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Abstract
Digital Imaging and Communications in Medicine (DICOM)

is an international standard to transfer, store, retrieve, print, pro-
cess and display medical imaging information. It provides a
standardized method to store medical images from many types of
imaging devices. Typically, CT and MRI scans, which are com-
posed of 2D slice images in DICOM format, can be inspected
and analyzed with DICOM-compatible imaging software. Addi-
tionally, the DICOM format provides important information to
assemble cross-sections into 3D volumetric datasets. Not many
DICOM viewers are available for mobile platforms (smartphones
and tablets), and most of them are 2D-based with limited func-
tionality and user interaction. This paper reports on our efforts to
design and implement a volumetric 3D DICOM viewer for mobile
devices with real-time rendering, interaction, a full transfer func-
tion editor and server access capabilities. 3D DICOM image sets,
either loaded from the device or downloaded from a remote server,
can be rendered at up to 60 fps on Android devices. By connecting
to our server, users can a) get pre-computed image quality met-
rics and organ segmentation results, and b) share their experience
and synchronize views with other users on different platforms.

Introduction
Magnetic resonance (MR) and computed tomography (CT)

imaging devices have been incorporated into mainstream radiol-
ogy practice and are performed daily for a wide range of clini-
cal indications. DICOM datasets are widely used in the medi-
cal field. Traditionally, a radiologist reviews a patient’s imaging
data one 2D image at a time and selects those that show the best
views of the disease among hundreds of images, using them as
the basis for a medical report. More recently, 3D volumetric visu-
alization offers a more comprehensive view of the medical imag-
ing data. However, volumetric visualization is more compute-
intensive than 2D imaging, thus viewing systems must process
data particularly efficiently, and due to the complex nature of vol-
umetric data sets they must be user-friendly to be useful.
There are many applications on desktop platforms for different
usage scenarios, some of which use novel methods that take the
3D information into account that is stored in the image sets. We
decided to develop our software for mobile devices to balance
convenience and performance. Recent advancements in mobile
chipsets enable us to do complex rendering in real-time. Our soft-
ware makes 3D volume visualization more approachable for both
specialists and non-specialists and the mobile nature of the de-
vices makes it easier to communicate, for instance for doctors
with their patients.
One problem we addressed is how to improve the 3D visualiza-
tion of medical data by utilizing the available meta-data from the
DICOM files. Another challenge was how to properly design the

user interface to provide the necessary visualization features with-
out overwhelming the user with too much complexity.
We developed an Android application to load, view and interact
with 3D medical volumes. We designed the core software mod-
ules to make it easy to support other hardware platforms. Some
mobile DICOM Viewers provide access to hospital image servers
(PACS) to retrieve datasets. We created a server running on a
desktop, provides another option that lies in-between the mo-
bile clients and remote PACS system so that we can store pre-
processed MRI datasets and metadata, in order to minimize the
computational load on the mobile device. Compared to previously
existing DICOM viewers, the novel contributions of our work are:

• Real-time experience:Real-time volume rendering with a
2-stage process on mobile Android platforms.

• Rich functionalities:A client-server architecture which pro-
vides additional information including organ masks, colon
center lines and image quality metrics. Those data allowed
us to add features that are not found in other mobile medical
data viewers.

• Collaborative views:Our server also provides the ability for
users on different devices with different platforms (e.g., PC)
can view the same data in the same exact way, to allow for
cross-platform collaboration.

Potential use case scenarios for our applications are varied, for
example, medical education, communication, surgical planning,
and early disease detection.

Related Work
Volume Rendering

Volume rendering techniques, including direct and indirect
rendering, have been developed for medical image visualization
to create customizable images [19, 27]. Direct Volume Rendering
(DVR) [16, 8] generates images of 3D volumes by using an opti-
cal model to map data values to optical properties, such as color
and opacity [17]. DVR includes backward and forward methods.
Ray-casting is an example of backward methods, which is per-
formed pixel-by-pixel. This method was introduced by Kajiya
and Herzen [14] and was later translated to the GPU [15].
In the medical field, this rendering technique is used to transform
sets of 2D images into 3D volumes. Some previous work op-
timizes the three steps for the unique needs of clinical use and
sometimes aim to help anticipate potential complications during
surgery operations [7, 13]. For example, Fishman et al. [9] com-
pared the popular methods of alpha blending and maximum in-
tensity projection for the evaluation of CT angiographic data sets.
These two techniques have different advantages and disadvan-
tages when used in clinical practice, and it is important that ra-
diologists understand when and how each method should be used.
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Figure 1: Software structure

DICOM Viewers
DICOM viewers are often developed with a focus on one or

more of the following functions: 1) quick viewing of medical im-
ages; 2) browsing the images from PACS servers. Some offer 3D
rendering features as an option. According to a survey of DICOM
viewers in 2016 [10], products that provide great 3D imaging with
a high reputation are ImageJ [24], MicroView [12], MIPAV [25],
and OsiriX Lite [23]. The recently released Horos for Mac is a
free version of OsiriX, which is often considered as the best DI-
COM viewer for Macs. Other software applications, like Post-
DICOM [21], Weasis [22], Ginkgo CADx, and Pro Surgical 3D
allow high-quality rendering with high performance on PCs. In
recent years, the web paradigm has introduced new visualization,
sharing and interaction opportunities for medical images. Some
web applications use WebGL to provide easy access to a quick
2D or 3D visualization of datasets [2, 1, 5], but 3D rendering per-
formance cannot compete with native applications. In the mobile
field, choices are more limited. Products on mobile devices like
mRay [18], Symmetry [11], iPaxera [6] and simpleDICOM [3]
provide a 2D view for each slice. Some of them enable the con-
nection to a PACS server but do not have ways to store and share
datasets. DroidRender [26] is considered one of the best options
on Android that provides a fully functional 2D and 3D render en-
gine, tissue segmentation and slicing.

System Overview
Our software system consists of an Android app and an op-

tional image server. Figure 1 shows an overview of our appli-
cation. It is targeted towards Android, using the Java Native
Interface to implement all the core functionalities in C++ for
greater speed. For development and testing, we used a Sam-
sung Galaxy S10 smartphone with Qualcomm’s Snapdragon 855
SoC and Adreno 640 GPU, API level 28. More powerful graph-
ics chipsets will increase the rendering rate, produce more fluid
screen updates, and overall better user experience.

Volume Rendering and Display
We created a two-step rendering algorithm with a compute

shader (Fig. 2). A 3D texture is prepared in stage one and ren-
dered in the next stage. In stage one, the 3D texture is prepared
with color and opacity mapping (transfer function), which are
done in a compute shader. In stage two, this 3D volume is ren-
dered with one of two methods: texture-based or ray-casting. This
design separates the rendering parameters into two groups.
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Figure 2: Illustration of our 2-stage rendering scheme

Figure 3: An abdominal MRI with organ segmentation. From left
to right: (a) no masks; (b) body and organs with masks; (c) organs
only; (d) kidneys and spleen only

Stage One: Preparing the 3D Texture
For each volume data set, a 3-dimensional texture is created

with data that is loaded gradually. Initially, users select a vol-
ume from the local or remote data set list, and the corresponding
volume information is sent to the native application to allocate a
buffer and prepare to set up 3D texturing. Once data loading fin-
ishes, the app creates a 3D texture and enters the second stage.
At this point, additional data can still be assembled into the same
buffer and setnt to the GPU after all processes finish. In the com-
pute shader, the following parameters are considered:
Organ Mask: Raw data in the texture represents 12 bits inten-
sity values while each organ mask takes 1 bit for each unit of the
texture (texel). So we create the texture in r32ui (red channel-32
bits-unsigned int type) format. The upper 16 bits are allocated for
masks, and the lower 16 bits are for volume data. The system gets
mask data asynchronously from the server and combines this part
of the data with the intensity data and sends it to the GPU.

We later assign each organ a unique color. Figure 3 shows an
abdominal MRI segmented into bladder, kidneys, colon, spleen,
etc.

Transfer Function: We drew inspiration from the work of
Chourasia et al. [4] to create effective intensity transfer func-
tions for high dynamic range scalar volume data. Compared to
their method, our work provides a 2-step approach: 1) a uniform
enhancement of contrast and brightness; 2) simple primitives as
widgets that allow users to design their own data opacity patterns.
First, given a pair of contrast limits (Cbottom,Ctop) and the bright-
ness Cb, the value of each voxel Cx is enhanced as:

Ct1 = (Cx−Cbottom)/(Ctop−Cbottom)+Cb,

(Cbottom ≤Cx ≤Ctop)
(1)

Secondly, multiple opacity widgets can be applied to pull
out specific parts of the volume. For each widget, there are 5
parameters (vo,vl ,vwb,vwt ,vc) that determine the 6 control points
(lb, lm, lt, rb, rm, rt) of the widget:

• Overall (vo): the highest value of the opacity (.0≤ vo≤ 1.0).
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Figure 4: An abdominal MRI with opacity widgets and the color
transfer function graph

Figure 5: Volume rendering with texture-based and ray-casting
methods. From left to right: (a) texture-based, opacity fully
mapped; (b) ray-casting, opacity fully mapped; (c) texture-based,
opacity linearly mapped; (d) ray-casting, opacity linearly mapped.

• Lowest Bound (vl): the lowest value (.0≤ vl ≤ vo).
• Top Width (vwt ): the top range value (.0≤ vwt ≤ 2.0).
• Bottom Width (vwb): the bottom range value (vwt ≤ vwb ≤

2.0).
• Center (vc): position of the highest value (.0≤ vc ≤ 1.0).

Then the 6 control points can be calculated accordingly. When
multiple widgets add up, with the first transfer function being Ct1,
we get

Ct2 = max(Widgeti(Ct1)), where i = 1,2...n (2)

Finally, we provide another two color transfer functions that map
grayscale intensity values to colored values.
Figure 4 demonstrates the visualization of a volume with opacity
widget graphs and a color transfer function bar. Users can get an
intuitive view of how the parameters affect the transfer functions
and how they affect the volume visualization.

Stage Two: Render the Volume
We use Direct Volume Rendering (DVR) to show the entire

3D data volume and provide the options of texture-based (for-
ward) and ray-casting (backward) volume rendering (Fig. 5).

The Texture-based Method projects each slice onto the
viewing plane and blends according to capacities. All texture-
mapped slices are stored in a stack and are blended back-to-front
onto the image plane, which results in a semitransparent view of
the volume. We then align the slices in object space parallel to the
Z-axis, representing the nature of a stack of 2D images (Fig. 5ac).
Therefore, viewers would look on the slice edges by rotating the

volume and see through the stacked slices. By projecting the vox-
els of the slice plane on pixels of the viewing plane, a pixel can
lie in-between voxels, so its value is from bilinear interpolation.
The Ray-casting Method casts a primary ray from the cam-
era into the volume, sampling the volume in regular intervals
(Fig.5bd). The final color and opacity of the pixel are accumu-
lated along the ray [20] by:

Cout =Cin(1−α(xi))+C(xi)α(xi) (3)

We also propose an adaptive sampling strategy, which takes more
sampling steps in denser parts of the volume to enhance details.
Algorithm 1 shows the pseudo-code of our adaptive sampling
method. The goal is to perform the ray-casting from t to t + s.
When sampled al phachannel > 0.01, we evaluate the alpha con-
tribution from the current step: 1) If the contribution exceeds the
threshold, we halve the step size and double the threshold and
try to advance from t to t + s

2 ; 2) If the contribution is below
the threshold, we accumulate color and alpha and adjust step size
and threshold based on the test of the last step. Figure 6 illus-
trates how this adaptive sampling during data accumulation is per-
formed from t to t + s

input : ro, rd ,head, tail, su, thresh termine,
thresh ignore, thresh init

output: color(r,g,b,a)

color← 0;
threshold← thresh init;
for t← head to tail do

if color.a ≥ thresh termine then
terminate;

p← ro + rd × t;
sampled← Sampling(p);
if sampled.a > thresh ignore then

contrib← (1.0− color.a)∗ sampled.a;
if contrib > threshold then

s← s/2;
threshold← min(2× threshold,1.0);
last succeed = f alse;

else
color.rgb← color.rgb+(1− color.a)×

sampled.a× sampled.rgb;
color.a← contrib;
t← t + s;
if last succeed then

s← 2× s; threshold← threshold/2
else

last succeed = true
else

t = t +4× su

Algorithm 1: Accumulated ray-casting volume rendering
with adaptive sampling step

Display Auxiliary Information
Besides the original data volume, our system provides auxil-

iary information that helps to improve the user’s ability to get the
best view of the data.
Cutting Plane: We implemented a GPU-based cutting plane to
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Figure 6: Illustration of adaptive sample steps

Figure 7: Cutting Plane in:(a)texture-based, (b)ray-casting vol-
ume rendering methods, and (c)in direction of center line

view details of a selected position with user interaction.
In texture-based rendering mode, a volume is composited by
stacking a set of slices together so that users can view the data
volume slice by slice as they do traditionally. While in ray-casting
rendering mode, users have more flexibility to uncover occluded
details in any direction and any depth.

Figure 7ab shows screenshots of a cutting plane with texture-
based and ray-casting methods. Notice that in the ray-casting
method, one can choose to keep the volume or cutting plane fixed
in place and manipulate the other.

Organ Masks: Users can view the organs in volumetric form,
3D mesh form or both with organ masks generated by the server.
We currently support up to seven different types of organs for
different datasets. Figure 8 shows a data set with a colon mask
in different visualization styles. With organ segmentation data
from the server, our application can generate a surface mesh with
the Marching Cubes algorithm in real-time via a compute shader.
This step is normally done once at the beginning of the data load-
ing process, unless the user decides to modify the data, in which
case the organ surface representations have to be recreated. We
down-sample the 3D dataset for faster generation of the organ
outlines. The generated organ meshes can be displayed as solid
meshes or wire-frame meshes. By displaying as wire-frames,
users can see the organ as a volume plus its wire-frame surface
structure. They can even see the center line inside of the organ, if
it is available (currently only for colon and terminal ileum).
Organ Center Lines: The server generates center lines of colon

and ileum for selected datasets (Fig. 8d). We also extended the
cutting plane to allow for traveling continuously along the center
line (Fig.7c). By switching to the cutting view, the view direction
will follow the center line to see through the cutting plane. In

Figure 8: Colon shown as a) solid mesh; b) wire-frame mesh; c)
volume with wire-frame mesh; d) volume with wire-frame and
center line.
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Figure 9: Server work flow

any view mode, users can always perform touch gestures to scale,
rotate and move the data volume.

gRPC Server
The gRPC server we created runs on a desktop and provides

another option that lies in-between the mobile clients and the re-
mote image server (PACS system) that 1) stores and pre-processes
MRI datasets to generate auxiliary information and 2) provides
communication between multiple clients or between the server
and one of the clients.
With gPRC, a client application can directly call a method on a
server as if it were a local object. This process can be called
synchronously and asynchronously with different types of stubs.
According to our need to browse and request datasets, we created
the workflow as shown in figure 9.

Pre-Processing and Data Transmission
As an optional data transfer station, when new datasets

come from remote PACS system, the server will do off-line pre-
processing on demand to:

• Build index files: It keeps a dataset-index file to track the
latest dataset and volume-index files to maintain the pre-
processed information for each volume.

• Generate quality metrics: It quantifies the quality of the
original DICOM images from the CT or MRI scanners and
helps filter out low quality datasets. When users request to
browse the available datasets, those quality metrics would
help to selected the desired ones.

• Generate organ masks and center lines

Share Views Across Platforms
Users can share views with other users on different platforms

via the server (Fig. 10). To initiate this, one user’s Android
phone becomes the ”host client” and controls the view; then other
clients, either with mobile devices or desktop computers, connect
to the server to get their views synchronized to the ”host client”.
This functionality also works on AR devices, however, compared
to the non-AR cases which share the whole view with others, it
doesn’t share the camera view but only the 3D dataset manipu-
lations. This is because, in an AR environment, we want to give
each user their own perspective on the dataset, so that a doctor can
discuss a dataset with a patient.

User Interfaces
Figure 11 demonstrates the design of our user interface:

starting from the main menu , users can load data sets; when they



(a) Share view in non-AR context. (b) Share view in AR context
Figure 10: Share view between Android phone and desktop.

Figure 11: Demonstration of user interface design

look at details of a volume, they can always show or hide render
panel, cutting plane panel and mask panel in any combination.

Discussion
Our system provides two volume rendering methods to view

the same datasets. Qualitative results: The texture-based method
is fast for moderately sized datasets, and surface-based and vol-
umetric representations can easily be combined. It works better
when multiple opacity widgets are applied together. However,
there are artifacts when a stack is viewed from close to 45 degrees
(Fig. 5a). In comparison, the ray-casting method provides more
details. Figures 12 and 13 compare views rendered with texture-
based, ray-casting, and ray-casting with adaptive sampling step
methods. In most cases, adaptive sampling methods take more
sample steps in a denser area, which enhances the details. How-
ever, if the selected area is non-convex, the ray-casting method
eliminates the details inside the concave regions. With adaptive
sampling steps, this elimination can get worse.

Quantitative results: In a real practice, users may use dif-
ferent combinations of rendering parameters for different visual-
ization tasks, which highly affects the performance. We use a
MRI volume dataset of size512×512×144 and setup this appli-
cation in a default contrast(0,1,1) and opacity(1,1,2,2,1) settings.
Figure 14 compares the frames per second(FPS) of our adaptive
raycasting method with different sampling step sizes. We ob-
served that if the step size exceeds 0.025, there will be discernible
artifacts on the volume.

Table 1 compares FPS of the application with different ren-
dering methods. For this comparison, we set the sampling step

Figure 12: Compare volume rendered with texture-based, ray-
casting, and ray-casting with adaptive sampling methods. From
left to right: (a) texture-based; (b) ray-casting; (c) ray-casting with
adaptive sampling

Figure 13: Compare organs rendered with texture-based, ray-
casting, and ray-casting with adaptive sampling methods. Each
from left to right: (a) texture-based; (b) ray-casting; (c) ray-
casting with adaptive sampling

Figure 14: Rendering performance of adaptive raycasting method
with different sampling step sizes

of raycasting rendering to 0.05. From the table we see that all
the rendering methods could render the whole volume in nearly
60FPS. To render a region that contains more details, for ex-
ample, when we render the masked volume which only shows
the organs, raycasting method is much slower. For this dataset,
the maximum number of triangles to render the organ mesh is
512× 512× 144× 5 = 188743680 and the application is able to
seamlessly render the meshes while maintaining a near 60FPS.

Conclusion
In this project, we created a server-aided DICOM viewer for

Android mobile devices. Our results show that we can do real-
time volume rendering with both texture-based and ray-casting
methods to show 3D volumetric DICOM datasets. Users have
flexibility to adjust the rendering parameters, cut into the volume,
separate out major organs, and save or load those settings to or
from a file. By connecting to our server, a user can also share the
viewing parameters with others in real-time.
Future research should be devoted to the development of a better
user interaction experience in augmented reality (AR) scenarios
adapted to different AR devices with support for multi-user co-
operation. Some of the functionalities of our server can still be
optimized, such as to provide segmentation results on the fly with
the request for specific parts of the tissue.
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Table 1: Compare FPS among rendering methods
volume masked volume masked mesh masked volume+mesh

Texture-based 59.9 59.8 59.8 48.5
Raycasting 59.8 34.2 59.8 26.1
Raycasting(adp) 59.8 33.4 59.8 23.8
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