SY & Tong, Hanyang & Cattani, Carlo.
(2012). Markov Models for Image Labeling. Mathematical
Problems in Engineering. 2012.

[Gerig 2018] Gerig, G. (2018, April 27). ITK-SNAP Home.
Retrieved June 13, 2018, from
http://www.itksnap.org/pmwiki/pmwiki.php

[Harris 2017] Peyton Harris (November 28, 2017). Annotation
Ruler. Retrieved June 13, 2018, from
https://discourse.slicer.org/t/annotation-ruler/1550/3

[Kim 2017] Kim, D., & Chi, T. (2017). 3D Region Growing for
CT-Scan Kidney Segmentation. Retrieved April 28, 2018, from
http://www.via.cornell.edu/ece547/projects/g3/exper.htm

[Pujol 2018] Pujol, Sonia (2018). Slicer Welcome. Retrieved
September 25, 2018, from
https://www.slicer.org/wiki/Documentation/4.8/Training#Slicer
_Welcome_Tutorial

[Wikipedia2018] 3D Interaction. (n.d.). In Wikipedia. Retrieved
March 13, 2018, from
https://en.wikipedia.org/wiki/3D_interaction

Author Biography
Dr. Schulze is an Associate Research Scientist at UCSD's

Qualcomm Institute, and an Associate Adjunct Professor in the
computer science department, where he teaches computer
graphics and virtual reality. He holds an M.S. degree from the
University of Massachusetts and a Ph.D. from the University of
Stuttgart, Germany. After his graduation he spent two years as a
post-doctoral researcher in the Computer Science Department at
Brown University working on real-time volume rendering in
virtual reality.

Shea Yonker, Oleksandr Korshak, Timothy Hedstrom and
Alexander Wu and Siddharth Atre were undergraduate students
in UCSD’s Department of Computer Science when they worked
on this project. They have since graduated.

