
Eurographics Symposium on Parallel Graphics and Visualization (2018)
H. Childs, F. Cucchietti (Editors)

Rapid k-d Tree Construction for Sparse Volume Data

S. Zellmann1, J. P. Schulze2 and U. Lang1

1Chair of Computer Science, University of Cologne, Germany
2Department of Computer Science, UCSD, California, USA

Figure 1: Stages of the k-d tree construction algorithm. The sparse volume data set depicted on the left hand side of the figure

can be efficiently rendered with hierarchical empty-space skipping. Our parallel version of the construction algorithm is based

on partial summed-volume tables (SVT) shown in the middle that are created for regions of 323 voxels. Partial SVTs can be

efficiently computed in parallel. During the splitting phase of the k-d tree construction algorithm, parallel occupancy queries

are performed using the partial SVTs to obtain the k-d tree on the right hand side of the image.

Abstract

While k-d trees are known to be effective for spatial indexing of sparse 3-D volume data, full reconstruction, e.g.

due to changes to the alpha transfer function during rendering, is usually a costly operation with this hierarchi-

cal data structure. We pick a serial state of the art implementation that is based on summed-volume tables and

propose a parallel version of the construction algorithm for multi-core CPUs. Our parallel k-d tree construction

algorithm can be used to rapidly perform full hierarchy rebuilds for moderately sized to large volume data sets. We

reformulate the original, highly serial construction algorithm by replacing the summed-volume table (SVT) that is

used to perform fast occupancy queries with a list of partial summed-volume tables. This gives rise to parallelism

at several stages of the algorithm. We show how to achieve high scalability with a carefully crafted parallelization

scheme. As a side effect, our construction algorithm also relaxes the tremendous memory overhead imposed by full

SVTs. For our scalability study, we have integrated the parallel k-d tree implementation into a ray casting volume

rendering pipeline. We present comparisons for various sparse 3-D volumetric data sets where k-d trees are first

built interactively and then later used to skip over empty space.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image
Generation—Volume Rendering

c© The Eurographics Association 2018.



S. Zellmann, J. Schulze & U. Lang / Rapid k-d Tree Construction for Sparse Volume Data

1. Introduction

Spatial indexing of sparse 3-D uniform volume data is based
on data structures that span non-empty volume regions as
tightly as possible with as few bounding objects as possi-
ble. Spatial indexing data structures and algorithms are often
brick-based, hierarchical, or are based on an index volume

augmenting the volume data with additional information on
a per-voxel basis. Hierarchical data structures like k-d trees
subdivide the volume using a divide and conquer strategy.
Compared to brick-based indexing, hierarchical data struc-
tures ensure moderate traversal costs by reducing the number
of bounding objects. This usually comes at higher construc-
tion costs in terms of time and memory consumption for the
index data structure. With volume data, spatial partitioning
is generally preferred over object partitioning, because it is
desirable that bounding objects do not overlap. Space par-
titioning data structures with non-overlapping bounding ob-
jects fit well in a GPU volume rendering pipeline, because
tree traversal can be trivially performed once per view point
on the CPU to put the bounding objects in the right order
for subsequent rendering on the GPU. Popular hierarchical
space partitioning data structures for volume data are octrees

as well as binary space partitioning trees (BSP). k-d trees
are BSPs that hierarchically subdivide n-dimensional space
into half-spaces using axis-aligned hyperplanes. In contrast
to bounding volume hierarchies (BVH), which are object
partitioning data structures that are popularly used for in-
teractive ray tracing of surfaces and dynamic scenes, space
partitioning trees are usually fully rebuilt when the visibil-
ity conditions change. This is especially true with volume
data, where marginal changes to an alpha transfer function
can lead to unpredictable changes in visibility, and conse-
quently to spatial indexing data structures that are dissimilar
in shape and volume from data structures that were built for
only slightly different transfer functions.

Full reconstruction of k-d trees is usually time consum-
ing and does not map well to parallel architectures. Since
one objective of spatial indexing is to reduce the number
of bounding objects, k-d trees are usually shallow, and the
splitting phase that divides space into half-spaces is poorly
parallelizable. Splitting typically involves occupancy queries
to determine if regions of the volume are empty or homoge-
neous. This type of query is usually either prohibitively slow,
or is accomplished using accompanying data structures like
summed-volume tables (SVT), a data structure detailed upon
in Section 3 that is constructed using an inherently sequential
process and that has tremendous memory demands. In this
work we propose to replace full SVTs with partial SVTs to
exploit parallelism, to improve overall memory locality, and
to reduce memory consumption.

In order to prove the effectiveness of our approach for
k-d tree reconstruction, we adapt the work by Vidal et
al. [VMD08] and integrate it into an interactive, ray casting-
based direct volume rendering (DVR) GPU pipeline using

post-classification RGBA transfer functions. k-d tree con-
struction as proposed in [VMD08] follows a top down ap-
proach that can accept local optima as a solution when find-
ing node splitting positions.

It is noteworthy that, due to that fact, the construction
method performs especially bad at removing empty space
from inner structures of sparse volumes. We emphasize that
our contribution is not aimed at improving the k-d tree con-
struction algorithm per se, but rather at parallelizing a func-
tionality that is integral to and is used by the construction
algorithm as an intrinsic function. Fast occupancy queries
on arbitrary volume regions in 3-D uniform volumetric grids
are essential for rapid spatial index generation regardless of
the particular space partitioning algorithm that is used. We
believe that our contribution is generally helpful and can be
easily adapted to other space partitioning schemes.

The paper is structured as follows. In Section 2 we present
related work on 3-D spatial indexing. In Section 3 we briefly
recapitulate Vidal et al.’s k-d tree construction algorithm that
our work is based upon. In Section 4 we propose our parallel
k-d tree construction algorithm. In Section 5 we present per-
formance results that we compare with measurements based
on the original, serial construction algorithm. In Section 6
we briefly conclude this publication.

2. Related Work

Spatial indexing for DVR is e.g. necessary in the context
of out-of-core rendering [CKS03], for level-of-detail ren-
dering [WWH∗00], or for skipping over empty or homo-
geneous space [LMK03]. The specific use-case will usu-
ally determine the properties of the respective spatial index-
ing data structure and different use-cases may require op-
posite parameter settings. Brick resolution for out-of-core
techniques e.g. may be different from a typical brick res-
olution for empty-space skipping [RV06]. It is also not
uncommon that brick-based and hierarchical indexing are
combined for a coarser volume representation than on a
per-voxel level [CNLE09, LCDP13]. Multi-resolution tech-
niques [BHMF08] actually combine bricks of different sizes
and have to take special care of how to accommodate tex-
ture interpolation at different levels of detail. Hierarchical
domain decomposition for volume rendering is often based
on min-max trees [WFKH07, KTW∗11] that allow for effi-
cient culling by storing the minimum and maximum voxel
values at the nodes of the hierarchy. Hierarchical index-
ing data structures traditionally incurred high video mem-
ory consumption because indices needed to be stored in lin-
ear texture memory [YS93] and because conditional branch-
ing e.g. for tree traversal in GPU programs was prohibitive.
Nowadays, hierarchical data structures generally aim at
low video memory consumption by being defined implic-
itly [KTW∗11] or by requiring only bounding boxes to be
traversed during volume integration [VMD08, HAAB∗18].
Sparse volume data sets originate from all kinds of appli-

c© The Eurographics Association 2018.



S. Zellmann, J. Schulze & U. Lang / Rapid k-d Tree Construction for Sparse Volume Data

cations [WDC12]. Recent advances in the field have tried
to improve removal of empty space in inner structures
[HAAB∗18] or have focused on intelligent ways to com-
bine different space leaping strategies [LBG∗16]. Schneider
et al. [SR17] use Fenwick trees to accelerate construction
of indexing data structures. The use of Fenwick trees re-
lates their work strongly to ours, because Fenwick trees are
an extension to the summed-volume tables that we use. We
however opted for a solution based on k-d trees so we could
subdivide our algorithm into a fast CPU tree construction
phase, and into a simple GPU ray integration phase without
tree traversal on the GPU. A good general overview of spa-
tial indexing techniques for DVR can be found in the article
by Beyer et al. [BHP14].

Summed-volume tables conceptually extend summed-
area tables (SAT) that were originally used as an alter-
native to texture mip-mapping [Cro84] to the third di-
mension. While research on parallel scan for 1-D pre-
fix sums [SHZO07, DGS∗08] is in general applicable to
SVT or SAT construction, parallelization algorithms to ef-
ficiently build up SATs have been proposed that scale bet-
ter on modern processor architectures than their 1-D coun-
terparts [KNI14, PS16]. Nehab et al. [NMLH11] use SATs
for recursive image filtering and apply blocking strategies
to overlap memory accesses and computation. Applica-
tions of SATs or SVTs to DVR include empty-space skip-
ping [VMD08] and ambient occlusion [DVND10].

3. Serial k-d Tree Construction

As a starting point for our k-d tree construction algorithm,
we use the serial construction algorithm originally proposed
by Vidal et al. [VMD08]. With their algorithm, construction
is performed in a top down fashion from the root node of
the k-d tree. The root node is found by finding a tight axis

aligned bounding box (AABB) around all the alpha classi-

fied, non-empty voxels in the volume data set. The algorithm
then aims at finding a good position for an axis aligned split-
ting plane that divides the parent AABB into two AABBs,
and thus the volume into two half-spaces. In order to find a
good splitting position, the algorithm considers the longest
side of the AABB as the splitting axis, and then, in a manner
similar to the binning procedure proposed by Wald [Wal07]
for surfaces, evaluates various positions to find the best split-
ting position along that axis. In order to assess the fitness of
the splitting position candidate, AABBs that tightly contain
the non-empty voxels in each half-space, and that are fully
contained by the AABB of the parent node, are computed.
Then the following cost function is minimized over all po-
tential splitting positions:

C (p) =V (Bl (p))+V (Br (p)) , (1)

where p refers to the candidate plane, Bl (p) and Br (p) are
the respective AABBs to the left or the right of the split-
ting plane, and V (Bx) is the volume of AABB Bx. When

an adequate splitting position is found, the algorithm recur-
sively descends to subdivide the two resulting child nodes.
The recursion stops when certain halting criteria apply, such
as the ratio of empty to non-empty space inside a candidate
node dropping below a certain threshold, or the volume of
the AABB surrounding the non-empty voxels dropping be-
low a certain percentage of the volume of the whole data set.
We generally stick with the thresholds proposed by the au-
thors (5% for the ratio of empty to non-empty space, 10%
of the whole volume), as those proved to be effective for
the data sets we evaluated the method with. After construc-
tion, the k-d tree can be traversed from the root to assemble
a list of leaf nodes that can then be integrated with a sim-
ple volume rendering pipeline in back to front or front to
back order. Since leaf nodes in a k-d tree will not overlap,
the resulting partitioning fits well in a typical GPU volume
rendering pipeline. With 3-D texture-slicing, the pipeline is
simply restarted for each leaf node’s bounding box. In a ray
casting pipeline, the list of bounding boxes can be passed to
the compute kernel performing integration, adding an extra
box traversal loop on top of the integration loop, which is
however trivial because it only needs to iterate over the leaf
nodes. In both cases, additional memory transfer overhead
from the CPU to the GPU is negligible.

In order to find tight bounding boxes around non-empty
voxels in a node, Vidal et al. use an iterative algorithm that
starts with an initial AABB that is successively shrunk. They
choose the parent AABB, subject to the plane split, as an ini-
tial bound, and record the number of non-empty voxels con-
tained inside the AABB. It is then safe to shrink the AABB
as long as the tighter box contains the same number of non-
empty voxels. The authors iteratively move the minimum
and maximum corners towards each other along each carte-
sian coordinate axis, until the next smaller box would con-
tain less voxels than the current one. In that case, the current
AABB tightly contains the non-empty voxels. Obviously, the
performance of this operation, and thus the performance of
the k-d tree construction algorithm, depends on being able
to quickly find the number of non-empty voxels inside an
AABB.

To quickly determine the occupancy inside AABBs, Vidal
et al. use an SVT. SVTs are especially well suited for this
type of query because they allow for evaluating the volume
in a cubic region in constant time. SVTs are 3-D matrices B

that store the sums

B(l,m,n) =
i≤l

∑
i=1

j≤m

∑
j=1

k≤n

∑
k=1

A(i, j,k) , (2)

where l ≤ L,m ≤ M,n ≤ N are indices into the (generally
real-valued) 3-D source matrix A with dimensions L,M, and
N. SVTs are an extension of prefix sums into three dimen-
sions. An intuitive way to construct SVT B from source ma-
trix A is to first copy the whole content of A into B and then

c© The Eurographics Association 2018.



S. Zellmann, J. Schulze & U. Lang / Rapid k-d Tree Construction for Sparse Volume Data

to perform the recursive operation

B(i, j,k)=































0 i, j or k ≤ 1

B(i, j,k)+B(i−1, j−1,k−1)

+B(i−1, j,k)−B(i, j−1,k−1)

+B(i, j−1,k)−B(i−1, j,k−1)

+B(i, j,k−1)−B(i−1, j−1,k)
(3)

on all elements of B. SVTs have however several downsides:
building up an SVT is an inherently serial process. While re-
search on parallel scan operations is generally applicable to
prefix sum computation in higher dimensions, the scalabil-
ity of the respective parallel algorithms is not embarrassingly
parallel. SVTs further have a high memory demand, because
data items in general need to be stored with higher preci-
sion than the source type to avoid overflows. Even if memory
consumption is not an issue, storing data items with unnec-
essarily high precision will have an influence on cache uti-
lization because cache lines and caches will generally tend to
contain less actual information. For those reasons, full SVTs
are potentially ill suited in regard to modern CPU architec-
tures that have large cache hierarchies and multiple parallel
cores. Furthermore, in the specific case where SVTs are used
as auxiliary data structures for k-d tree construction, building
up the SVT is by far the most time consuming task.

The serial k-d tree construction algorithm can be logically
divided into two parts: SVT construction and recursive node
splitting. Since the resulting k-d trees are shallow by con-
struction, splitting will typically be performed for only a few
nodes. For typical data sets, SVT construction will therefore
potentially take about two orders of magnitude longer than
the recursive node splitting phase. We therefore consider op-
timizations to the original algorithm that trade node splitting
execution time for construction time of auxiliary data struc-
tures to be generally worthwhile.

4. Parallel k-d Tree Construction

We propose a data parallel variant of the algorithm outlined
above that runs on the CPU. Our decision to perform k-d
tree construction on the CPU is based on the assumption that
video memory is usually a more scarce resource than CPU
memory, so we want to avoid storing auxiliary data struc-
tures in there. With a CPU implementation, it is possible to
keep auxiliary data structures in memory so that we do not
have to reallocate memory all the time, and so we can store
individual data items in an order that is beneficial for cache
efficient traversal. Our whole choice of k-d tree construc-
tion algorithm is actually based on the fact that it lends itself
well to construction on the CPU, and that it anyway fits well
in a GPU-based volume rendering pipeline because memory
transfer overhead on a per-frame and even on a per-update
basis is negligible.

4.1. Partial summed-volume table generation

Building up full SVTs in a naive way is an inherently se-
quential process, and we expect parallel scan operations that
are typically used for calculating prefix sums to not scale
well with the number of threads dedicated to the task. We
therefore propose to not build up full SVTs at all, but base
our parallel algorithm on partial SVTs storing partial sums
for fixed-size three-dimensional blocks. Decomposing the
data set in that way allows for an embarrassingly parallel

SVT construction phase. Since we are particularly interested
in the binary information if a certain voxel is visible or not,
we further propose to not store fully classified alpha values
inside the blocks, but only binary occupancy values. Based
on those restrictions, it is possible to represent fully occu-
pied partial SVTs where each voxel is visible with 16-bit
unsigned integer values for a block size of 323. In compari-
son, with a full SVT storing not only binary but general oc-
cupancy information, 64-bit precision data items would be
necessary even for moderately sized volumes.

We allocate a contiguous region of CPU memory to con-
tain all the partial SVTs whenever the actual volume is
reloaded, which we assume to happen infrequently to only
once during a rendering session. In addition to the 16-bit
partial SVT array, we store a copy of the unclassified vol-
ume data, that we store in a 323 block layout according to
the memory layout of the SVT. When the transfer function
changes, we iterate over the swizzled copy of the volume,
apply classification to each voxel, and set the respective en-
try in the respective partial SVT to either 0 or 1 according to
the voxel’s visibility.

We then construct the partial SVTs in parallel using mul-
tithreading. We expect this operation to scale nearly linear
with the number of parallel threads. The 64 KB sized blocks
will fit into the L1 cache of each individual CPU core on a
typical modern CPU, so that constructing the partial SVTs
can be expected to happen in a fully cached fashion. In ad-
dition to that, the memory access pattern and branching be-
havior of SVT construction is highly predictable and uni-
form for each partial SVT. We carefully tested different SVT
construction patterns to calculate the recursion from Equa-
tion 3 to construct the partial SVTs from the initially 0 or
1 filled temporary SVT arrays for performance. The pattern
that proved best performance wise does not implement the
branch, but rather involves first calculating three prefix sums
for the (i, j = 1,k = 1), (i = 1, j,k = 1), and (i = 1, j = 1,k)
scanlines, followed by calculating the summed-area tables
for the the three “sides” where i, j, and k are 1, respectively.
We then start the recursion at (i, j,k) = 2. Patterns that in-
volved conditional branching or additional zero borders in
memory proved to be slightly inferior with our tests.

c© The Eurographics Association 2018.



S. Zellmann, J. Schulze & U. Lang / Rapid k-d Tree Construction for Sparse Volume Data

0 0 1 1 1 0 0 1 0 0 0 0

0 0 1 1 2 2 0 1 1 0 0 0

0 0 1 1 2 2 0 1 1 0 0 0

1.) count = 1+2+1+0=4

0 0 1 1 2 2 0 1 1 0 0 0

2.) count = (1-0)+2+1+0=4

0 0 1 1 2 2 0 1 1 0 0 0

3.) count = (1-0)+2+1+0=4

0 0 1 1 2 2 0 1 1 0 0 0

4.) count = 2+1+0=3

Figure 2: The image shows how occupancy queries on par-

tial SVTs (the graphic shows this in 1-D, concepts are appli-

cable to 3-D) are performed sequentially. The top row rep-

resents a sparse input sequence. The second row represents

the partial prefix sums of size 3 for the input sequence. The

rows labeled 1.) through 4.) illustrate how a 1-D hyperplane

(indicated by the green line and arrow) is swept from left

to right to find a close boundary from the left hand side. The

row labeled 4.) ends the iteration because the number of vox-

els inside the bounds changes from four to three.

The image illustrates the memory accesses required to eval-

uate the boundary of interest. The memory locations being

accessed are indicated by red crosses. It can be seen that

internal SVTs only contribute with their overall sum which

is stored in the last memory position of the SVT. SVTs at

the border however need to be accessed at general posi-

tions in order to determine the voxel count. It may generally

be useful to build a flat hierarchy over the partial SVTs, so

that in the example the result of the sum 2+ 1 could be ac-

cessed from a higher-level SVT, while only the border SVTs

needed to be loaded from memory completely. In this paper

we however propose an alternative approach to determine

the boundaries in a data parallel fashion that maps better to

modern CPU architectures.

4.2. Performing occupancy queries on partial

summed-volume tables

In the extreme case, prefix summation can be performed in
one of two ways – either by pretabulating all prefix sums that
are of potential interest, or by performing the whole summa-
tion in place at the time the prefix sums are needed. The first
case involves high memory consumption and possibly a time
consuming preprocessing step that is hard to parallelize. The

second case involves computation with O(n) complexity in
the number of input items n. Our algorithm based on partial
summation can be seen as a middle ground between the two
extreme cases. By computing only partial sums, paralleliza-
tion potential increases, but at the cost of no longer being
able to perform occupancy queries using the partial SVTs
with O(1) constant time complexity. This can be easily seen
from the 1-D example in Figure 2. In order to calculate the
occupancy of a volumetric region, it is necessary to perform
a summation over all bricks that are fully or partially cov-
ered by that region, making this an O(n) time complexity
operation, but in the number of partial SVTs, and not in the
number of input voxels. As can be seen from the figure, it
is generally possible to make this operation hierarchical and
thus reduce the complexity to O(logn) in the number of par-
tial SVTs. In that case, summation would be performed over
a higher-level SVT, and over the set of partial SVTs overlap-
ping the borders of the region of interest. Doing so involves
storing additional levels of SVTs. Assuming that the partial
SVT size along each level is constantly 323, such a hierar-
chy would obviously be shallow; with one additional level –
i.e. one “root” SVT placed upon up to 323 partial SVTs, it is
possible to accommodate volumes of sizes up to 10243, so
that the hierarchy traversal could in practice simply be hard-
coded to contain two or three levels. As can also be seen
from Figure 2, even with a hierarchy of partial SVTs, occu-
pancy queries still have linear complexity with respect to the
number of SVTs that overlap with the border of the region
of interest.

Keeping in mind that the occupancy query is used to it-

eratively shrink the AABB around non-empty voxels, it is
obvious that linear summation can in this case become a per-
formance bottleneck. The number of partial SVTs to iterate
over can be problematic when building up the top levels of
the k-d tree where the volume of the candidate AABBs is
relatively high. In addition, linear summation does not scale
to multiple cores, and we want our algorithm to be able to
be robust against future hardware development that we ex-
pect to be comprised of even higher parallelism and more
independent compute cores on a single chip.

We therefore propose to reformulate the whole node split-
ting phase of the k-d tree construction to no longer perform
an occupancy query on the whole set of partial SVTs at all,
but to rather perform boundary computations locally for each
individual partial SVT, and then combine the locally com-
puted boundaries using the union operation (cf. Figure 3).
We further propose to combine such a strategy with a sim-
ple culling approach that performs the boundary computa-
tion only for partial SVTs that are non-empty (identifying
empty SVTs can be done in constant time).

On the downside, this potentially involves a number of un-
necessary boundary computations. These are however per-
formed in thread-local memory which we presume to persist
in L1 cache and thus to be cheap operations. We also do not

c© The Eurographics Association 2018.



S. Zellmann, J. Schulze & U. Lang / Rapid k-d Tree Construction for Sparse Volume Data

1 2

2 4

3 6

1 1 1

2 2 2

107

1

1

2 4

3 6

4 8

2 2

5

8

76

5

6

6

9

1 1

21

1 3

2 2

4 4

1 3

5

3 7

1 1 1 1

2 2 2 2

1

2

1 2

3

2 2

2

2

3 3

3 3 3

3 3 3

2

1 2

3

2 2

2

2

3 3

3 3 3

3 3 3

1

1

1

1

1

1

1

1

1

1

2 1 1 11

1

1

1

2

1

1

1

1

1 2

2 4

3 6

1 1 1 1

2 2 2

11

1

1

2

2 4

3 6

4 8

2 2

5

8

76

5

6

6

9

1 1

21

1 3

2 2

4 4

1 3

5

3 7

1 1 1 1

2 2 2 2

1

2

1 2

3

2 2

2

2

3 3

3 3 3

3 3 3

2

1 2

3

2 2

2

2

3 3

3 3 3

3 3 3

1

1

1

1

1

1

1

1

1

1

2 1 1 11

1

1

1

2

1

1

1

1

1 2

2 4

3 6

1 1 1 1

2 2 2

11

1

1

2

2 4

3 6

4 8

2 2

5

8

76

5

6

6

9

1 1

21

1 3

2 2

4 4

1 3

5

3 7

1 1 1 1

2 2 2 2

1

2

1 2

3

2 2

2

2

3 3

3 3 3

3 3 3

2

1 2

3

2 2

2

2

3 3

3 3 3

3 3 3

1

1

1

1

1

1

1

1

1

1

2 1 1 11

1

1

1

2

1

1

1

1

2 2 2 2 2 2 2 2 2 2 2 2

5 55 5 5 5 5 5 5 5 5 5 5

6 8 8 8 8 8 8 8 8 8 8 8 8

11 11 11 11 11 11 11 11 11 11 11

117

7

8

9

12

13 14 15 15 15 15 15 15 15 15 15

14 15 17

14 16 17 19

18

20

19 19 19 19 19 19 19

22 23 23 23 23 23 23

3

3

3

3

3 15 17 18 20 21 24 25 25 25 25 25 25

4 11

5

6

13

15

6

6

6

6

16

16

16

16

17

17

20

23

25

26

26

27

19 20 22 23 26 27 27 27 27 27 27

22 23 25 26 29 30 30 30 30 30 30

26 27 28 29 32 33 34 35 35 35 35

28 29 31 32 35 36 38 40 41 41 41

29

29

30

30 32 33

30 32 33

43

43

44

36 37 39 42 4343

36 37 39 42 4343

4443 4431 33 403834 37

Figure 3: Finding tight bounding boxes with SVTs. The top

left image shows the original data set, with voxels being

classified as either visible (green) or invisible (light blue).

The top right image shows the process of finding bound-

ing boxes with the serial algorithm. The SVT is used to it-

eratively shrink the loose initial bounding box until a tight

bounding box is found. Our parallel version of the algorithm

is based on partial SVTs (bottom left). Local bounding boxes

are constructed in parallel. The global bounding box can

be calculated in several ways, e.g. in parallel for each par-

tial SVT and later combining them using the union operation

(right). While the illustration depicts the process in 2-D, con-

cepts are directly applicable to 3-D.

expect the number of local boundary computations during
the note splitting phase to be severe. At the root level of the
recursion, we would expect many partial SVTs that would
require testing, but on the other hand, with sparse data sets,
we would expect that many partial SVTs can be immediately
culled. At the lower levels of the recursion, we would gener-
ally expect that only few partial SVTs overlap the region of
interest, so that at that level boundary computations usually
contribute to the overall boundary.

In the following section we compare our approach with a
serial implementation based on the original paper by Vidal et
al. and also take the three aforementioned strategies to find
tight bounds around non-empty volume regions into account.

5. Results

For our performance measurements we integrated our paral-
lel k-d tree construction algorithm in the DVR scientific vi-
sualization library Virvo [SWWL01]. We therefore wrote a
custom ray casting plugin using the NVIDIA CUDA toolkit.
The simple ray traversal code is based on the emission plus

absorption model with optional local shading [Max95]. In
contrast to an ordinary ray caster, our plugin code has an
extra loop that first tests primary rays for intersection with
leaf node bounding boxes, and potentially integrates over
the volume of the box using ray marching. We use OpenMP
pragmas to parallelize the partial SVT generation and the
computation of the local AABBs that are later combined us-
ing a serial union operation. In order to evaluate the perfor-
mance of our parallel construction algorithm, we performed
test runs using four volume data sets of different size that are
depicted in Figure 4. We carefully chose transfer functions
with different properties. One transfer function was designed
so that a k-d tree with only a single leaf node would result.
Two more transfer functions were designed with an effort so
that the resulting leaf nodes in total had different volume.

We performed our evaluation on a workstation computer
equipped with an Intel Core i7-3960X processor with six
cores, twelve threads when enabling simultaneous multi-
threading (SMT), and a base frequency of 3.30 GHz. The
L1 cache of this processor has a size of 384 KB, so that we
expect all blockwise operations of our algorithm to be per-
formed in fast on-chip memory.

SER
TF1

SER-S
PLIT

TF1

PA
R

TF1

SER
TF2

SER-S
PLIT

TF2

PA
R

TF2

SER
TF3

SER-S
PLIT

TF3

PA
R

TF3
0.00

0.05

0.10

0.15

0.20

SVT construction node splitting

Figure 5: Aneurism data set: construction times (seconds)

to illustrate the ratio between time spent for SVT construc-

tion and for node splitting.

We compare the performance of our parallel implemen-
tation to the original serial k-d tree construction algorithm.
We also want to evaluate how our parallel node splitting
phase with ensuing union operation to combine local bound-
ing boxes compares to a serial node splitting phase as illus-
trated in Figure 2. We therefore test the three modalities: se-

c© The Eurographics Association 2018.



S. Zellmann, J. Schulze & U. Lang / Rapid k-d Tree Construction for Sparse Volume Data

Figure 4: The test results in Section 5 were obtained by constructing k-d trees for the combinations of data sets and transfer

functions depicted in the figure. The aneurism data set depicted on the top left of the figure has a resolution of 256×256×256
voxels. The bonsai tree data set on the top right has the same resolution of 256×256×256 voxels. The CT-scan of the christmas

tree depicted in the bottom row on the left side has a resolution of 512×499×512 voxels. The section of the Drosophila brain

microscopy data set to the bottom right has a resolution of 1,000×1,000×910 voxels. Transfer functions were carefully chosen

to find different numbers of leaf nodes with different volume.

Aneurism Bonsai Xmas Tree Drosophila
TF 1 TF 2 TF 3 TF 1 TF 2 TF 3 TF 1 TF 2 TF 3 TF 1 TF 2 TF 3

SER 0.18 0.18 0.18 0.18 0.18 0.18 1.44 1.44 1.44 9.36 9.38 9.39
SER-SPLIT 0.05 0.03 0.04 0.04 0.05 0.04 0.41 0.75 0.98 4.79 20.4 32.5

PAR 0.04 0.03 0.02 0.03 0.04 0.03 0.22 0.30 0.34 5.22 2.80 3.20

Table 1: Construction times in seconds for the four test data sets and the three respective transfer functions. We test serial

construction (SER), parallel constructions of partial SVTs, but with a serial node splitting phase (SER-SPLIT), and parallel

construction with parallel node splitting.

rial (SER), serial node splitting (SER-SPLIT), and all par-

allel (PAR). We present overall performance results in Ta-
ble 1. Figures 5, 6, 7, and 8 illustrate the ratio between the
construction times spent for the SVTs and for the node split-
ting phase. The results of our measurements indicate that the
parallel construction scheme generally provides high scala-
bility. In contrast to the serial algorithm, k-d tree reconstruc-
tion for moderately sized data sets of about 2503 can gener-
ally be performed with very low latency; k-d tree reconstruc-
tion for data sets of about the size 5003 is possible with la-
tency that allows for interactive manipulation of alpha trans-
fer functions. For data sets made up of about 10003 voxels,
latency can, depending on the transfer function, be as low
as three seconds. Our scalability tests with the Drosophila
data set (1000× 1000× 910 voxels) show however that for
larger volumes, a sequential node splitting phase can result
in extremely high construction time, and that the appearance
of the transfer function has a strong influence and can result
in linear summations over partial SVTs becoming the ma-
jor performance bottleneck of the algorithm. The tests also
show that this issue can be mitigated by using a parallel node
splitting phase like the one we proposed above. However,
from the four graphs a trend can be seen that with increasing
volume size, the ratio between SVT construction and node

splitting gradually shifts toward node splitting. We therefore
consider further improving the node splitting phase interest-
ing future work. The node splitting phase as it is currently
designed simply computes local AABBs for every partial
SVT inside the region of interest. Especially for larger vol-
umes, it would be interesting to evaluate if calculating and
unifying bounding boxes only for the SVTs at the borders
of the region of interest (which would reduce the number of
computations and memory accesses, but would come at the
expense of a more complicated and more serial control flow)
can help to improve construction time in this case.

6. Conclusions and Future Work

We presented a parallel algorithm to fully rebuild k-d trees
for spatial indexing of sparse volumes. Our algorithm is
based on using partial SVTs that can be efficiently con-
structed and later queried in parallel and in fast CPU cache
memory. We believe that partial SVTs can be used to gener-
ally parallelize inherently serial spatial index data structure
construction algorithms, and that it is not limited to the di-
vide and conquer strategy used in this paper. Scalability stud-
ies indicate that the algorithm is suitable for future multi-
core architectures.

c© The Eurographics Association 2018.



S. Zellmann, J. Schulze & U. Lang / Rapid k-d Tree Construction for Sparse Volume Data

SER
TF1

SER-S
PLIT

TF1

PA
R

TF1

SER
TF2

SER-S
PLIT

TF2

PA
R

TF2

SER
TF3

SER-S
PLIT

TF3

PA
R

TF3

0.05

0.10

0.15

0.20

SVT construction node splitting

Figure 6: Bonsai tree data set: construction times (seconds)

to illustrate the ratio between time spent for SVT construc-

tion and for node splitting.

In the future we would like to evaluate if the node splitting
phase of our algorithm can be further optimized by consid-
ering only SVTs at node borders for bounding box calcu-
lation. This would however result in a slightly more com-
plicated and also more serial control flow. We also believe
that the partial SVT construction phase can be further op-
timized using SIMD parallelization, e.g. by rearranging the
data layout so that data is traversed along a diagonal of the
SVT’s bounding box. With that, multiple partial sums could
be calculated in parallel when constructing individual par-
tial SVTs. For simplicity, we used a serial union operation
to combine AABBs to form a global bounding box. We pre-
sume that a parallel union operation would help to further
improve scalability of our algorithm especially for large data
sets.

Acknowledgements

The aneurism data set was published online by Philips Re-
search. The bonsai tree data set was published online by
S. Roettger from University of Stuttgart. Both data sets
are available online from [TC112]. The christmas tree data
set was made available publicly by the Department of
Radiology of the University of Vienna and is obtainable
from [Erl06]. The Drosophila brain microscopy data set was
provided with friendly permission by Kei Ito from the Insti-
tute of Zoology, University of Cologne, who is also affiliated
with the Institute of Molecular and Cellular Biosciences,
University of Tokyo.

SER
TF1

SER-S
PLIT

TF1

PA
R

TF1

SER
TF2

SER-S
PLIT

TF2

PA
R

TF2

SER
TF3

SER-S
PLIT

TF3

PA
R

TF3

0.50

1.00

1.50

SVT construction node splitting

Figure 7: Christmas tree data set: construction times (sec-

onds) to illustrate the ratio between time spent for SVT con-

struction and for node splitting.

References

[BHMF08] BEYER J., HADWIGER M., MÖLLER T., FRITZ L.:
Smooth mixed-resolution GPU volume rendering. In Pro-

ceedings of the Fifth Eurographics / IEEE VGTC Conference

on Point-Based Graphics (Aire-la-Ville, Switzerland, Switzer-
land, 2008), SPBG’08, Eurographics Association, pp. 163–170.
doi:10.2312/VG/VG-PBG08/163-170. 2

[BHP14] BEYER J., HADWIGER M., PFISTER H.: A
Survey of GPU-Based Large-Scale Volume Visualiza-
tion. In EuroVis - STARs (2014), Borgo R., Maciejew-
ski R., Viola I., (Eds.), The Eurographics Association.
doi:10.2312/eurovisstar.20141175. 3

[CKS03] CORREA W. T., KLOSOWSKI J. T., SILVA C. T.:
Visibility-based prefetching for interactive out-of-core render-
ing. In Proceedings of the 2003 IEEE Symposium on Par-

allel and Large-Data Visualization and Graphics (Washington,
DC, USA, 2003), PVG ’03, IEEE Computer Society, pp. 2–.
doi:10.1109/PVG.2003.10002. 2

[CNLE09] CRASSIN C., NEYRET F., LEFEBVRE S., EISEMANN

E.: Gigavoxels : Ray-guided streaming for efficient and detailed
voxel rendering. In ACM SIGGRAPH Symposium on Interac-

tive 3D Graphics and Games (I3D) (Boston, MA, Etats-Unis, feb
2009), ACM, ACM Press. to appear. 2

[Cro84] CROW F. C.: Summed-area tables for texture map-
ping. SIGGRAPH Comput. Graph. 18, 3 (Jan. 1984), 207–212.
doi:10.1145/964965.808600. 3

[DGS∗08] DOTSENKO Y., GOVINDARAJU N. K., SLOAN P.-P.,
BOYD C., MANFERDELLI J.: Fast scan algorithms on graph-
ics processors. In Proceedings of the 22Nd Annual International

Conference on Supercomputing (New York, NY, USA, 2008),
ICS ’08, ACM, pp. 205–213. 3

[DVND10] DÍAZ J., VÁZQUEZ P.-P., NAVAZO I., DUGUET F.:

c© The Eurographics Association 2018.

http://dx.doi.org/10.2312/VG/VG-PBG08/163-170
http://dx.doi.org/10.2312/eurovisstar.20141175
http://dx.doi.org/10.1109/PVG.2003.10002
http://dx.doi.org/10.1145/964965.808600


S. Zellmann, J. Schulze & U. Lang / Rapid k-d Tree Construction for Sparse Volume Data

SER
TF1

SER-S
PLIT

TF1

PA
R

TF1

SER
TF2

SER-S
PLIT

TF2

PA
R

TF2

SER
TF3

SER-S
PLIT

TF3

PA
R

TF3

0.00

10.00

20.00

30.00

SVT construction node splitting

Figure 8: Drosophila data set: construction times (seconds)

to illustrate the ratio between time spent for SVT construc-

tion and for node splitting.

Real-time ambient occlusion and halos with summed area tables.
Computers & Graphics 34, 4 (2010), 337 – 350. Procedural
Methods in Computer Graphics Illustrative Visualization. 3

[Erl06] ERLANGEN U.: Vollib, 2006. Accessed: 2018-03-
06. URL: http://www9.informatik.uni-erlangen.
de/External/vollib/. 8

[HAAB∗18] HADWIGER M., AL-AWAMI A. K., BEYER J.,
AGOS M., PFISTER H.: SparseLeap: Efficient empty space skip-
ping for large-scale volume rendering. IEEE Transactions on

Visualization and Computer Graphics (2018). 2, 3

[KNI14] KASAGI A., NAKANO K., ITO Y.: Parallel algorithms
for the summed area table on the asynchronous hierarchical
memory machine, with gpu implementations. In 2014 43rd

International Conference on Parallel Processing (Sept 2014),
pp. 251–260. doi:10.1109/ICPP.2014.34. 3

[KTW∗11] KNOLL A., THELEN S., WALD I., HANSEN C., HA-
GEN H., PAPKA M.: Full-resolution interactive CPU volume
rendering with coherent BVH traversal. In Proceedings of IEEE

Pacific Visualization 2011 (2011), pp. 3–10. 2

[LBG∗16] LABSCHÜTZ M., BRUCKNER S., GRÖLLER M. E.,
HADWIGER M., RAUTEK P.: JiTTree: A just-in-time compiled
sparse GPU volume data structure. IEEE Transactions on Visu-

alization and Computer Graphics 22, 1 (Jan 2016), 1025–1034.
doi:10.1109/TVCG.2015.2467331. 3

[LCDP13] LIU B., CLAPWORTHY G. J., DONG F., PRAKASH

E. C.: Octree rasterization: Accelerating high-quality out-of-
core gpu volume rendering. IEEE Transactions on Visualiza-

tion and Computer Graphics 19, 10 (Oct 2013), 1732–1745.
doi:10.1109/TVCG.2012.151. 2

[LMK03] LI W., MUELLER K., KAUFMAN A.: Empty space
skipping and occlusion clipping for texture-based volume render-

ing. In IEEE Visualization, 2003. VIS 2003. (Oct 2003), pp. 317–
324. doi:10.1109/VISUAL.2003.1250388. 2

[Max95] MAX N.: Optical models for direct volume rendering.
IEEE Transactions on Visualization and Computer Graphics 1, 2
(Jun 1995), 99–108. doi:10.1109/2945.468400. 6

[NMLH11] NEHAB D., MAXIMO A., LIMA R. S., HOPPE H.:
Gpu-efficient recursive filtering and summed-area tables. ACM

Trans. Graph. 30, 6 (Dec. 2011), 176:1–176:12. 3

[PS16] PAPATRIANTAFYLLOU A., SACHARIDIS D.: High
performance parallel summed-area table kernels for multi-
core and many-core systems. In Proceedings of the

22Nd International Conference on Euro-Par 2016: Par-

allel Processing - Volume 9833 (New York, NY, USA,
2016), Springer-Verlag New York, Inc., pp. 306–318.
doi:10.1007/978-3-319-43659-3_23. 3

[RV06] RUIJTERS D., VILANOVA A.: Optimizing gpu volume
rendering. In WSCG - Winter School of Computer Graphics (Feb
2006), vol. 14, pp. 9–16. 2

[SHZO07] SENGUPTA S., HARRIS M., ZHANG Y., OWENS

J. D.: Scan primitives for GPU computing. In Proceedings

of the 22Nd ACM SIGGRAPH/EUROGRAPHICS Symposium

on Graphics Hardware (Aire-la-Ville, Switzerland, Switzerland,
2007), GH ’07, Eurographics Association, pp. 97–106. 3

[SR17] SCHNEIDER J., RAUTEK P.: A versatile and efficient
GPU data structure for spatial indexing. IEEE Transactions on

Visualization and Computer Graphics 23, 1 (Jan 2017), 911–920.
doi:10.1109/TVCG.2016.2599043. 3

[SWWL01] SCHULZE J., WOESSNER U., WALZ S., LANG U.:
Volume rendering in a virtual environment. Immersive Projection

Technology and Virtual Environments 2001: proceedings of the

Eurographics Workshop in Stuttgart, Germany, May 16-18, 2001

(2001), 187. 6

[TC112] TC18: Tc18, 2012. Accessed: 2018-03-06.
URL: http://www.tc18.org/code_data_set/

3D_images.php. 8

[VMD08] VIDAL V., MEI X., DECAUDIN P.: Simple empty-
space removal for interactive volume rendering. Journal of

Graphics Tools 13, 2 (2008), 21–36. 2, 3

[Wal07] WALD I.: On fast construction of SAH-based bounding
volume hierarchies. In Proceedings of the 2007 IEEE Symposium

on Interactive Ray Tracing (Washington, DC, USA, 2007), RT
’07, IEEE Computer Society, pp. 33–40. 3

[WDC12] WANG Y., DOU W., CONSTANS J. M.: Accelerating
volume ray casting by empty space skipping used for computer-
aided therapy. In 2012 International Conference on Audio, Lan-

guage and Image Processing (July 2012), pp. 661–667. 3

[WFKH07] WALD I., FRIEDRICH H., KNOLL A., HANSEN

C. D.: Interactive isosurface ray tracing of time-varying
tetrahedral volumes. IEEE Transactions on Visualization

and Computer Graphics 13, 6 (Nov 2007), 1727–1734.
doi:10.1109/TVCG.2007.70566. 2

[WWH∗00] WEILER M., WESTERMANN R., HANSEN C., ZIM-
MERMANN K., ERTL T.: Level-of-detail volume rendering via
3d textures. In Proceedings of the 2000 IEEE Symposium on Vol-

ume Visualization (New York, NY, USA, 2000), VVS ’00, ACM,
pp. 7–13. 2

[YS93] YAGEL R., SHI Z.: Accelerating volume animation
by space-leaping. In Visualization, 1993. Visualization ’93,

Proceedings., IEEE Conference on (Oct 1993), pp. 62–69.
doi:10.1109/VISUAL.1993.398852. 2

c© The Eurographics Association 2018.

http://www9.informatik.uni-erlangen.de/External/vollib/
http://www9.informatik.uni-erlangen.de/External/vollib/
http://dx.doi.org/10.1109/ICPP.2014.34
http://dx.doi.org/10.1109/TVCG.2015.2467331
http://dx.doi.org/10.1109/TVCG.2012.151
http://dx.doi.org/10.1109/VISUAL.2003.1250388
http://dx.doi.org/10.1109/2945.468400
http://dx.doi.org/10.1007/978-3-319-43659-3_23
http://dx.doi.org/10.1109/TVCG.2016.2599043
http://www.tc18.org/code_data_set/3D_images.php
http://www.tc18.org/code_data_set/3D_images.php
http://dx.doi.org/10.1109/TVCG.2007.70566
http://dx.doi.org/10.1109/VISUAL.1993.398852

