
ARCalVR: Augmented Reality Playground on Mobile Devices
Menghe Zhang

University of California, San Diego
Karen Lucknavalai

University of California, San Diego
Weichen Liu

University of California, San Diego

Kamran Alipour
University of California, San Diego

Jürgen P. Schulze
University of California, San Diego

ABSTRACT
With the development of ARKit and ARCore, mobile Augmented
Reality (AR) applications have become popular. Our ARCalVR is
a lightweight, open-source software environment to develop AR
applications on Android devices, and it gives the programmer full
control over the phone’s resources. With ARCalVR, one can do
60fps marker-less AR on Android devices, including functionalities
of more complex environment understanding, physical simulation,
virtual object interaction and interaction between virtual objects
and real environment.

KEYWORDS
Augmented Reality, Virtual Reality, ARCore, Android, Mobile De-
velopment, Realistic Lighting, Spherical Harmonics

ACM Reference Format:
Menghe Zhang, Karen Lucknavalai, Weichen Liu, Kamran Alipour, and Jür-
gen P. Schulze. 2019. ARCalVR: Augmented Reality Playground on Mobile
Devices. In Proceedings of SIGGRAPH ’19 Appy Hour. ACM, New York, NY,
USA, 2 pages. https://doi.org/10.1145/3305365.3329732

1 INTRODUCTION
ARCore provides the functionality needed to use the Android phone
for AR applications: camera-based 6 degree of freedom motion
tracking, as well as recognition of flat surfaces. The latter can be
used to place virtual objects in the physical environment. Our aim
is to build an opensource, lightweight Android native framework
to easily develop Android applications. Our framework integrates
tracking and environment understanding features for basic AR
applications.We also integrated a physics module, and implemented
a lighting estimation module. For better user experience, ARCalVR
has a complete menu system to enable different ways to interact
with virtual objects.

2 SYSTEM STRUCTURE
Figure1 shows the overview of system structure and its dependen-
cies. ARCalVR is an Android Native software framework to create
Augmented Reality applications. We will go into details of each
component in the following sections,

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SIGGRAPH ’19 Appy Hour, July 28 - August 01, 2019, Los Angeles, CA, USA
© 2019 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-6306-8/19/07.
https://doi.org/10.1145/3305365.3329732

Figure 1: System structure and its dependencies

2.1 Hardware and software platform
ARCalVR is targeted on Android platform For development and
testing, we use Samsung S9 with Qualcomm’s Snapdragon 845
SoC and Adreno 630 GPU running at 710 MHz, API level 26. AR-
CalVR is an AR extension to virtual reality visualization framework
CalVR.[Schulze et al. 2013] CalVR is a C++ open source framework
that implements the typically used VR functionality of middleware.
ARCalVR extends it with AR tracking system and ports to mobile
devices.

2.2 Rendering and Display
We focused on how the graphical data moves through the system
based on Android graphics architecture. The low-level component
EGLSurface is provided by Android. Using EGL calls, we can create
and access windows through the operating system to render our
scene. GLSurfaceView provides a helper class to manage EGL con-
texts, inter-thread communication and interaction with the Activity
lifecycle.

After creating and configuring a renderer to GLSurfaceview, we
can then manipulate GL context on both Java and Native C++ sides.
CalVR [Schulze et al. 2013] takes high-level graphis toolkit Open-
SceneGraph (OSG), written entirely in Standard C++ and OpenGL,
which enables us to write raw GL codes, shader files and adapt
them as part of the scene structure.

2.3 User-Interaction Interface System
ARCalVR provides a menu module and mobile-device-adaptive
interactions for users to interact with the system. We placed the
menu in our 3D environment when it is called, facing towards the
user. To map a linux based framework to mobile framework, we
implemented a multi-finger-detection to replace mouse clicks.

To interact with virtual objects we back-project the touch posi-
tion to the near plane of the camera into our 3D environment as
shown on Figure 2. We manipulate objects with one finger drags,
and have two different modes to handle translations and rotations.

https://doi.org/10.1145/3305365.3329732
https://doi.org/10.1145/3305365.3329732


SIGGRAPH ’19 Appy Hour, July 28 - August 01, 2019, Los Angeles, CA, USA Zhang, Lucknavalai and Liu, et al.

Figure 2: Hit test Figure 3: Menu System

2.4 Lighting
We implemented three different approaches for lighting in our An-
droid app: ARCore Native, Single Source, and Spherical Harmonics.
In our demo application, the user can select on a per object basis
which of the three lighting methods to use.

2.4.1 ARCore Native. AR Core Native comes directly from ARCore.
This method calculates the average pixel intensity of the captured
image, and renders the objects based on that average brightness.
This is our lighting baseline to compare other lighting estimation
implementations.

2.4.2 Single Source. Single Source builds on the functionality avail-
able in ARCore to improve the lighting of the scene. We calculate
the pixel location of the brightest point in the captured image. This
is then used as a 3D point light to provide additional lighting to help
create a more realistic rendering for diffuse and specular surfaces.

2.4.3 Spherical Harmonics. Spherical Harmonics lighting relies
on a detected environment map, so we implemented two ways to
adaptively build up this environment map. So as the user continues
to use the app, we gather more images and create a more complete
and accurate environment map.[Ramamoorthi and Hanrahan 2001]

• Use OpenCV to stitch input images into a panoramic image.
This method is slow but accurate.

• Use projection and view matrix from ARCore to directly
project the image onto a sphere.

To compute the Spherical Harmonics on this environment map
we downsize the image and the following calculations are completed
every 50 frames.

• We compute the integral of the environment over one di-
mension ϕ. This calculation is parallelized and completed in
multiple threads.

• Once this is complete, one thread then computes the result-
ing 9 Spherical Harmonic coefficients by integrating over
the other angle θ .

Every frame these Spherical Harmonic coefficients are sent to the
shader to calculate the diffuse colors and render objects based on
the current environment map. The flow of the Spherical Harmonics
Algorithm can be seen in Figure 4.

3 DEMO APP: SPATIALVIZ
Since we were creating an AR extension to CalVR we wanted to
experiment with taking a CalVR plugin, that was built for the Linux
based version and see if we could then run it on the Android AR en-
vironment. The plugin we decided to use was a Spatial Visualization
trainer.

Figure 4: Showing the flow of the Spherical Harmonics Algorithm
used within the Android app. Note that the Spherical Harmonics
are calculated and updated every 50 frames.

Figure 5: Showing three of the different puzzles created in the Train-
ing app. Each involve the rotation andmanipulation of the different
puzzles to get the ball to go where indicated.

The goal of this plugin was to provide a basic application that
takes advantage of the Virtual Reality environment. It creates virtual
3D puzzles that can be rotated and moved around in a 3D space.
This way the user can hopefully receive the same or comparable
benefits they would as if it were a real 3D object [Cathrine 2010].
In Figure 5 you can see three of the different puzzles created in the
Trainer. Each of these involve the use of the PhysX library to create
the interaction and movement between the puzzles and the ball.
You can also see the toast messages displayed to the user when they
have completed the puzzle.

As mentioned the puzzles in our Spatial Visualization Trainer
make use of the of PhysX library, and so we felt that this along
with the nature of the application would be a great plugin to test
the incorporation of ARCore with existing CalVR applications.

4 CONCLUSION
Based on CalVR, ARCalVR integrates ARCore as tracking system
to build our Android Native framework for the development of
Augmented Reality applications.

REFERENCES
Hill Cathrine. 2010. Why So Few? :Women in Science, Technology, Engineering, and

Mathematics. Washington, D.C. : AAUW.
Ravi Ramamoorthi and Pat Hanrahan. 2001. An efficient representation for irradi-

ance environment maps. In Proceedings of the 28th annual conference on Computer
graphics and interactive techniques. ACM, 497–500.

Jürgen P Schulze, Andrew Prudhomme, Philip Weber, and Thomas A DeFanti. 2013.
CalVR: an advanced open source virtual reality software framework. In The Engi-
neering Reality of Virtual Reality 2013, Vol. 8649. International Society for Optics
and Photonics, 864902.


	Abstract
	1 Introduction
	2 System Structure
	2.1 Hardware and software platform
	2.2 Rendering and Display
	2.3 User-Interaction Interface System
	2.4 Lighting

	3 Demo App: SpatialViz
	4 Conclusion
	References

