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Binned k-d Tree Construction for Sparse Volume
Data on Multi-Core and GPU Systems
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Abstract—While k-d trees are known to be effective for spatial indexing of sparse 3-d volume data, full reconstruction, e.g. due to
changes to the alpha transfer function during rendering, is usually a costly operation with this hierarchical data structure. In a recent
publication we showed how to port a clever state of the art k-d tree construction algorithm to a multi-core CPU architecture and by
means of thorough optimization we were able to obtain interactive reconstruction rates for moderately sized to large data sets. The
construction scheme is based on maintaining partial summed-volume tables that fit in the L1 cache of the multi-core CPU and that allow
for fast occupancy queries. In this work we propose a GPU implementation of the parallel k-d tree construction algorithm and compare it
with the original multi-core CPU implementation. We conduct a thorough comparative study that outlines performance and scalability of

our implementation.

Index Terms—Scientific Visualization, Sparse Data, Direct Volume Rendering, k-d Tree, Parallel and GPGPU Computing

1 INTRODUCTION

SPATIAL indexing data structures for sparse 3-d uniform
volumes span non-empty volume regions as tightly and
with as few bounding objects as possible. They are usually
either brick-based, hierarchical, or use an index volume to aug-
ment the volume data with additional per-voxel information.
Hierarchical data structures like k-d trees subdivide the vol-
ume using a divide and conquer strategy. Compared to brick-
based indexing, hierarchical data structures are better suited
to achieve moderate traversal costs by reducing the number
of bounding objects, but construction time and memory
consumption are usually higher. With volume data, spatial
partitioning is generally preferred over object partitioning,
because for integration during rendering it is desirable that
bounding objects do not overlap. Popular hierarchical space
partitioning data structures for volume data are octrees as
well as binary space partitioning trees (BSP). k-d trees are BSPs
that hierarchically subdivide k-dimensional space into half-
spaces using axis-aligned hyperplanes. In contrast to bounding
volume hierarchies (BVH), which are object partitioning data
structures that are popularly used for interactive ray tracing
of surfaces and dynamic scenes, space partitioning trees
are usually fully rebuilt when the visibility conditions change.
This is especially true with volume data, where marginal
changes to an alpha transfer function can lead to unpre-
dictable changes in visibility, and consequently to spatial
indexing data structures that are dissimilar in shape and
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volume from data structures that were built for only slightly
different transfer functions.

Full reconstruction of k-d trees is usually time consum-
ing and does not map well to parallel architectures. Since
one objective of spatial indexing is to reduce the number
of bounding objects, k-d trees are usually shallow, and
the splitting phase that divides space into half-spaces is
poorly parallelizable. Splitting typically involves occu-
pancy queries to determine if whole regions of the volume
are empty or homogeneous. This type of query is usually
either prohibitively slow, or is accomplished using accom-
panying data structures like summed-volume tables (SVT), a
data structure detailed upon in Section 3, which is usually
constructed using an inherently sequential process that has
tremendous memory demands. In this work we propose to
replace full SVTs with partial SVTs to exploit parallelism,
to improve overall memory locality, and to reduce memory
consumption.

In order to prove the effectiveness of our approach for k-d
tree reconstruction, we adapt the work by Vidal et al. [1] and
integrate it into an interactive, ray casting-based direct volume
rendering (DVR) GPU pipeline using post-classification
RGBA transfer functions. k-d tree construction as proposed
in [1] follows a top down approach that can accept local
optima as a solution when finding node splitting positions.

It is worth mentioning that, due to that fact, the construc-
tion method performs particularly bad at removing empty
space from inner structures of sparse volumes. We empha-
size that our contribution is not aimed at improving the k-d
tree construction algorithm per se, but rather at parallelizing
a functionality that is integral to and is used by the construc-
tion algorithm as an intrinsic function. Fast occupancy
queries on arbitrary volume regions in 3-d uniform volu-
metric grids are essential for rapid spatial index generation
regardless of the particular space partitioning algorithm
that is used. We believe that our contribution is generally
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helpful and can be easily adapted to other space partition-
ing schemes.

This paper extends our prior work originally published
in [2]. While the aforementioned paper was centered
around an implementation for multi-core CPU architectures
only, in this paper we present alternative implementations
for both CPUs and GPUs. While the basic scheme of con-
structing shallow k-d trees using SVTs is the same for both
implementations, the parallelization strategies differ sub-
stantially. For the GPU implementation we had to make a
number of compromises so that the output of the two con-
struction algorithms is not exactly the same. We therefore
perform a comparative performance and scalability study
to assess the effectiveness of the algorithm on either plat-
forms, and also a qualitative study to compare how well the
respective k-d trees cull empty space and how that affects
rendering performance.

The paper is structured as follows. In Section 2 we pres-
ent related work on 3-d spatial indexing. In Section 3 we
briefly recapitulate Vidal et al.’s k-d tree construction algo-
rithm that our work is based upon. In Section 4 we propose
our parallel k-d tree construction algorithm targeted at
multi-core CPUs as well as an adapted version that runs on
GPUs. In Section 5 we present results for the two implemen-
tations both in terms of tree construction and rendering per-
formance. We briefly discuss the findings from the paper in
Section 6. In Section 7 we conclude this publication.

2 RELATED WORK

Spatial indexing for DVR is e.g. necessary in the context of
out-of-core rendering [3], for level-of-detail rendering [4], or
for skipping over empty or homogeneous space [5]. While
earlier work concentrated on interactive rendering of hierar-
chical volume data [6], with more powerful GPUs the more
interesting task today is to interactively construct the spatial
index [2]. The specific use-case will usually determine the
properties of the respective spatial indexing data structure
and different use-cases may require opposite parameter set-
tings. The brick resolution for out-of-core techniques e.g.
may be different from a typical brick resolution for empty-
space skipping [7]. It is also not uncommon that brick-based
and hierarchical indexing are combined for a coarser vol-
ume representation than on a per-voxel level [8], [9]. Multi-
resolution techniques [10] combine bricks of different sizes.
Special care must be taken to accommodate texture interpo-
lation at different levels of detail. Hierarchical domain
decomposition for volume rendering is often based on min-
max trees [11], [12], which allow for efficient culling by storing
minimum and maximum density values at their nodes. Hier-
archical indexing data structures traditionally incurred high
video memory consumption because indices needed to be
stored in linear texture memory [13] and because conditional
branching e.g. for tree traversal in GPU programs was pro-
hibitive. Nowadays, hierarchical data structures generally
aim at low video memory consumption by being defined
implicitly [12] or by requiring only bounding boxes to be tra-
versed during volume integration [1], [14]. Sparse volume
data sets originate from all kinds of applications [15]. Recent
advances in the field have tried to improve removal of empty
space in inner structures [14] or have focused on intelligent
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ways to combine different space leaping strategies [16].
Schneider et al. [17] use Fenwick trees to accelerate construc-
tion of indexing data structures. The use of Fenwick trees
strongly relates their work to ours, because Fenwick trees are
an extension to the summed-volume tables we use. A good
general overview of spatial indexing techniques for DVR can
be found in the article by Beyer et al. [18].

Summed-volume tables conceptually extend summed-
area tables (SAT) that were originally used as an alternative
to texture mip-mapping [19] to the third dimension.
Research on parallel scan for 1-d prefix sums [20], [21] is in
general applicable to SAT and SVT construction. Davidson
et al. [22] and Harris [23] devised parallel scan algorithms
specifically for the GPU. Parallel construction algorithms
usually assign blocks of the input table to individual threads
or groups of threads and then calculate 1-d prefix sums
along each spatial dimension [23], or they directly build up
the SAT or SVT inside the block using the respective 2-d or
3-d construction scheme [24], [25]. Bilgic et al. [26] use the
parallel scan algorithm from [23] to construct 4 megapixel
SATs on the GPU in 5 to 10 milliseconds. Nehab et al. [27]
use SATs for recursive image filtering and apply blocking
strategies to overlap memory accesses and computation.
Other applications of SATs or SVTs to DVR include empty-
space skipping [1] and ambient occlusion [28].

Spatial index construction for surface ray tracing has
gained significant research interest over the last years.
For fully dynamic and deformable scenes, the tasks of con-
structing the spatial index and of using the spatial index to
accelerate ray/object intersection are considered per frame
operations. While early work in this area was focused on
spatial index construction and ray tracing on the CPU [29],
[30], later work has concentrated on constructing and ray
tracing spatial indices on the GPU [31], [32], [33], [34]. Con-
struction schemes can be generally classified into top down
and bottom up [35], where bottom up often implies execu-
tion of a sequence of O(n) algorithms over all input primi-
tives, like e.g. initially sorting primitives on a space-filling
curve using radix sort. While top down construction using
the surface area heuristic (SAH) and a plane sweeping strat-
egy is generally considered superior to most other strategies
regarding the quality of the resulting tree, this method is
slow at constructing spatial indices for scenes with a large
number of triangles. Binning [30] is a method to discretize
the otherwise continuous sweeping algorithm and can sig-
nificantly reduce the number of candidate planes to test and
thus the overall construction time. To the best of our knowl-
edge, spatial index construction for direct volume render-
ing, where the spatial index is built on the GPU, has so far
not been the topic of any research paper.

3 SERIAL K-D TREE CONSTRUCTION

As a starting point for our k-d tree construction algorithm, we
use the serial construction algorithm originally proposed by
Vidal et al. [1]. With their algorithm, construction is per-
formed in a top down fashion starting from the root node to
the leaves of the k-d tree. The root node is constructed by find-
ing a tight axis aligned bounding box (AABB) around all the
alpha classified, non-empty voxels in the volume data set. The
algorithm then searches the optimal position for an axis
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Fig. 1. Finding tight bounding boxes with regular SV Ts. This illustration should be read from left to right and top to bottom. The serial algorithm origi-
nally proposed by Vidal et al. [1] is comprised of calculating the SVT for the volume (first two images) in order to later find tight axis-aligned bounding
boxes around the occupied regions of space (the remaining ten images). The illustration shows how the volume of a conservative AABB is succes-
sively minimized towards the AABB tightly bounding the occupied regions of space. This procedure is first carried out in the positive and negative x
directions, and then in the positive and negative y directions. While the illustration shows this process in 2-d with SATs, the procedure is directly appli-
cable to 3-d by using SVTs. When shrinking the AABBs, the occupancy is initially determined in constant time for the conservative estimate using the
SVT. During the course of shrinking the initial AABB towards the AABB with minimal volume, the SVT is used to ensure that any new AABB will have
the same occupancy as the conservative AABB. The process of finding a tight AABB can be accelerated by incorporating binary search.

aligned splitting plane that divides the parent AABB into two
AABBs, and thus the volume into two half-spaces. Note that
the resulting data structure stores non-overlapping AABBs so
one could argue that it actually resembles a BVH more than it
resembles a k-d tree. In order to find a favorable splitting posi-
tion, the algorithm considers the longest side of the AABB as
the splitting axis, and then evaluates various positions to find
the best splitting position along that axis. For each candidate
plane, AABBs are computed that tightly bound the voxels
inside the two respective half-spaces and that fall inside the
AABB of the parent node. Then the following cost function is
minimized over all potential splitting positions:

C(p) = V(Bi(p)) + V(B:(p)); eV
where p refers to the candidate plane, B;(p) and B, (p) are the
respective AABBs to the left or the right of the splitting plane,
and V(B,) is the volume of AABB B,. When an adequate
splitting position is found, the algorithm recursively descends
to subdivide the two resulting child nodes. The recursion
stops when certain halting criteria apply, such as the ratio of
empty to non-empty space inside a candidate node dropping
below a certain threshold, or the volume of the AABB sur-
rounding the non-empty voxels dropping below a certain per-
centage of the volume of the whole data set. The thresholds
proposed by the authors are 5 percent for ratio of empty to
non-empty space and 10 percent of the whole volume. In
Section 5 we amongst others evaluate if those halting criteria
are still useful on contemporary hardware.

After construction, the k-d tree can be traversed from the
root to assemble a list of leaf nodes that can then be inte-
grated with a simple volume rendering pipeline in back to
front or front to back order. Since leaf nodes in a k-d tree
will not overlap, the resulting partitioning fits well in a typi-
cal GPU volume rendering pipeline. With 3-d texture-
slicing, the pipeline is simply restarted for each leaf node’s
bounding box. In a ray casting pipeline, the list of bounding
boxes can be passed to the compute kernel performing inte-
gration, adding an extra box traversal loop on top of the

integration loop, which is however trivial because it only
needs to iterate over the leaf nodes. In both cases, additional
memory transfer overhead from the CPU to the GPU is neg-
ligible. Another option (that possibly better matches con-
temporary hardware) is to build deeper trees that are
traversed per ray in the compute kernel, which would trade
code complexity for being able to cull more empty space.

In order to find tight bounding boxes around non-empty
voxels in a node, Vidal et al. use an iterative algorithm that
starts with an initial AABB that is successively shrunk.
They choose the parent AABB, subject to the plane split, as
an initial bound, and record the number of non-empty vox-
els contained inside the AABB. It is then safe to shrink the
AABB as long as the tighter box contains the same number
of non-empty voxels. The authors iteratively move the mini-
mum and maximum corners towards each other along each
cartesian coordinate axis, until the next smaller box would
contain less voxels than the current one. In that case, the
current AABB tightly contains the non-empty voxels. Obvi-
ously, the performance of this operation, and thus the per-
formance of the k-d tree construction algorithm, depends on
being able to quickly find the number of non-empty voxels
inside an AABB.

To quickly determine the occupancy inside AABBs, Vidal
et al. use an SVT (cf. Fig. 1). SVTs are especially well suited
for this type of query because they allow for evaluating the
volume in a cubic region in constant time. SVTs are 3-d
matrices B that store the sums

(2

where | < L,m < M,n < N are indices into the (generally
real-valued) 3-d source matrix A with dimensions L, M, and
N. SVTs extend the prefix sum concept into three dimen-
sions. An intuitive way to construct SVT B from source
matrix A is to first copy the whole content of A into B and
then to perform the recursive operation
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Fig. 2. Finding tight bounding boxes with partial SVTs. This illustration should be read from left to right and top to bottom. With our parallel multi-core
CPU implementation, partial SVTs are constructed that fit inside the L1 cache of each core (first two images). The following eight images show how
tight AABBs can be found in parallel, where each thread is again responsible for processing one block. Finally, the local results are combined using a
trivial union operation. Note how the number of local results is proportional to the number of blocks, which with this implementation is proportional,
but low compared to the number of voxels. It is thus advantageous to prefer trivial combine over parallel reduction, because the former can be per-
formed right after computing the local AABB and without having to wait until all other local results are known.
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on all elements of B. SVTs have however several downsides:
building up an SVT is an inherently serial process. While
research on parallel scan operations is generally applicable
to prefix sum computation in higher dimensions, the respec-
tive algorithms are not embarrassingly parallel. SVTs further
have a high memory demand, because data items in general
need to be stored with higher precision than the source type
to avoid overflows. Even if memory consumption is not an
issue, storing data items with unnecessarily high precision
will have an influence on cache utilization because cache
lines and caches will generally tend to contain less real infor-
mation. For those reasons, full SVTs are potentially ill suited
in regard to modern CPU architectures that have large cache
hierarchies and multiple parallel cores. Furthermore, in the
specific case where SVTs are used as auxiliary data struc-
tures for k-d tree construction, building up the SVT is by far
the most time consuming task.

The serial k-d tree construction algorithm can be logically
divided into two parts: SVT construction and recursive node
splitting. Since the resulting k-d trees are shallow by con-
struction (at least with the original implementation proposed
by Vidal et al.), splitting will typically be performed for only
a few nodes. For typical data sets, SVT construction will
therefore potentially take about two orders of magnitude
longer than the recursive node splitting phase. We therefore
consider optimizations to the original algorithm that trade
node splitting execution time for construction time of auxil-
iary data structures to be generally worthwhile.

4 PARALLEL k-D TREE CONSTRUCTION

We propose two data parallel variants of the algorithm out-
lined above. We first present the parallel implementation
that we proposed in our recent publication [2]. We then

informally analyze the scalability of this implementation
with regard to later porting the algorithm to the GPU. This
informal discussion is based on observations we made dur-
ing the process of porting the algorithm to the GPU. We
then describe a parallel GPU implementation that is loosely
based on the CPU parallelization scheme but employs a bin-
ning strategy to reduce the costs of the parallel node split-
ting phase. Due to the binning strategy, the GPU algorithm
will not produce the exact same spatial index as the CPU
algorithm does, but the overall structure of the algorithm
remains the same.

4.1 Multi-Core CPU Implementation

Building up full SVTs in a naive way is an inherently
sequential process. For better scalability, we propose to not
build a full SVT at all, but rather only partial SVTs storing
partial sums inside blocks whose size is advantageous
regarding the L1 cache size of the target platform. Decom-
posing the data set in this way allows for an embarrassingly
parallel SVT construction phase. Occupancy queries on par-
tial SVTs are then performed in the L1 cache during the par-
allel node splitting phase, and local results are later
combined using a trivial union operation. The procedure is
outlined in Fig. 2.

4.1.1 Partial Summed-Volume Table Construction

Since we are particularly interested in the binary informa-
tion if a certain voxel is visible or not, we do not store fully
classified alpha values inside the blocks, but only binary
occupancy values. It is thus possible to represent fully occu-
pied partial SVTs where each voxel is visible with 16-bit
unsigned integer values for a block size of 32°. In compari-
son, with a full SVT storing not only binary but general
occupancy information, 64-bit precision data items would
be necessary even for moderately sized volumes.

We allocate a contiguous region of CPU memory to con-
tain all the partial SVTs whenever the actual volume is
reloaded, which we assume to happen infrequently or only
once during a rendering session. In addition to the 16-bit
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partial SVT array, we store a copy of the not yet classified
volume data that we store in a 323 block layout according to
the memory layout of the SVT. When the transfer function
changes, we iterate over the swizzled copy of the volume,
perform classification for each voxel, and set the entry in
the respective partial SVT to either 0 or 1 according to the
voxel’s visibility.

We then construct the partial SVTs in parallel using mul-
tithreading. We expect this operation to scale nearly linear
with the number of parallel threads. The 64 KB sized blocks
will fit into the L1 cache of each individual CPU core on a
typical modern CPU, so that partial SVT construction can
be expected to completely happen in cache memory. In
addition to that, the memory access pattern and branching
behavior of SVT construction is highly predictable and uni-
form for each partial SVT. We carefully tested different SVT
construction patterns to compute the recursion from Equa-
tion 3 to construct the partial SVTs from the initially 0 or 1
filled temporary SVT arrays for performance. The pattern
that proved best performance-wise does not implement the
branch, but rather involves first calculating three prefix
sums for the (i,j=1,k=1), (i=1,j5,k=1),and (i =1,j =
1,k) scanlines, followed by calculating the summed-area
tables for the the three “sides” where i, j, and k are 1,
respectively. We then start the recursion at (i,j, k) = 2.
Patterns that involved conditional branching or additional
zero borders in memory proved to be slightly inferior with
our tests.

4.1.2 Performing Occupancy Queries on Partial
Summed-Volume Tables

We reformulate the whole node splitting phase of the k-d tree
construction algorithm to no longer perform an occupancy
query on the whole set of partial SVTs at all, but to rather per-
form boundary computations locally for each individual par-
tial SVT, and then combine the locally computed boundaries
using the union operation (cf. Fig. 2). We therefore initially
determine which partial SVTs overlap the AABB of the node
we want to subdivide. We then cull partial SVTs that are
empty so we no longer have to consider them. Then we com-
pute all the local AABBs inside the remaining partial SVTs. It
is in general to be expected that the number of AABBs is
rather low, because that number is proportional to the
amount of partial SVTs under construction. This amount
will also generally decrease with increasing recursion depth.
Instead of using parallel reduction, we thus trivially combine
the local AABBs to form a single AABB. Other than parallel-
izing the boundary computation, the node splitting phase of
the algorithm outlined in Algorithm 1 remains unchanged
compared to the serial algorithm.

Note that this approach results in computing lots of local
AABBs that are not necessary for boundary computation.
From an algorithmic point of view, it may be beneficial to
first determine which partial SVTs overlap, but are not fully
contained by the bounding box of the parent node, and later
consider only these. Such an approach however turned out
to be inferior with our tests. Just calculating all local AABBs
and then later combining them resulted in the most intuitive
implementation that exposed maximum scalability. The
number of partial SVTs that are fully contained inside the
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parent node’s AABB will also diminish with increasing
recursion depth, which may further explain this observation.

Algorithm 1. Parallel Recursive Node Splitting Phase

procedure NODESPLITTING(ParentBounds)
for Each Candidate Plane p do
BoundsLeft — INvALIDAABB
BoundsRight «— INvALIDAABB
for all PartialSVTs s left of p do in parallel
s « CuLL(s, ParentBounds)
LocalBounds «+ CALCULATELOCAL(s)
ComBINE(BoundsLeft, LocalBounds)
end for
for all PartialSVTs s right of p do in parallel
s + CuLL(s, ParentBounds)
LocalBounds + CALCULATELOCAL(S)
CowmBINE(BoundsRight, LocalBounds)
end for
end for
NopeSpLITTING(BoundsLeft)
NopeSpLITTING(BoundsRight)
end procedure

4.2 Scalability Considerations

In order to assess the algorithm described before in terms of
scalability on many-core systems like GPUs, we consider
the two major phases of the algorithm: parallel SVT con-
struction and parallel node splitting.

Scalability during the first phase is achieved by means of
parallelizing over all partial SVTs, i.e. the number of blocks
that the volume is subdivided into. By reducing the size
(and thus increasing the number) of the blocks, scalability
also increases. In addition to that, calculating each individ-
ual partial SVT can further be parallelized, e.g. by using par-
allel reduction to compute prefix sums.

We further consider the parallel node splitting phase from
Algorithm 1. While the individual boundary computations
are embarrassingly parallel, the top down recursion is not.
Regarding a GPU implementation, one would either need to
implement the recursion on the CPU and only offload the
boundary computation to a GPU compute kernel, or to run a
single thread on the GPU that generates new work on the fly.
Either decision will result in pipeline stalls and possible com-
munication overhead e.g. due to scheduling and executing
compute kernels. We further note that prior work to parallel-
ize recursive node splitting (e.g. by Karras [36]) is not easily
applicable here because the number of resulting leaf nodes is
rather low and also not known a priori. As we describe in the
following section, a one to one adaptation of the multi-core
CPU implementation for the GPU is thus not advantageous.
We thus opt for a construction scheme with a recursive node
splitting phase that is based on binning to reduce the number
of times the parallel boundary operation is called. Binning
will result in similar, but not exactly the same k-d trees that
the serial and parallel implementations generate.

4.3 GPU Implementation with CUDA

Our GPU implementation uses the NVIDIA CUDA toolkit.
The massive amount of threads available on current GPUs
necessitates a different parallelization scheme that we
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Fig. 3. Adaptation of our multi-core CPU algorithm for GPUSs. The illustration shows the concepts in 2-d based on SATSs, while the actual implementa-
tion incorporates the same concepts in 3-d. We first compute partial SVTs (1.1, first row, left) and then compute local AABBs (1.1, first row, middle).
We insert invalid AABBs where blocks are not occupied at all, so there is an AABB associated with every block. When we have computed local
AABBs, we immediately discard the partial SVTs. We then (1.1, first row, right) sort the AABBs on a z-order Morton curve. This results in the list of
AABBs that is depicted in the second row of 1.1. We then perform recursive node splitting with binning. The illustration shows two recursion steps:
first we split along the x-direction (2.1 through 2.3) to find that the result from 2.3 is optimal w.r.t. costs. We then show another recursion step (3.1
through 3.3) where the left box from 2.3 is split along the y-direction. Tight AABBs are found by combining the local AABBs that the respective parent
nodes overlap using parallel reduce. Since the local AABBs are sorted on a z-order Morton curve, we can determine conservative ranges from the
AABSB list so that we do not have to reduce all local AABBs all the time. Bars below the respective lists (2.1 through 3.3, bottom rows) indicate which

local boxes are to be considered to obtain the light and dark blue AABBs.

outline in the following. The implementation is based on a
series of parallel reductions to keep the GPU execution units
occupied as best as possible. Fig. 3 presents an overview of
our algorithm.

While on the CPU the size of the partial SVTs are dictated
by L1 cache size, on the GPU we decided to construct partial
SVTs in the on-chip shared memory [37] of the streaming
multi-processors (SM). On current GPUs, the shared memory
size amounts to 48 KB. Another limit is imposed by the
maximum number of threads that can be scheduled on an
SM in a thread block, with the maximum on current GPUs
being 1024. With these limits in mind, we opted for a partial
SVT construction scheme that is inspired by the parallel
scan operation described by Harris [23]. Prefix summations
are performed using a blockwise parallel reduction algo-
rithm in shared memory. The CUDA architecture is particu-
larly prone to bank conflicts when accessing elements in
shared memory, which the algorithm avoids with a care-
fully devised indexing scheme. Further care has to be taken
regarding the memory access pattern of the scan operation
to ensure cache locality. Bilgic et al. [26] used the algorithm
described by Harris to construct full SATs. They first per-
formed horizontal scan on the lines of the input image in
one CUDA kernel. Then they transposed the image using a
second CUDA kernel and performed horizontal scan on the
transposed image, thus effectively calculating prefix sums

for the (now reduced) columns of the input image. We
employ a similar scheme, but with the difference that we
only construct partial SVTs. It is thus desirable to not per-
form the transpose operation in global memory (i.e. off-chip
GPU DDR3 memory), but rather in the shared memory of
the SM. We thus scan the SVTs row-wise, then swap x and
y-elements of each slice along the z-direction, perform
another scan over all rows, then swap the x and z-elements
along the y-direction, perform a last scan over all rows
and finally swap all elements back to their original position
(cf. Fig. 4).

In order to reach high utilization, we do not write the
partial SVTs out to global memory at all, but immediately
compute and store the local AABBs that we later combine
during the recursive node splitting phase. This significantly
simplifies the way that node splitting is implemented, but
also implies that the AABB for an individual SVT is the
same no matter if the candidate plane we test for is tangen-
tial or actually intersects the SVT’s surrounding block. It is
thus not meaningful to consider candidate planes that inter-
sect partial SVTs, but only those planes that fall inbetween
them. This obviously implies that the partial SVTs should
be small in size. This assertion goes hand in hand with our
observation from above that small partial SVTs are benefi-
cial in order to maximize scalability. We therefore decided
for a partial SVT size of 8 voxels. When computing local
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Fig. 4. Construction of partial SVTs with our GPU implementation. We in
parallel construct partial SVTs of size 8. Inside each block we further
parallelize by employing a sequence of parallel reductions and trans-

pose operations in CUDA shared memory. The figure illustrates the pro-
cedure for partial SVTs of size 2°.

reduce x

boundaries, we first trivially cull empty SVTs, but assign an
invalid AABB so that we later still have one bounding box
per block. For non-empty blocks, we dedicate a single
thread out of the thread group to determine the local AABB
and employ binary search to fit the bounding box from the
negative and positive z, y, and z directions. For 83 blocks,
binary search implies three comparisons per direction, so
that this operation is negligible performance-wise. The com-
pute kernel then writes the local AABB out to global mem-
ory and returns execution to the CPU.

After computing local AABBs, we immediately sort them
on a z-order Morton curve in global memory using a stable
sorting algorithm. During recursive node splitting, we then
sweep candidate planes on an eight voxel raster. Because
the local AABBs are precalculated, we can simply combine
them in global memory using parallel reduction. Since we
previously sorted the local AABBs on a Morton curve, we
do not have to reduce all AABBs all the time, but can conser-
vatively determine a linear sequence of AABBs that fall
inside the bounding box of the parent node. We therefore
calculate the Morton codes of the parent node’s AABB’s
minimum and maximum corner. The two Morton codes
determine conservative lower and upper limits for indices
into the list of local AABBs in global memory. See Fig. 3 for
an illustration of this principle.

Sweeping candidate planes on an eight voxel raster
rather than e.g. on a single voxel raster generally reduces
the number of boundary computations (the process of find-
ing tight AABBs around occupied regions of space). The
fact that local AABBs are precalculated further simplifies
the boundary computation, so that the overhead for calcu-
lating two single AABBs on either side of a plane subdivid-
ing a node is significantly reduced compared to the multi-
core CPU formulation of our algorithm. We however aim at
further reducing the number of boundary computations by
employing a binning approach: per node that we try to split,
we consider only a fixed amount of candidate planes, no
matter what the size of the side of the AABB is along which
we perform the split. We still need to be careful that planes
fall on an eight voxel raster. Sensible numbers of bins are
e.g. 4, 8, or 16. With this approach, we can significantly
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reduce the number of overall boundary computations and
thus the number of compute kernel executions.

4.3.1  Implementation Details

In order to compute partial SVTs, we employ a custom
CUDA kernel that extends the method by Bilgic et al. [26]
into 3-d but only calculates blockwise results. As outlined
before, all operations in this kernel are performed in shared
memory and the output of the kernel is a single, possibly
invalid, AABB per block. For the ensuing combine operation
we use thrust::reduce() from the GPU C++ template
library Thrust [38] that ships with the CUDA toolkit. Special
care has to be taken to reduce the memory allocation over-
head incurred by this routine. By default, thrust::
reduce () will allocate arrays in GPU global memory to
hold temporary results using cudaMalloc () each time it
is called and will immediately release the memory using
cudaFree () after execution. It is however possible to
implement a custom memory allocator and pass it to
thrust::reduce(), so that it reuses previous memory
allocations for temporary buffers. The arrays we reduce are
generally small and the overhead for memory allocations as
well as the impact of pipeline stalls can be significant. Reuse
of memory allocations from previous thrust: : reduce ()
calls turned out to have a significant impact on the perfor-
mance of the parallel node splitting phase compared to an
unoptimized version. The ability for the Thrust algorithms
to consider custom allocation routines seems to have been
added with CUDA version 8.0. With prior versions, our
code would compile just fine but Thrust would silently
ignore the custom allocator.

5 RESULTS

For the evaluation we use the data sets listed in Table 1.
While the first four data sets are publicly available, the
remaining four data sets present the results of an N-body
particle simulation that were sampled on uniform grids of
size 2562, 5122, 10243, and 20483, respectively. We integrated
our algorithms into the DVR library Virvo [39]. We compare
both the construction speed as well as the rendering perfor-
mance obtained with the parallel CPU and GPU algorithms.
For a performance study that compares the serial and paral-
lel versions of the CPU algorithm, we refer the interested
reader to our previous publication [2].

Vidal et al. in their original publication asserted that it is
generally beneficial to construct spatial indices with only
few leaves that are traversed or sorted up front when the
camera changes, and whose leaf nodes are inserted into a
short linear list that is then iteratively traversed by a 3-d tex-
ture slicing-based volume renderer or by a simple ray march-
ing volume renderer. Since control flow is generally allowed
to be more complex on modern GPUs, and previous publica-
tions have shown that full ray / tree traversal is an efficient
operation, it is interesting to evaluate if the assertion Vidal
et al. made still holds today on contemporary hardware.
Deeper trees will also cull more empty space than shallow
ones. We therefore evaluate two ways to construct and ren-
der the k-d trees (cf. Fig. 5). We build shallow trees with the
original criteria (i.e. the minimum size of each node is one-
tenth of the size of the root node) that will only consist of a

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on January 30,2021 at 00:54:39 UTC from IEEE Xplore. Restrictions apply.



ZELLMANN ET AL.: BINNED K-D TREE CONSTRUCTION FOR SPARSE VOLUME DATA ON MULTI-CORE AND GPU SYSTEMS 1911
TABLE 1
Performance Measurements for Various Data Sets
Dataset Description Construction (sec) Rendering (FPS)
CPU | GPU None | Grid | CPU GPU
Partial SVTs: 0.027 Partial SVTs: 0.001
Aneurism Shallow (54.7 % culled) Shallow (52.6 % culled) Shallow | Shallow
256 x 256 x 256 Splitting: 0.041, >~ 0.068 | Splitting: 0.002, 3~ 0.003 514 53.0
Occupancy: 1.01 % || Deep (81.9 % culled) Deep (82.6 % culled) Deep Deep
Splitting: 0.110, >~ 0.137 | Splitting: 0.198, 3~ 0.199 41.3 415 58.0 59.8
w/o empty space:  41.3 23.9 39.1 39.1
Partial SVTs: 0.027 Partial SVTs: 0.001
Bonsai Shallow (79.9 % culled) Shallow (76.7 % culled) Shallow | Shallow
256 x 256 x 256 Splitting: 0.042, >~ 0.069 | Splitting: 0.002, > 0.003 60.1 62.8
Occupancy: 6.87 % || Deep (96.9 % culled) Deep (97.5 % culled) Deep Deep
Splitting: 0.056, >~ 0.083 | Splitting: 0.098, >~ 0.099 39.2 51.8 715 69.6
w/o empty space: ~ 39.2 23.5 39.0 39.0
Partial SVTs: 0.104 Partial SVTs: 0.006
Xmas Tree Shallow (42.5 % culled) Shallow (34.2 % culled) Shallow | Shallow
512 x 499 x 512 Splitting: 0.083, >~ 0.187 | Splitting: 0.002, 3~ 0.008 29.8 28.0
Occupancy: 2.90 % || Deep (72.3 % culled) Deep (70.5 % culled) Deep Deep
Splitting: 0.298, >~ 0.402 | Splitting: 0.551, >~ 0.557 247 28.7 38.2 37.1
w/o empty space: 247 13.8 24.1 241
Partial SVTs: 0.284 Partial SVTs: 0.015
Stag Beetle Shallow (67.8 % culled) Shallow (61.5 % culled) Shallow | Shallow
832 x 832 x 494 Splitting: 0.100, >~ 0.384 | Splitting: 0.004, > 0.019 28.6 232
Occupancy: 4.04 % || Deep (99.1 % culled) Deep (98.4 % culled) Deep Deep
Splitting: 0.291, >~ 0.575 | Splitting: 0.766, > 0.781 214 254 385 35.3
w/o empty space:  21.4 11.0 21.1 21.1
Partial SVTs: 0.026 Partial SVTs: 0.001
N-Body (256%) Shallow (71.6 % culled) Shallow (67.6 % culled) Shallow | Shallow
256 x 256 x 256 Splitting: 0.031, 3~ 0.057 | Splitting: 0.001, 3~ 0.002 62.7 61.0
Occupancy: 0.14 % || Deep (88.7 % culled) Deep (87.1 % culled) Deep Deep
Splitting: 0.066, >~ 0.092 | Splitting: 0.118, 3~ 0.119 411 50.2 66.7 65.8
w/o empty space:  41.1 249 40.4 40.4
Partial SVTs: 0.111 Partial SVTs: 0.006
N-Body (5123) Shallow (72.0 % culled) Shallow (69.2 % culled) Shallow | Shallow
512 x 512 x 512 Splitting: 0.052, >~ 0.163 | Splitting: 0.002, >~ 0.010 49.8 46.2
Occupancy: 0.14 % || Deep (94.2 % culled) Deep (93.4 % culled) Deep Deep
Splitting: 0.270, >~ 0.381 | Splitting: 0.510, >~ 0.516 25.8 40.3 63.0 59.9
w/o empty space:  25.8 14.4 24.8 24.8
Partial SVTs: 0.826 Partial SVTs: 0.048
N-Body (10243) Shallow (54.0 % culled) Shallow (69.0 % culled) Shallow | Shallow
1024 x 1024 x 1024|| Splitting: 0.514, >~ 1.340 | Splitting: 0.005, 3~ 0.053 30.0 30.8
Occupancy: 0.15 % || Deep (96.5 % culled) Deep (91.4 % culled) Deep Deep
Splitting: 1.331, >~ 2.157 | Splitting: 1.002, 3~ 1.050 14.3 30.9 54.4 47.0
w/o empty space:  14.3 7.25 13.7 13.7
Partial SVTs: 6.582 Partial SVTs: 0.398
N-Body (20483) Shallow (72.2 % culled) Shallow (68.9 % culled) Shallow | Shallow
2048 x 2048 x 2048|| Splitting: 7.553, >~ 14.14 | Splitting: 0.033, >~ 0.431 18.6 17.2
Occupancy: 0.15 % || Deep (97.6 % culled) Deep (93.5 % culled) Deep Deep
Splitting: 11.89, >~ 18.47 | Splitting: 3.324, >~ 3.722 7.04 244 44.2 35.6
w/o empty space:  7.04 2.87 6.24 6.24

We build shallow trees based on the halting criteria proposed by Vidal et al., as well as deep trees with a minimum leaf node volume of 8% voxels. We report the
fraction of empty space culled by the leaf nodes, the time it takes to construct partial SVTs, and the time for the node splitting phase. We use four bins for the
node splitting phase of the GPU implementation. We test the rendering performance of the respective trees by rendering orthographic, whole viewport filling
images from several viewing angles at a resolution of 2160 x 2160 pixels. For our tests, we deactivate shading and early-ray termination. For comparison, we
also report performance results for rendering without empty space skipping (“None”) and for rendering with the grid data structure from OSPRay (“Grid”). The
additional row labeled “w/o empty space” refers to the four tests performed with a transfer function that assigns no empty voxels.

few nodes. We also test with deep trees where we allow
the volume of a leaf to be at least 8% but impose no further
restrictions. During rendering, we employ full tree traversal
using a stack-based single ray algorithm in the spirit of the

while-while traversal algorithm proposed by Aila and
Laine [40]. While we evaluate construction on both the
CPU and the GPU, rendering is implemented on the GPU
with CUDA. For comparison, we report the rendering
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Fig. 5. Shallow versus deep trees. We conduct performance measure-
ments with shallow trees where leaf nodes’ volume is up to 10 percent of
that of the root node (middle), and deep trees, where leaf nodes’ maxi-
mum volume is 8% (right). The image shows the aneurism data set with
256° voxels and the N-body data set with a resolution of 512% voxels.
The color coding indicates the number of tree nodes (both inner nodes
and leaves) a primary ray encounters when marching from front to back
through the volume.

performance obtained with simple ray marching without
empty space skipping. We further reimplemented the open
source grid accelerator from OSPRay [41] with CUDA and
integrated it into our test framework. The grid accelerator
uses a min-max range data structure, so that the construction
time depends on the size of the transfer function array.
OSPRay currently uses a simple 2-d lookup table with O(n?)
construction complexity for that. While this data structure
imposes that the alpha transfer function is one-dimensional
and piecewise linear, recent work by Wald [42] at least sug-
gests that construction can be sped up significantly. As there
is currently no implementation available that incorporates
this method, we however stick with the 2-d lookup table and
omit construction time as this does not depend on the size of
the data set. We run our tests on a graphics workstation
equipped with two Intel Xeon Gold 5122 CPUs (four cores,
eight threads each) with a clock frequency of 3.60 GHz (i.e.
16 threads per simultaneous multithreading on eight cores
total), as well as an NVIDIA Titan V GPU. We deliberately
use transfer functions that result in sparse configurations,
but also test and report performance results for transfer func-
tions that assign no empty voxels at all so we can assess the
overhead of using tree traversal for volumes without empty
space. We render images with 2160 x 2160 pixels (the verti-
cal resolution of a 4K display), disable early-ray termination,
and use a camera setup where the volume is completely visi-
ble inside the viewport and rendered with orthographic pro-
jection. We rotate the view in 2° steps around the three major
cartesian axes and render 270 images obtained for each view-
ing angle. After a warmup phase to avoid undesired cache
effects, we repeat this procedure 200 times and average the
results. Performance numbers for the construction phase are
obtained by repeatedly rebuilding the k-d tree. We measure
and compute the average for 1,000 repetitions after perform-
ing 100 warmup iterations.

Our GPU implementation is based on binning. While it is
obvious that using more bins would have an impact on the
performance of the construction phase (the number of bins
asymptotically relates to the number of GPU kernel calls), it
is interesting to evaluate how the number of bins impacts
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tree quality and thus rendering performance. We thus con-
trast the performance of the node splitting phase (the SVT
construction phase is independent of the number of bins)
with the rendering performance for the eight data sets when
building either shallow or deep trees. We report the results
of this comparison in Fig. 6, where we construct trees with
two to 32 bins. Note that since plane sweeping is performed
on an eight voxel raster, for the 256° data sets large bin counts
like 32 in practice only affect the root level of the tree.

Table 1 shows the overall performance of our implemen-
tation. Since the results from Fig. 6 indicate that rendering
performance is not proportional to the number of bins, we
report GPU construction results based on using four bins.
We report performance results for both construction phases.
We also state the occupancy, i.e. the percentage of voxels

that are non-empty, and the ratio of empty space that is
# culled voxels
# empty voxels’"

It is also interesting if using the optimization based on
Morton curves has a significant impact on the performance
of the node splitting phase. We therefore performed a com-
parison based on the four N-body data sets with different
grid resolutions and report timing results in Fig. 7.

Our results indicate that k-d trees, no matter if they are
shallow or deep, generally outperform simple acceleration
data structures like the structured grid from OSPRay. In
addition, traversal overhead as compared to grid traversal
is negligible if the volume is not sparse. Anyhow, the effec-
tiveness of shallow trees is generally below that of deep
trees, where the better culling properties outweigh the
higher traversal costs. This is becoming even more apparent
the larger the spatial extent of the data set; in the case of the
20483 data set, the shallow tree construction setup results in
a rendering performance significantly below the perfor-
mance that can be achieved with the OSPRay grid, while
with the deep tree construction setup favorable results can
be achieved. It is generally noteworthy that shallow trees
build extremely fast. In the future we would like to investi-
gate if a hybrid data structure combining shallow k-d tree
nodes with structured grids that cull empty space at the leaf
node level can outperform the deep tree setup w.r.t. con-
struction and rendering performance.

culled by the leaves of the respective trees (i.e.

6 DiIsSCUSSION

The two implementations we presented both use a top down
construction approach. While a parallel version of the serial
CPU algorithm was straightforward to implement, a reason-
ably fast GPU version that resembles the original algorithm
turned out to be hard to implement; an exact reimplementa-
tion of the CPU algorithm for the GPU will perform orders of
magnitude worse than a parallel and optimized CPU imple-
mentation. In the context of surface ray tracing, many fast
GPU k-d tree or BVH construction algorithms employ a bot-
tom up approach and perform a sequence of O(n) operations
on the primitive or leaf level. Algorithms like LBVH by
Lauterbach et al. [31] are known to construct spatial indices
in real-time whose quality is however inferior compared to
trees constructed with the SAH. Our choice to also use a top
down construction scheme on the GPU was led by reasons
of comparability with the multi-core CPU implementation.
The GPU top down construction algorithm we proposed
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Stag Beetle (shallow) Stag Beetle (deep)
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Fig. 6. Effect of the number of bins on the performance of the node splitting phase on the GPU. We found that setups using fewer than four bins
resulted in inferior trees and thus lower rendering performance. Above that limit, an increased bin count would however generally not result in trees

with higher quality.

compares favorably to the CPU construction algorithm but is
still highly dependent on the depth of the constructed trees.
While the halting criteria originally proposed by Vidal et al.
result in very fast tree construction, deeper trees that take
longer to construct are able to cull more empty space and
thus have better rendering performance.

Our results further indicate that binning is not generally
detrimental to rendering performance. On the contrary, on
certain occasions the greedy top down tree construction algo-
rithm would even find better global results when binning
was used as opposed to sweeping on an eight voxel raster.
As the node splitting performance asymptotically relates to
the number of tested splitting planes, we believe that bin-
ning would be generally preferable even on the CPU. Our

< Shallow == w/o Morton Deep

& 0.15 =0- w/ Morton 100

\c; i—l

=

= 00 0

a 256% 5123 1024% 2048°% 256% 5123 10248 2048°%

Data set size Data set size

Fig. 7. Impact of the z-order Morton curve optimization from Fig. 3 on
construction time for the four N-body simulation data sets. The perfor-
mance impact is most noticeable for large data sets and when building
deep trees with many small leaves.

results corroborate this assumption as the relative node split-
ting overhead on the GPU decreases the larger the spatial
extent of the data set.

Another positive side effect of the binning algorithm is its
relatively low temporary memory consumption. While the
CPU variant that does not use binning and explicitly stores
the partial SVTs in main memory, partial SVTs are only tem-
porarily stored in CUDA shared memory, which is immedi-
ately released after local AABBs have been computed.
Storing partial SVTs requires storing an extra copy of the
volume with 16 bit precision. With the binning algorithm,
8% blocks are represented by a single local AABB that can be
stored (including alignment) with 32 bytes. As we store a
(potentially empty) local AABB for each 8 block, the
temporary storage overhead for e.g. 2048° data sets is thus
only 512 MB.

7 CONCLUSION

We presented two implementations of a parallel algorithm
to fully rebuild k-d trees for spatial indexing of sparse vol-
umes, one targeting multi-core CPU systems, and the other
one targeting GPUs. The adapted GPU implementation
employs binning, local AABB precalculation and z-order
Morton curves for fast retrieval of neighboring blocks to
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optimize the recursive node splitting phase of the multi-
core CPU algorithm. The GPU algorithm does not produce
the exact same k-d trees as the CPU algorithm does, but ena-
bles far better scalability. Our performance study revealed
that tree construction on the GPU compares well to tree con-
struction on the CPU. It however also revealed that the orig-
inal halting criteria by Vidal et al. favoring shallow trees
result in poor quality of the spatial index if the spatial extent
of the data set is large. Since the heuristic we use is greedy,
binning will generally not result in inferior trees compared
to the ones produced with the original algorithm. With bin-
ning, building deeper trees is affordable because the num-
ber of potential split positions depends on the bin count
and is not directly asymptotical to the number of voxels.

Our approach employs a top down construction scheme.
We used top down construction so that we can still compare
our algorithm with the CPU implementations from our pre-
vious paper. In the future we want to compare our algo-
rithms with bottom up k-d tree and BVH construction
algorithms like they are e.g. used for surface ray tracing on
the GPU. We believe that our algorithm will compare favor-
ably to bottom up construction because the heuristic we use
is comparable to the SAH for surfaces, and because tree
depth can be used as a variable to either provide better tree
construction or better rendering performance.
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