
Look-That-There: Exploiting Gaze in Virtual Reality Interactions

Robert C. Zeleznik Andrew S. Forsberg

Brown University, Providence, RI
{bcz,asf,schulze}@cs.brown.edu

Jürgen P. Schulze

Abstract

We present a suite of interaction techniques that fundamentally
leverages the user’s gaze direction to provide a range of potential
benefits over existing techniques such as reduced arm fatigue, more
powerful interaction, and more specialized interaction. Because
measuring true gaze direction is problematic, we instead approx-
imate gaze with a non-linear mapping of head orientation that re-
duces neck strain when looking up or down.

Given the immaturity of gaze-assisted VR interaction, we chose
to prototype interaction designs across a variety of fundamental
VR tasks that includes 3D point specification, 3D movement, and
environment navigation. For each basic task we created a range
of exemplary gaze-based techniques that populate three classifica-
tions: “Lazy” interactions that minimize or obviate hand move-
ment, “Helping Hand” techniques in which gaze augments con-
ventional interaction as if with an extra hand, and “Hands Down”
manipulations in which gaze offloads the hands so that they can
operate specialized devices such as a tablet.

Specifically, this paper presents Look-That-There, a technique for
moving objects in a virtual environment that does not require hand
movement, in addition to gaze-based techniques for selecting menu
items, specifying arbitrary 3D points or regions, and orbiting and
flying.

CR Categories: H.5.2 [Information Interfaces and Presenta-
tion]: User Interfaces—Interaction Styles; I.3.6 [Computer Graph-
ics]: Methodology and Techniques—Interaction Techniques; I.3.7
[Computer Graphics]: Three-Dimensional Graphics and Realism—
Virtual Reality

Keywords: gaze direction, tablet PC, HCI, virtual reality, interac-
tion techniques

1 Introduction

A common concern with VR environments is that although the vi-
sual imagery is generally quite compelling, the techniques for inter-
action with the environment are often unsatisfactory. In many situ-
ations, techniques are fatiguing because of the weight of hand-held
props and the need for frequent arm movements. In other cases,
interaction may seem clunky when compared to desktop or tablet
interfaces that exploit sophisticated tactile (e.g., keyboard) and ges-
tural (e.g., stylus) input.

One possible design approach to reducing fatigue and improving
the feel of VR interaction is to reduce the encumbrance of input
devices through miniaturization or elimination (e.g., using optical
tracking). However, these solutions are often difficult to implement,
don’t fully address issues of fatigue since frequent hand movement
may still be required, and do not by themselves enable effective
utilization of specialized devices such as tablets.

We instead chose to explore a different approach that was inspired
by the observation that much of the input generated by the hand
in VR interaction is redundant with the information already pro-
vided by the viewer’s gaze. Despite the body of work dedicated
to exploiting gaze in desktop 2D user interfaces, particularly for
the physically challenged, we found only scant references to the
use of gaze in virtual environments. With the exception of gaze-
based navigation, little consideration has been given to show how
gaze can be used to perform common virtual environment tasks, or
to demonstrate its synergistic benefits when combined with other
interactions. Nonetheless, gaze-based interaction seems to have
potential as user evaluations of gaze-based navigation have been
promising. Both Bowman [Bowman et al. 1997] and Mine [Mine
1995] have reported positive usability results with gaze-based fly-
ing and Chung’s orbital mode [Chung 1994] respectively.

Thus the work we present is an attempt to further populate the VR
design space with a gamut of gaze-based selection, manipulation
and navigation techniques that demonstrate a range of potential
benefits. We classify our techniques into three categories that cor-
respond to different approaches to harnessing gaze:

• Lazy: By offloading existing hand-based pointing interactions
to gaze, hand movements can be minimized or eliminated.
This potentially reduces arm fatigue and supports people with
physical impairments.

• Helping Hand: By treating the user’s gaze as an additional
“hand”, existing hand-based interactions can be extended.
This not only allows more parameters of an existing interac-
tion technique to be simultaneously adjusted, but also allows
gaze optionally to be used for picking when hand-based pick-
ing is inconvenient (e.g., you can see a target, but there is no
clear path from your hand to the target unless you raise your
hand to point from your eye).

• Hands Down: Instead of merely offloading existing interac-
tions from the hand onto gaze, gaze can provide a 3D context
for hand-held devices that do not intrinsically support 3D in-
teraction. This facilitates the design of new interactions that
can extend sophisticated tactile interactions, based on tablets,
keyboards or other specialized devices, into full-fledged 3D
interactions.

The point of this work is not quantify whether these interactions
are better or worse than previous interactions but instead to shed
light on a range of unexplored design possibilities. Although these
designs are compelling in their own right, they also provide a menu
of research opportunities for further enrichment of VR interaction
with gaze.

2 Previous Work

A well-known use of gaze in virtual environments is Mine’s gaze
directed steering [Mine 1995]. In addition, Mine presented the con-
cept of a Look-At menu in which gaze direction highlights a menu
item which is selected by pressing a physical button. Both of these
techniques are in the spirit of our work since they reduce arm fa-
tigue and have been easily integrated with other interactions in real
virtual environments. However, these techniques just scratch the
surface of what is possible with gaze-based interaction. A lesser
known interaction that we would classify as a Lazy gaze technique
is Chung’s orbital mode [Chung 1994], in which a common hand-
based rotation of an object is offloaded to gaze such that a viewer
can essentially rotate an object in front of them by simply turning
their head.

More recently, studies have been performed which compare gaze
for selecting objects in virtual environments with other selection
techniques. Tanirvedi et al. [Tanriverdi and Jacob 2000] studied
gaze vs. arm-extension grasping and found that performance with
gaze was faster. Cournia et al. [Cournia et al. 2003] compared
gaze with ray casting and found that both were comparable. These
studies are relevant to our work because they indicate that some
of the problems that we encountered when using head direction to
approximate gaze might easily be rectified.

Head Crusher selection demonstrates a design in which pointing is
partially offloaded to gaze as both the head and hand locations de-
fine a picking ray [Pierce et al. 1997]. The basic Head Crusher
design is interesting because even though it offloads something
from the hand to gaze, it does not provide the reduction in fatigue
benefit of many other Lazy techniques since it actually increases
arm movement compared to wand-based picking. However, some
Head Crusher variations do exhibit the typical Helping Hand bene-
fits since hand posture can be used to define selection scope which
is more difficult with other hand-only interactions.

Finally, there is a long history of offloading hand-input onto gaze
in desktop 2D user interfaces (e.g., [Jacob 1990]). Thus in certain
cases where everything in VR is represented as a surface and there
is no need to specify locations that are not on a surface, the desk-
top techniques can be directly extended into VR. However in gen-
eral, gaze-based VR interaction must consider the harder problem
of choosing arbitrary points in 3D that are not necessarily on a visi-
ble surface. In addition, we want to go beyond just offloading hand
input onto gaze and consider how both can be used together—this
has not been a primary focus of desktop eye-tracking research.

3 Gaze Directed Techniques

We explored the design potential of gaze directed interfaces by con-
sidering three fundamental problems of VR interaction: navigation,
pointing/selecting, and moving. For each of these basic tasks, we
either prototyped or designed interaction techniques suitable for an
immersive four-wall (3 walls and a floor) CAVE environment that
would demonstrate the three categories of gaze techniques. In the
following subsections we present the basic interactions in terms of
how they reflect upon our three principle benefits of VR interaction.

In general, our approach to designing gaze-based techniques was
first to address techniques that fall into the Lazy category by merely
offloading an existing hand-based interaction technique to gaze.
Then we would consider how we might improve an existing interac-
tion if we had an extra “helping hand” available. Interestingly, gaze
sometimes turns out to be a better “helping hand” than an actual
second hand, such as for automatic speed adjustment while flying.

Finally, we would consider how to redesign the interaction if our
hands were down out of the environment and holding a wireless,
untracked TabletPC. We chose a TabletPC over other devices be-
cause of its generality (i.e., it represents the ability to bring virtually
any desktop application into a virtual environment) and because we
hoped to directly use its sophisticated gestural interaction instead of
having to try to replicate it with generally more limited and clunky
VR input devices.

Our use of a tablet in VR differs from previous efforts because of
the way we combine gaze with tablet interaction. Others have used
tablets as a nested 2D surface that you look at directly in an immer-
sive environment (Gorillas in the Bits [Allison et al. 1997], Virtual
Notepad [Poupyrev et al. 1998], PDA [Watsen et al. 1999], trans-
parent tablet [Wohlfahrter et al. 2000]). We wanted to explore the
complementary concept of hands down (or heads up) interaction,
where the tablet is held or rests at waist level to support convenient
2D drawing but the user’s gaze is directed forward towards the im-
mersive virtual environment. In some cases, no visual display of
the tablet is needed, while in others a representation of the tablet
surface needs to be provided as a heads up display. In either case,
we were most interested in those interactions where the 2D tablet
interactions directly mapped to 3D operations that depended on the
viewer’s gaze direction.

We also note that we were not able to prototype any techniques us-
ing true gaze measurements. Instead, we used head orientation as
a rough approximation to gaze, even though we believe that this
approximation makes accurate picking slower and increases (neck)
muscular strain. Since we do not want to make assumptions about
the general viability of gaze tracking in immersive virtual environ-
ments, we attempted to address the artifacts of our approximation
to gaze tracking when possible. For example, in all of our proto-
types, we employed a non-linear mapping function for the vertical
angle of the viewing direction so that lower and higher angles could
be specified with less neck strain. The downward viewing angleα
of the gaze direction is amplified by the factorφ :

α =

{

α >
π
12 : α = α ∗ (1+φ)

else : α = α ∗ (1+φ ∗ |α | ∗ 12
π)

In our Cave, we use an amplification factorφ of 0.2.

3.1 3D Point Selection

The selection of a point with gaze direction requires at least one
additional parameter, because the gaze ray specifies only a line and
requires, for instance, the distance from the head to specify a point.

We distinguish two types of environments in which to select a point
with head direction: structured environments, which contain virtual
objects that can be used to intersect the gaze ray with, and unstruc-
tured environments, which do not contain any reference objects.

3.1.1 Structured Environments

Lazy techniques. A representative example of selecting a point
with gaze in a structured environment is the selection of a menu
item, similar to the same task at the desktop. The menu item inter-
sected by the viewer’s gaze ray is highlighted. However, since users
often felt lost because of mismatches between their actual gaze and
our approximated gaze vector, we also draw a cursor at the inter-
section of the menu panel with the gaze vector.

Although others have used dwell time to activate menus with gaze,
this was not appropriate for our environment, presumably because

Table 1: Overview of gaze directed techniques with examples.
Principles of using gaze

Task Lazy Helping hand Hands-down
Point selection, structured
environment

menu selection magnified menu selection tablet based menu picking

Point selection, unstruc-
tured environment

cursor at fixed distance
from head

marker placement tablet w/sideways motion;
placing markers while
changing properties

3D movement hands-free Look-That-
There

hand or gaze Look-That-
There

tablet based movement

Terrain navigation point-and-fly; orbital mode speed and orbit control tablet based navigation con-
trol

of our approximated gaze vector. In our testing, head orientation
remained constant while users read menu items and so we would
either have to use an inordinately long dwell time or we would suf-
fer from the Midas touch problem of inadvertent menu activation.
Even with true gaze, we expect that common dwell times of .25 sec-
onds might be less satisfactory than our approach of explicit menu
activation with a wireless button or other alternatives that would
truly isolate gaze picking from hand actions such as winking or
subtle vocalizations.

After a number of trials, we found that it was possible to accurately
target menu items, but the strain of the interaction was unsatisfac-
tory, especially for smaller menu items. We considered magnifying
menu items in a manner inspired by Apple’s Dock in OS X in which
menu items are magnified as the cursor moves over them; how-
ever that technique only makes things easier to read but does not
make them easier to target since the actual target area of buttons
never changes. So we instead implemented a highlight magnifica-
tion mechanism (see Figure 1) in which menu items actually be-
come bigger when intersected by the gaze ray thus increasing their
pick region at the cost of reducing the pick region of neighboring
menu items. The menu item reverts to its original size when it is no
longer intersected by the gaze ray. We found that a scale factor of
1.5 reduced the strain associated with picking our menu items but
did not make it appreciably harder to move between neighboring
menu items.

We used menu selection within a large grid of icons to calibrate the
non-linear mapping function we used throughout our prototypes.
Without the mapping function pilot users complained about strain
when looking at objects near the bottom and top of the menu. Af-
ter implementing our non-linear mapping function, we found users
were able to select items throughout the menu without noticeable
discomfort.

A potential problem with gaze-based menu interaction is that view-
ers must focus on the user interface and not on the virtual environ-
ment (i.e., the task). To address this issue, we prototyped an inter-
face in which scalar-valued menu items can be mapped to the scroll
wheel of a hand-held mouse. This allows the viewer to simultane-
ously change a parameter and observe its effect on the 3D environ-
ment. Mapping a value to the scroll wheel is straightforward—the
viewer gazes at the scalar-valued menu item and activates it just as
if it were a regular menu item (e.g., by clicking the mouse button, or
using a subtle vocalization). Instead of performing a regular menu
action, the scalar value is mapped to the scroll wheel of the mouse.
Thus, the user can focus on the 3D environment while manipulat-
ing the scroll wheel to change the mapped parameter’s value. The
scroll wheel retains its mapping until the user maps a new value to
it.

Helping Hand techniques. We did not prototype any helping hand
interactions for menu selection, but we propose that in environ-

ments with lots of menus, it might be appropriate for gaze direc-
tion, perhaps with a dwell factor, to be used to magnify groups of
neighboring menu items (similar to the magnification technique just
described). Such an interaction might be more natural for reading
menu items than pointing to magnify would be and could be con-
sidered a helping hand for subsequent menu selection with a hand-
based pointer.

Hands Down techniques. Although it is clearly possible to render
menu items directly on the display of a TabletPC, such an approach
introduces an undesirable distance between the menu control and
the subsequent action in the virtual environment. Therefore, we
map the tablet surface to an approximately 30-degree region cen-
tered on the viewer’s field of view (FOV). Thus a user selects a
menu item by looking at it and hovering their stylus over the tablet
to establish a mapping between the tablet and their FOV. As the sty-
lus moves over the surface, a cursor moves over objects within the
FOV essentially the same way mouse movement maps to a monitor
cursor. Clicking on the tablet selects the menu item.

3.1.2 Unstructured Environments

Lazy techniques. Picking a point in an unstructured environment
requires information about the distance from the head. A “lazy”
way of doing this is to use a fixed distance just as with a hand-held
wand. However, moving one’s arm around with a wand to point to
things is a common interaction even in the real-world, but moving
one’s head around to point to things is unnatural and so we do not
propose any lazy techniques for point selection in an unstructured
environment.

Helping Hand techniques. An existing technique for pointing to
an arbitrary location is to point with a virtual wand associated with
a 6DOF hand-held tracking device. Wand length must be adjusted
to reach distant points or to make it more convenient to identify near
points—however, making wand length adjustments is typically in-
direct and can be cumbersome in very large virtual spaces. There-
fore, we prototyped a helping hand technique in which gaze is used
to adjust wand length. The hand tracker casts a visible ray of unlim-
ited length in the direction the hand points to, similar to the beam
of a laser pointer. The system then calculates the intersection of
this ray with an invisible plane that passes through the user’s eyes
and extends along the viewing direction (see Figure 2). The wand
length is automatically adjusted to extend to that intersection point.
If the plane and the pointer line do not intersect, the marker position
remains unchanged.

We chose a plane for the intersection, because our previous imple-
mentation, which calculated the intersection of the pointer ray and
a ray along the viewing direction, produced too unstable results.
We think this was because the viewer had to deal with two degrees

(a) (b) (c)

Figure 1: Selecting a menu item with gaze. The selected item is magnified. It remains selected until the cursor leaves the magnified region.
In the above sequence, the cursor (indicated as a small sphere) moves from the Quality widget (images a and b) to the Size widget (image c).
Image b shows that even though the cursor is already above the Size widget, the previous widget remains activated.

of freedom to position the head. With the horizontal plane, there
is only one significant degree of freedom left, which is the vertical
angle into which the user looks. For typical hand orientations, the
intersection point moves away from the user when they look up,
and toward the user when they look down. This is similar to the
intuitive way of looking at objects far and close.

Figure 2: 3D point selection with gaze. A 3D point is specified
by the intersection of the viewer’s gaze with the ray emitted from
their wand. Since these rays do not in general intersect, we actually
compute the intersection of the wand ray with a plane through the
user’s eyes that contains their gaze vector.

Hands Down techniques. We developed two Hands Down meth-
ods to select 3D points: an extension of the previously described
marker placement, and a tablet PC based method.

The extended marker placement method consists of the above help-
ing hand method, but in addition allows marker properties (color,
size, opacity) to be manipulated with the non-dominant hand. By
holding a wireless desktop mouse with a mouse wheel in their non-
dominant hand, the user can change a marker property by turning
the mouse wheel even as the marker is being placed. By gazing at
a marker property menu, the user can change the mapping of the
mouse wheel at any point during the marker placement interaction.

The other Hands Down method we implemented uses a Tablet PC
and a pen (see Figure 3). A rectangular frame, which is shown in the
viewing direction, indicates the Tablet PC’s drawing surface. When
the pen gets near the tablet, a cursor shows up in the rectangle in the
viewing direction to indicate the pen’s position on the tablet. This
allows the user to interact with the tablet without looking at it. Now
the user can draw a circle gesture on the tablet, which the system
extrudes along the gaze direction to result in a 3D line. By going a
step to the left or right, the user sees the line from the side and their
gaze determines a 3D point along the ray. The stylus can be used to
adjust the location of the 3D point along the ray.

Figure 3: This figure illustrates the two-step procedure for selecting
a 3D point with gaze and a hand-held tablet. In the first step (grayed
out), the user gazed at a point of interest and used the tablet to fine-
tune the gaze direction by offsetting it from the center of the heads-
up representation of the tablet (dotted rectangle). This ray is frozen
when the pen is pressed. Second, the 3D point is selected by gazing
at the desired point on the frozen ray and lifting the pen. The second
vantage point is exaggerated in this illustration—moving just a few
inches often works well.

3.2 3D Movement

One of our initial motivations for using gaze in a virtual environ-
ment was based on a notion of laziness — we wanted to move ob-
jects throughout an environment without using a hand-held tracker
of any sort. We developed a technique, “Look-That-There”, in
which gaze is used first to target an object and then to target a des-
tination, such that no hand-based direct manipulation is required.
This contrasts with the Head Crusher techniques in which gaze and
hand-tracking are used together to select and manipulate objects.

3.2.1 Lazy techniques

Our first prototype addressed the design problem of how to sig-
nal object selection and placement with a minimum of effort and
without introducing awkward application modes. Initially, we ded-
icated one hand-held button to triggering selection of the object
intersected by the viewer’s gaze and a second button to place the
selected object at the new intersection of the viewer’s gaze with the
environment. Although this technique works, it requires users to
be aware of the different button functions and the selection state.
So instead, we designed an alternative in which we mounted one
button on top of the other as a pop-through button[Zeleznik et al.
2002]. In this configuration, pressing lightly gaze-selects an object
and pressing firmly moves that object to the new gaze intersection
point. We believe that this method is simpler and less error prone
because it avoids statefulness when the buttons are released.

3.2.2 Helping Hand techniques

By attaching a tracker to the hand-held pop-through buttons, we
were able to explore an alternate design in which gaze is used as
a helping hand. In this configuration, the user can target and se-
lect an object with a conventional laser pointer by pressing lightly
on the button and then manipulate it while continuing to press the
button. If the button is released the manipulation ends just like a
conventional laser based technique, but if it is pressed more firmly
the object and the end of the laser pointer will snap to intersection
of the user’s gaze with the environment. In essence gaze is like
an additional hand that points to the target location while the pri-
mary hand is occupied with holding the selected object. However,
since it may often be necessary to refine the placement of an object,
pressing firmly on the button also automatically adjusts the laser
pointer direction and length so that it spans from the user’s hand to
the target and enables the target location to be adjusted. Figure 4
illustrates this technique.

A combined implementation is also possible that allows users to
freely choose between a range of variations of this technique. For
example, the initial selection of the object can be made with gaze if
the user’s hand is at rest by their side, or with a hand-held pointer
that automatically appears if they raise their hand to their waist. If
the selection is made with gaze, a laser pointer is automatically cre-
ated from their hand to the selected object so that it can be manip-
ulated, thus potentially avoiding the fatigue of frequent arm lifting
to point to objects. By pressing firmly on the button, a destina-
tion location can be chosen with gaze if the user’s hand is at rest
by their side, or it can be selected with the hand-held laser if their
hand is raised. The primary drawback to selecting the destination
location with the hand is that the object being manipulated may ob-
scure target locations and the ray that could otherwise terminate at
the selected object must instead extend through the object so that
distant targets can be selected, even if no destination target will
be used. Thus the selection and its destination can be targeted both
with gaze, both with hand pointing, or one gaze and the other point-
ing.

3.2.3 Hands Down techniques

We have begun to experiment with using a hand-held tablet as part
of the manipulation process. In this approach as with the navigation
techniques previously described, the surface of a hand-held tablet
is mapped to lie along the user’s gaze vector so that gestures can
be used on the tablet to select, cut, copy or paste objects. Once
selected, an object can be moved by either fixing its location relative

to the viewer’s gaze allowing coarse-grained “carrying” of objects,
or by fixing the tablet’s mapping within the virtual environment
to support fine-grained depth adjustment. In the former case, the
object is effectively fixed as if on a pole to the user’s head so that
they can carry it to some other location in the environment. In the
latter case, fixing the tablet mapping essentially allows the user to
place objects in 3D with the hands down technique for 3D point
location.

3.3 Navigation

The notion of VR navigation covers a broad domain which we have
limited for the scope of this paper to terrain navigation. Within ter-
rain navigation “point-and-fly” has emerged as a popular technique
in which the user points a tracked wand in a direction and specifies
a rate-of-travel by pushing an analog joystick on the wand forward
or backward. The joystick may also be used to rotate the viewer’s
orientation left or right by pushing it to one side or the other.

While useful in many situations there are two drawbacks to this
technique. First, the flying speed may be too small or large for the
distances a user needs to travel since the analog joystick control
only offers a fixed number of speeds between not moving and some
typically arbitrary “full speed”. Second, the rotation is around the
user’s current position and there is no control for orbiting around a
region of interest.

3.3.1 Lazy techniques

The direction vector used in this technique can be offloaded to gaze
and results in gaze-directed navigation described by Mine [Mine
1995]. However, this technique does not provide a solution to or-
biting. A Lazy technique for orbiting, Chung’s orbital mode, is to
offload hand-based object rotation to head (gaze) rotation.

3.3.2 Helping Hand techniques

Alternatively, gaze can offer a “helping hand” by augmenting point-
and-fly with a greater control of speed and the ability to orbit a point
of interest. We start with the basic point-and-fly technique. Con-
trol over flying speed is achieved by considering the distance to the
point on the terrain the user is gazing at. In our implementation, we
choose a maximum forward speed (i.e., when the joystick is fully
forward) that will let the user reach the point the they are gazing at
in two seconds, regardless of how far away it is.

A point of interest can be orbited by gazing at it and then moving
the joystick left or right. The left or right movement captures the
point of interest and enters the orbiting mode. The further left or
right the joystick is moved the faster the rate of rotation. The user
can also still move forward or backward along their gaze direction
if the joystick is moved forward or backward.

It is interesting to note that in this case we believe it is more effec-
tive to use your gaze as a “helping hand” than one’s second hand.
Not only is the second hand freed from holding an input device but
it may also be slower to have to point at an orbit location that is
already being gazed upon.

3.3.3 Hands Down techniques

We developed a Hands Down tablet technique in which gestures on
the tablet are used to specify the orbit location and flying speed,

Figure 4: Look-that-there: (a) The user gazes at an object and (b) lightly presses and holds the button to (c) move the selected object. Gazing
at another object (d) allows moving the object to it by (e) firmly pressing the button. Holding the button (f) allows adjusting the new position.

and which is extensible so that additional application gestures can
be used as well.

Specifically, the technique works as follows. While gazing at some
area of the terrain, the user presses on the tablet and drags forward
or backward to move forward or backward, respectively. Dragging
left or right causes the user to orbit about the point they were gaz-
ing at just before dragging left or right. (We did try letting the orbit
point freely move with the user’s gaze, but found that was less in-
tuitive than fixing it.) The further left or right the stylus is dragged,
the higher the rate of rotation. When the user moves the stylus so
there is no longer a horizontal component to the mark, the orbiting
stops. Since some left or right drift is common when trying to drag
the stylus only forward or backward, a buffer area with a width of
about a quarter of an inch on the tablet was implemented to help the
user control when orbiting mode was invoked (see Figure 5).

Figure 5: Navigation schematic. The tablet is logically divided in
half for navigation. Pressing and dragging in the left half changes
the user’s elevation. Pressing and dragging in the right half flies and
orbits. The vertical strip in the right half is a “dead zone” in which
no orbiting occurs until the stylus is outside of it. Small gestures can
also be drawn to invoke commands without a perceptible change in
position.

Additional commands can be specified using handwriting recogni-
tion. For example, drawing an “o” fixes the point the user is gaz-
ing at until a “n” is drawn. This differs from the orbiting mode
described above where the orbit point was set each time the user
dragged the stylus left or right of the center position. Because users
are told to draw small letters, the marks (which are drawn in the
same way as the flying and orbiting marks are) do not have a per-
ceptible navigation effect.

In addition to flying and orbiting, we also wanted to support a con-
trol for changing elevation. Our tablet surface was about 10 inches
wide by 8 inches high. When holding the tablet while standing, it
was natural to rest the base of one’s hand on the surface and draw
in only an approximately two-inch diameter circular subset of the
full display. Therefore, we were able to logically divide the tablet
into two halves—the left and the right. The right half was used for
the flying and orbiting marks described above, and single-stroke
gesture recognition. The left half was used for a second drawn
mark that controlled elevation. When drawing on the left half of
the tablet, pressing and dragging forward or backward increased or
decreased, respectively, the user’s elevation.

Unlike the joystick, the tablet does not give haptic feedback to the
user such as snapping into a center position when returning from a
press left or right. We tested two ideas to help address this. First,
a visual is overlayed on the scene near the top of the Cave display
to give feedback as to where the pen is relative to its starting point.
Second, we positioned four rubber bands on the tablet (see Figure
6) which apply a force to the pen tip when it is not in the centered
position.

4 Future Work

There are a number of areas worthy of further investigation. In
particular, it would be quite interesting to compare our implemen-
tations using an approximated gaze vector with an implementation
that measured true gaze. Although it seems likely that completely
accurate gaze measurement would improve most of our techniques,
it is less clear what the practical benefit would be using current

Figure 6: Rubber bands on a Tablet PC provide forces that return
the stylus to a “home” position.

gaze-tracking technology particularly in Cave-based environments
where it is difficult to unobtrusively observe eye movements. On
the other hand, it would be interesting to test gaze-based interaction
in Fishtank VR environments where robust gaze tracking might be
more practical.

We would also like to consider hybrid techniques such as a Hands
Down tablet interaction in which the stylus could also be used as
a tracked 3D pointer. A challenge for this technique would be to
ensure that conventional stylus interaction is not compromised by
tracking the stylus, for example with wires or added bulk.

In this paper, we discussed a few technique designs that we have
not yet prototyped and we discussed other techniques that we have
not tested against real user populations. In either case, we are rela-
tively confident that the techniques are “usable”, but we have little
basis for estimating what user preference would be for gaze-based
interaction versus other techniques. Therefore, to better understand
the applicability of gaze interactions, we think it will be important
to conduct relative usability evaluations.

5 Conclusion

We have presented a theory for why gaze-based interaction might be
beneficial in virtual environments and we have developed a classifi-
cation scheme that is useful for developing novel gaze-based tech-
niques. Through various implementations, we have shown Lazy
techniques in which existing interactions are offloaded to gaze,
Helping Hand techniques in which gaze allows additional param-
eters of existing techniques to be adjusted, and Hands Down tech-
niques in which we developed novel ways to incorporate tablet-
based interaction into virtual environments. Although we have not
formally evaluated these techniques, we believe that they provide
an important design option both for making VR interaction more
effective and more accessible.

References

ALLISON, D., WILLS , B., HODGES, L., AND WINEMAN , J.
1997. Gorillas in the Bits. Virtual Reality Annual International
Symposium ’97 (VRAIS), pp. 69–77.

BOWMAN , D., KOLLER, D., AND HODGES, L. 1997. Travel
in Immersive Virtual Environments: An Evaluation of Viewpoint

Motion Control Techniques. Virtual Reality Annual International
Symposium ’97 (VRAIS), pp. 45–53.

CHUNG, J. 1994. Intuitive Navigation in the Targeting of Radia-
tion Therapy Treatment Beams. Ph.D. dissertation, UNC-Chapel
Hill, Department of Computer Science, May ’94, UNC-CH De-
partment of Computer Science Technical Report TR94-025.

COURNIA, N., SMITH , J., AND DUCHOWSKI, A. 2003. Gaze-
vs. Hand-Based Pointing in Virtual Environments. CHI’03 Short
Talk.

JACOB, R. 1990. What You Look at is What You Get: Eye
Movement-Based Interaction Techniques. Proceedings of ACM
CHI’90, pp. 11–18.

M INE, M. 1995.Virtual Environment Interaction Techniques. UNC
Chapel Hill Computer Science Technical Report TR95-018.

PIERCE, J., FORSBERG, A., CONWAY, M., HONG, S.,
ZELEZNIK , R., AND M INE, M. 1997. Image Plane Interac-
tion Techniques in 3D Immersive Environments. Proceedings of
the ’97 Symposium on Interactive 3D Graphics, pp. 39–44.

POUPYREV, I., TOMOKAZU, N., AND WEGHORST, S. 1998.Vir-
tual Notepad: Handwriting in Immersive VR. Proceedings of
IEEE Virtual Reality Annual International Symposium (VRAIS
’98), pp. 126–132.

TANRIVERDI, V., AND JACOB, R. 2000. Interacting with Eye
Movements in Virtual Environments. Proceedings of ACM
CHI’00, pp. 265–272.

WATSEN, K., DARKEN, R., AND CAPPS, M. 1999. A Hand-
held Computer as an Interaction Device to a Virtual Environ-
ment. Proceedings of the 3rd Immersive Projection Technology
Workshop (IPTW ’99), Stuttgart, Germany.

WOHLFAHRTER, W., ENCARNACAO, L., AND SCHMALSTIEG,
D. 2000.Interactive Volume Exploration on the StudyDesk. Pro-
ceedings of the Fourth International Immersive Projection Tech-
nology Workshop, Ames, Iowa.

ZELEZNIK , R., LAV IOLA , J., ACEVEDO, D., AND KEEFE, D.
2002.Pop Through Button Devices for VE Navigation and Inter-
action. Proceedings of VR’02.

