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Abstract
With the development of Apple’s ARKit and Google’s AR-

Core, mobile augmented reality (AR) applications have become
much more popular. For Android devices, ARCore provides ba-
sic motion tracking and environmental understanding. However,
with current software frameworks it can be difficult to create an
AR application from the ground up. Our solution is CalAR, which
is a lightweight, open-source software environment to develop AR
applications for Android devices, while giving the programmer
full control over the phone’s resources. With CalAR, the pro-
grammer can create marker-less AR applications which run at 60
frames per second on Android smartphones. These applications
can include more complex environment understanding, physical
simulation, user interaction with virtual objects, and interaction
between virtual objects and objects in the physical environment.
With CalAR being based on CalVR, which is our multi-platform
virtual reality software engine, it is possible to port CalVR ap-
plications to an AR environment on Android phones with minimal
effort. We demonstrate this with the example of a spatial visual-
ization application.

Introduction
Recent advancements in mobile hardware and single camera-

based tracking technology enable us to utilize augmented reality
(AR) technology on mobile devices powered by Google’s AR-
Core or Apple’s ARKit software libraries. On Android devices,
ARCore provides the functionality needed to use the Android
phone for AR applications: camera-based six degree of freedom
(i.e., 3D position and 3D orientation) motion tracking, as well as
the recognition of flat surfaces in the physical environment. The
latter can be used to place virtual objects which snap to surfaces
in the physical environment. Our aim was to build a lightweight,
open source software framework to easily and quickly develop
AR applications for Android smartphones. Our framework in-
cludes 3D tracking and simple environment understanding. We
also integrated a physics engine (Nvidia’s PhysX), and imple-
mented a lighting estimation module to illuminate the virtual ob-
jects in the scene as if they were illuminated by the light sources
in the physical environment.

One of the most difficult aspects of creating AR applications
for smartphones is to create appropriate techniques for intuitive
interaction between the user and the AR application. The mobile
nature of smartphone AR limits the user’s interaction capabili-
ties, because a 3D controller or hand tracking are not generally
available. We created an interaction system, which is based on
finger taps on the smartphone’s display, and gives access to the
advanced 3D menu system from our virtual reality (VR) develop-
ment environment CalVR, which CalAR is based on. This way
the programmer can quickly add menu functionality which can be

Figure 1: CalAR’s software structure and dependencies

accessed through the smartphone’s touch screen.
This article describes each component of the software system

we built, and summarizes our experiences with two demonstration
applications we created with CalAR.

Related Work
In the early days of augmented reality applications on smart

phones, fiducial markers located in the physical environment were
used to estimate the phone’s 3D pose with respect to the envi-
ronment. One of the earliest software libraries which solved this
problem was ARToolkit [4,5], which used square, black and white
markers similar to QR codes. Later on, the Vuforia library [6] al-
lowed using known images of any kind for 3D markers.

Later on, miniature 3D accelerometers and gyroscopes be-
came widespread sensors in smartphones, and researchers found
ways to use them to improve position and orientation tracking.
Ben Butchart’s report on AR for Smartphones [8] provides an ex-
cellent overview of the state of the art in 2011.

Today, the most common approach for AR on smartphones
is to use Unity [7] along with ARKit [9] or ARCore [10] to enable
AR features such as 3D pose estimation and surface recognition.
The reason why we developed CalAR is that it is fully open source
(Unity is closed source), allows programming in C++, and is an
extension of CalVR, which with its 10 year history has produced
many VR applications which are desirable to run on a mobile de-
vice.

System Overview
CalAR is a software framework for Android to create aug-

mented reality applications. Figure 1 shows an overview of the
system’s software structure and its dependencies.

CalAR is targeted for Android, while using the Java Native
Interface to support its parent software CalVR’s C++ code. With
the use of ARCore, this system requires Android 7.0 (API level
24) or later. To take full advantage of CalAR, Android 8.0 (API
level 26) or later is required. For rendering, GLES 3.x is sup-
ported starting from Android 5.0 (API level 21). More powerful
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Figure 2: Aligning different systems.

graphics chipsets will increase the rendering rate, produce more
fluid screen updates, and an overall better user experience. AR is
very CPU and GPU intensive.

For development and testing, we used a Samsung Galaxy
S9 smartphone with Qualcomm’s Snapdragon 845 SoC and and
Adreno 630 GPU running at 710 MHz, API level 26. CalAR is
the AR extension of our virtual reality visualization framework
CalVR [1]. CalVR is an open source software framework written
in C++ which implements VR middleware functionality for VR
applications running on consumer VR headsets all the way to VR
CAVEs with large rendering clusters. CalAR extends it with AR
pose estimation through ARCore, a physics engine, a 3D interac-
tion concept for touch screens, and environment-based lighting.

Android-CalVR Communication
Communication between the high-level Android application

and the low-level CalVR framework required a multi-layer soft-
ware implementation. We use the Java Native Interface (JNI) for
the main Android application, which is written in Java, to be able
to communicate with the underlying C++ code from CalVR. We
implemented an entry controller class as the jumping off point
into C++ where we can communicate directly with the various
C++ libraries which are part of CalVR.

3D Position and Orientation Tracking
Google’s ARCore has the ability to track a few dozen feature

points in 3D using the smartphone’s built-in camera and motion
sensors, and compute the 6-degree of freedom (DOF) trajectory of
the device. The tracking system of ARCore is based on sparse fea-
ture detection. Once the 3D feature points are detected, and when
the camera pose is known, we can overlay 3D virtual content on
top of the image. ARCore’s tracking system is able to detect flat
surfaces within a scene with rich features. Using ARCore as the
backbone, we built our own tracking system aligning the real and
virtual cameras as well as a variety of coordinate systems needed
for application development.

Coordinate Alignment
The first issue we needed to tackle was the inconsistency of

the coordinate systems between virtual world and real world. The
tracking, or real-world system utilized a y-up right-handed coor-
dinate system, whereas the virtual system was a z-up right-handed
coordinate system. Figure 2 shows the different coordinate sys-
tems for tracking (real-world) system and virtual system. The
same issue arose when we integrated the physics simulation en-
gine PhysX, OpenSceneGraph and GLES. It is crucial for CalAR
to work correctly that the coordinate system transformation ma-
trices for all coordinate systems are known.
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Figure 3: Rendering hierarchy.

Camera Alignment
ARCore creates the world coordinate system with the camera

in its origin. As long as the system does not lose tracking, all
detected feature and anchor points remain consistent. In a first
person game for a regular computer, the user controls the behavior
of the player character in the scene, which manipulates the virtual
camera. However, since CalAR displays the real-world as seen
by the camera held by the user, the viewpoint of the virtual scene
should be aligned with this camera.

Rendering and Display
Android provides a system-level graphics architecture that

can be used by the application framework. So we focused on
how the visual data moves through the system based on Android’s
graphics architecture. Figure 3 shows CalAR’s rendering hierar-
chy. The low-level component EGLSurface is provided by An-
droid. It is a graphics-rendering API which is designed to be
combined with EGL (i.e., OpenGL ES). Using EGL calls, we can
create and access windows through the operating system to ren-
der our scene. GLSurfaceView provides a helper class to manage
EGL contexts, inter-thread communication and interaction with
the Activity lifecycle.

After creating and configuring a renderer to GLSurfaceview,
we can then manipulate the GL context on both the Java and
native C++ sides. CalVR utilizes the high-level graphis toolkit
OpenSceneGraph (OSG), written entirely in Standard C++ and
OpenGL, which enables us to write OpenGL code and GLSL
shader files and adapt them as part of the scene structure.

User-Interaction Interface System
In most cases, for handheld AR applications, the non-

dominant hand holds the device and points the camera towards
the target. Leaving the dominant hand free to interact with the
virtual environment. We applied three interaction techniques to
our interaction system: multi-touch, 3D direct touch and a ray-
casting manipulator for menu interaction.

Multi-Touch Interaction
CalAR being the AR extension of CalVR, is ready to use

3D controllers for user interaction, or mouse clicks on a regular
monitor. But it is not prepared to interact through a touch screen
with finger gestures. To translate mouse and 3D controller inter-
actions into something more intuitive for touchscreen devices, we
use multi-touch input from the touchscreen. The core mouse or
controller events of clicking and dragging were mapped to multi-
touch events. Swipes are interpreted as mouse drags, and taps
are interpreted as mouse clicks, one finger corresponding to the
left mouse button, and two fingers corresponding to the right. A



Operation Desktop Mobile
Drag Left click and move One finger touch and move
Click Left single click One finger single tap
Double-click Left double click One finger double tap
Right-click Right single click Two finger single tap
Right-double-click Right double click Two finger double taps

Table 1: Map of multi-touch events to mouse events
Operation Description
Long press 1, 2, and 3 fingers touch for an extended time
Fling Single finger quickly swiping across screen

Table 2: Unique events for touchscreen

breakdown of this can be seen Table 1.
In addition to providing this core functionality, we extended

the interaction options to include multi-touch events that are
unique to touchscreens, as well as long presses and flicks. Table 2
describes the unique events detected by our multi-touch detector.

3D Direct Touch
Mouse events, like clicking and dragging, can be more in-

tuitive than multi-finger interactions. Often the latter interaction
type requires prior knowledge to be able to correctly use the touch
gestures. In an effort to make the interaction as intuitive as pos-
sible we created the ability to touch and directly interact with the
objects in the AR environment on the screen.
Object selection: ARCore detects feature points in the scene that
describe the camera’s position and orientation in world coordi-
nates. We attach the virtual objects to the coordinate system these
anchor points are in to ensure that they maintain consistent po-
sitions and orientations. Then to select a virtual object, the user
simply touches the screen where the object appears. This touch
triggers a virtual ray to be cast into the environment which then
determines which object the user selected.

The initial touch position pt is in 2D screen coordinates, and
is first back-projected onto the near and far planes of the virtual
camera’s view frustrum, as Ptnear and Ptfar This ray Pr can be rep-
resented by equation 1, where the scalar t is determined by the
first object that the ray hits.

Pr = Ptnear + r · t, r = Ptfar −Ptnear (1)

Object Translation: If we selected an object and want to move it
within our scene, we click on the object to select it and drag our
finger across the screen. When we dragged our finger the touch
position changed from pt1 to pt2 . These screen space vectors can
be back-projected into 3D space as Pr1 ,Pr2 . The scalar value t for
Pr2 can then be calculated from similar triangles using equation
2, where n is the normal vector of camera plane:

Figure 4: Ray-object intersection test in 3D space.

Figure 5:
Raycasting

Figure 6: 3D Direct Touch to place Android
robots.

t =
n ·Pr1 −n ·Pt2 near

n · r
(2)

Object Rotation: We handle 3D rotations similar to translations.
In order to rotate an object we first click on the object to select
it, then drag our finger to rotate the object. Our rotations are
about the X and Y axes of the camera coordinates, and the an-
gle is based on the difference between the previous and current
touch positions, pt1 to pt2 .

R = Angle Axis(δx,AxisZ) ·Angle Axis(δy,AxisX )

(δx,δy) = pt2 − pt1
(3)

Ray-casting Manipulator
CalAR’s menu system is an extension of the CalVR’s menu

system. After a designated tap event occurs, the menu is placed
facing the user inside the 3D environment. We then recreate the
effect of a mouse cursor with a ray-casting manipulator. The ray
starts at the camera position and extends into the scene. This ma-
nipulator is drawn in the scene as an orange line segment. Each
frame we check the intersection between the stroke and the menu
and highlight the potential menu selection. Selecting this menu
item is done by tapping the main button seen at the bottom of the
screen, which always remains visible. Screenshots of this interac-
tion are shown in Figure 5

We designed this ray-casting manipulator to avoid ”fat fin-
ger” errors [3] and enable precise selection. We noticed that it
could be difficult to interact with the menu, so we created this
ray-casting function to allow the user to more clearly see what
menu option they are clicking on. We also use this ray-casting
method to manipulate the menu placement. By selecting the top
of the menu with the ray the menu attaches to the ray, and by mov-
ing the phone the user can move the menu around the scene. We
then created this method of interaction as a alternative to the 3D
Direct Touch method. The advantage of the new method is that it
does not limit the manipulation of the virtual objects to the size of
the mobile device’s screen.

Physics Engine
To demonstrate how real-world data from the environment

can be incorporated within an augmented scene, we integrated
PhysX, Nvidia’s multi-platform physics engine, into our software
framework. Since we use the latest NDK, in order to prevent link-
ing and runtime errors due to combining libraries built by differ-
ent compilers and standards, we updated PhysX’s Android make-
file to build PhysX with the latest NDK with Clang instead of



Figure 7: A ball thrown on the plane bounces off it.

GCC, and statically linked all PhysX libraries. PhysX maintains
and runs simulations inside its own PhysX world, so we dynami-
cally update real-world data coming from ARCore into the PhysX
scene. Whenever ARCore detects a flat surface or plane in the en-
vironment, we create a thin box to tightly fit the detected plane.
We found that this reduced the performance cost when compared
to dynamically updating a convex mesh into the PhysX scene.
Figure 7 shows a bouncing ball example of this feature.

Lighting
We implemented three different approaches for lighting in

our Android app: ARCore Native, Single Source, and Spherical
Harmonics. In our demo application, the user can select on a per
object basis which of the three lighting methods to use, which
allows rendering different objects with different lighting methods
in the same scene and directly compare them to one another.

ARCore Native
AR Core Native comes directly from ARCore. This method

calculates the average pixel intensity of the captured image, and
renders the objects based on that average brightness. This is our
lighting baseline to compare other lighting estimation implemen-
tations.

Single Source
Single Source builds on the functionality available in AR-

Core to improve the lighting of the scene. We calculate the pixel
location of the brightest point in the captured image. This is then
used as a 3D point light to provide additional lighting to help cre-
ate a more realistic rendering for diffuse and specular surfaces.

Spherical Harmonics
Spherical Harmonics lighting projects objects and/or envi-

ronment map into spherical harmonics frequency space, and then
calculates lighting with spherical functions [2]. By pre-computing
the complex lighting environment and per-vertex radiance trans-
fer function into vectors of coefficients in frequency space, the
lighting integration can be done in real-time. This method relies
heavily on a detected environment map, so we implemented two
ways to iteratively build this environment map. As the user uses
the AR app and points the smartphone in different directions, we
gather more and more images and create a more complete envi-
ronment map.

1. We use OpenCV to stitch the input images into a panoramic
image. This method is slow but accurate.

Figure 8: Showing the flow of the Spherical Harmonics
algorithm used within the Android app. The Spherical

Harmonics are only calculated and updated every 50 frames.

2. We use projection and view matrix from ARCore to directly
project the image onto a sphere. This method has a smaller
performance impact, but tends to be more inaccurate in a
more confined environment.

These methods are only applied once every 50 rendered
frames (about once per second) so that they do not slow down the
rest of the application too much. Initially we only use the current
view as the environment map, assuming that the rest of the en-
vironment does not contribute to the augmented scene yet. Once
we were able to stitch together enough images to fill at least 80%
of the environment map we switch to the more complete environ-
ment map to make sure we use information in the calculations that
will result in more accurate rendering.

To compute the Spherical Harmonics on this environment
map we downsize the image, and the following calculations are
completed every 50 frames:

• We compute the integral of the environment over one di-
mension φ . This calculation is parallelized and completed
in multiple threads.

• Once this is complete, one thread then computes the result-
ing 9 Spherical Harmonic coefficients by integrating over
the other angle θ .

Every frame these Spherical Harmonic coefficients are sent
to a shader to calculate the diffuse colors and render objects based
on the current environment map. The flow of the Spherical Har-
monics Algorithm can be seen in Figure 8.

Test Applications
We created two plugins to demonstrate the features of

our CalAR system. The first one Play with Android Andy
demonstrates the following features: basic rendering, interaction,
physics and lighting. The other, SpatialViz, is an application
originally developed as CalVR plugin for VR environments. We
adapted it to our CalAR in Android to show the abilities to build,
use, and integrate plugins which were developed for CalVR.

Demo App: Playing with Android Robots
This application is shown in Figure 9. To start the app, the

user holds the phone up and sees the 3D menus shown on in the
physical environment. Then he double taps the screen and the
main menu pops up in front of him 10. After browsing the menu,



Figure 9: Typical usage
scenario.

Figure 10: 3D menu system.

Figure 11: Three lighting modes: baseline, Spherical Harmonics
lighting + baseline, and single light source.

he points the ray to check the box ”Add an Andy” with the default
lighting mode. With the camera facing the floor, a flat surface
is drawn on the screen in the location of the floor, and Android
robots can be placed on this surface. To interact with them the
user places robots in random positions and rotates one of them to
face towards the others, see Figure 6.

We also implemented three different lighting modes as
shown in Figure 11. The single-source-lighting estimates the real-
world light source and the Android robot shows a highlighted spot
on its head. Spherical Harmonics lighting mode, on the other
hand, captures the current view every 50th frame and stitches
them iteratively to generate a panoramic image of the environ-
ment (see Figure 12).

Demo App: Spatial Visualization Trainer
Our pre-existing Linux-based spatial visualization training

application for CalVR was developed to teach engineering fresh-
men better 3D spatial visualization skills. The application uses a
basic framework for 3D interaction within a VR environment. We
thoguht that the spatial visualization trainer was a good, typical
app to test how easy it would be to port a CalVR application to

Figure 12: Creating a panoramic image iteratively from different
viewing directions.

Figure 13: Showing three of the different puzzles created in the
spatial visualization training app. Each involve the rotation and

manipulation of different puzzle pieces to get the ball to go
where it should.

Figure 14: Tetris puzzle: the user needs to move and rotate the
green puzzle piece in the AR space using taps and swipes to find

and match the position and orientation of another piece.

CalAR. This application also included a variety of components
we wanted to test out in CalAR, such as PhysX, as well as 3D
interaction with virtual objects.

The spatial visualization trainer creates virtual 3D puzzles
that the user can interact with in 3D space. Figure 13 shows three
different puzzles created by the app. Each of them involves the
use of the PhysX library to simulate interaction between the puz-
zles and a ball. Android Toast-style messages are displayed to the
users when they have completed the puzzle, made possible by the
two-way communication through the JNI and controller classes.
Figure 14 shows our 3D Tetris puzzle and the different messages
displayed to the user.

Discussion
The porting of the spatial visualization trainer app from

CalVR to CalAR showed us various parts of the software which
needed to still get fixed. Once it worked, we tested it out among
the developers and report on our observations below.

CalAR vs. CalVR
When we initially ran the CalVR plugin on the Android

phone a big issue was the scale of virtual objects. CalVR is a VR
only platform and as a result the scaling of objects can be fairly
flexible. However, in our Android application the camera posi-
tion is fixed within the real-world, so the scale of objects becomes
fixed. We needed to re-scale the objects and address some floating
point issues before the application ran smoothly. Figure 15 shows
a comparison between the Linux (CalVR) and Android (CalAR)
environments for two of the puzzles in the trainer application.



Figure 15: Comparison of the Linux and Android environments
running the spatial visualization trainer app.

Real World Coordinates
ARCore is able to detect flat surfaces within a scene if there

are enough features on the surface, i.e., if you are looking at a
flat solid colored wall ARCore may not to detect that surface.
Once ARCore does detect a flat surface, ARCore can project a 2D
screen tap into a 3D feature point onto that surface. So the func-
tionality we ended up implementing was that when a surface was
detected, a single-finger double tap would then be translated into
that World Coordinate feature point. The matrix that describes the
translation and rotation of that feature point could then be used to
place our applications objects onto the surface.

One thing that we always had to be cautious of was the units
and orientation of the coordinate system. We were dealing with
a lot of different coordinate systems and ensuring that they all
correctly lined up was a recurring issue.

Camera Positioning
The Linux based system had a set initial camera position, and

upon a mouse click and drag the camera position rotated around
the stationary object. This type of interaction no longer made
sense in an AR environment. We first fixed the camera location to
the phone’s camera location so it properly lined up with the real-
world image on the screen. We then changed the click and drag
interactions to change the object’s position and orientation rather
than the camera’s.

Rendering Performance
The different puzzles were all created with boxes and

spheres. As a result the amount of triangles that needed to be
rendered for the puzzles ranged from between 300 and 3,650 tri-
angles. CalAR was able to seamlessly render these puzzles while
maintaining a frame rate of 60 frames per second.

Conclusions
Based on our existing CalVR middleware software, the new

CalAR for Android integrates ARCore as tracking system, as well
as a 3D menu system, a physics engine, and environment-based

lighting. With the CalAR framework, software developers can
build their own AR applications more easily than starting from
scratch. If all that is needed is an AR application for smartphones,
Unity may often be the better answer. But if open source or com-
patibility with a wide range of VR systems is desired, CalAR of-
fers a viable alternative.
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