Digital repository: preservation
environment and policy implementation

Bing Zhu, Richard Marciano, Reagan
Moore, Laurin Herr & Jurgen Schulze

International Journal on Digital Volume § - Number 2 - April 2006
Libraries

ISSN 1432-5012

Int J Digit Libr
DOI 10.1007/s00799-012-0082-3

Digital Libraries

@ Springer

Your article is protected by copyright and

all rights are held exclusively by Springer-
Verlag. This e-offprint is for personal use only
and shall not be self-archived in electronic
repositories. If you wish to self-archive your
work, please use the accepted author’s
version for posting to your own website or
your institution’s repository. You may further
deposit the accepted author’s version on a
funder’s repository at a funder’s request,
provided it is not made publicly available until
12 months after publication.

@ Springer

Int J Digit Libr
DOI 10.1007/500799-012-0082-3

Digital repository: preservation environment and policy

implementation

Bing Zhu - Richard Marciano -
Laurin Herr - Jurgen Schulze

Reagan Moore -

© Springer-Verlag 2012

Abstract Distributed digital repositories can be used to
address critical issues of long-term digital preservation and
disaster management for large data centers. A policy-driven
system provides an ideal solution for managing distributed
repositories that require high flexibility and high configura-
bility. Recent studies demonstrate that the integrated Rule-
Oriented Data System, a peer-to-peer server middleware,
provides the requisite dynamic extensibility needed to man-
age time-varying policies, automate validation of assessment
criteria, manage ingestion processes, manage access policies,
and manage preservation policies. The policy management
can be implemented underneath existing digital library infra-
structure such as Fedora.

Keywords Digital preservation - Policy-driven system -
Policy enforcement - Micro-service oriented -
Reconfigurable and automated services

B. Zhu (X))
San Diego State University, San Diego, CA, USA
e-mail: zhu@sciences.sdsu.edu

R. Marciano - R. Moore
University of North Carolina, Chapel Hill, Chapel Hill, NC, USA
e-mail: richard_marciano@unc.edu

R. Moore
e-mail: rwmoore@renci.org

L. Herr
Pacific Interface Inc., Oakland, CA, USA
e-mail: laurin @pacific-interface.com

J. Schulze

University of California, San Diego, La Jolla, CA, USA
e-mail: jschulze@ucsd.edu

Published online: 27 January 2012

1 Introduction

There are two challenges in building distributed repositories.
One is the establishment of a safe digital preservation envi-
ronment in which data can be reliably stored and accessed
over the long term. The second is the dynamic update of pol-
icies and their enforcement across collaborating institutions.
How can policies in each system be enforced in a virtual orga-
nization (VO) when multiple software systems are deployed
to manage massive data? Policy-driven systems such as the
integrated Rule-Oriented System (iRODS) use a distributed
rule engine to impose separate sets of policies at each stor-
age location. The rule engine controls the procedures that are
executed at each storage location, ensuring that data can only
leave the storage system when all of the policies have been
enforced. This approach is able to handle dynamic update
requirements and enforce policies across collaborating insti-
tutions.

A policy-driven system builds a highly configurable envi-
ronment with the ability to change the system behavior
without a need to reimplement the software. Early in 1994,
Morris Sloman presented an object-oriented model for build-
ing a policy-driven management system in which policies are
viewed and constructed as policy objects [1,2]. With such
an object-oriented approach, changing of policies is man-
aged through creating, deleting, storing, and retrieving pol-
icy objects. Recent efforts in building policy-driven system
include iRODS and the work by Alspaugh’s team [3]. All of
these approaches use a rule engine to support policy enforce-
ment.

Aiming at providing a middleware solution for distrib-
uted data management, iRODS [4-7] was initially developed
to replicate the capabilities of its predecessor, the Stor-
age Resource Broker (SRB) [8—10]. iRODS addresses many
important issues related to digital preservation through use

@ Springer

B. Zhu et al.

of a distributed storage model, including data replication,
adaptive interfaces for new storage technologies, descrip-
tive preservation metadata, and the capabilities of self-heal-
ing and disaster recovery for damaged data. One important
technology introduced in iRODS is the micro-service model,
which makes it possible to dynamically compose the proce-
dures controlled by a policy. In contrast to the object-ori-
ented approach, the enforcement of each policy in iRODS
is accomplished by linking a chain of micro-services. New
micro-services can be plugged into the system to support new
data formats. The micro-services are executed at the remote
storage location under the control of the remote rule engine.
Information that is passed between micro-services is stored
in structures in memory, improving the efficiency compared
to web service models. The information structures can be
serialized for transmission over a network to another storage
location, making it possible to support distributed comput-
ing. In this way, the iRODS system provides an excellent
middleware solution for building a policy-driven system to
manage digital repositories. The iRODS software is open
source software, distributed under a BSD license and can be
downloaded from http://irods.diceresearch.org.

The advantages of using the iRODS’ micro-service model
to enforce institutional policies can be summarized as fol-
lows:

e Procedures can be composed from fundamental opera-
tions encoded in micro-services. The procedures invoked
by a policy can be dynamically updated, making it pos-
sible to update policies without having to change any
software systems.

e Policies can be enforced across low level system calls,
including I/O calls in any storage system supported by
iRODS (UNIX, HPSS, Mac, and Windows).

e Procedures can be invoked at the storage system, avoiding
the need to move data over a network. For massive data
collections, this is essential in optimizing administrative
functions.

A standard approach to improve data integrity and protect
against data loss is to rely on the use of a Redundant Array of
Independent Disks (RAID) [11]. As all system administra-
tors know, a RAID system may not protect against multiple
simultaneous disk failures or accidental data purge. Basically,
periodic data backup to tapes is the primary solution for pre-
vention of data loss. However, even tape systems can lose
data. As observed in large data centers in the TeraGrid [12],
operator error is the dominant source of data loss through tape
overwrite. To protect against operator error, a second copy
is needed at an alternate site on an alternate storage technol-
ogy. The iRODS policy for data loss prevention is to make
a second copy for each file to be protected. Notice in large
data centers or data grids that deal with petabytes of data,

@ Springer

periodic data backups are not possible. Instead, replication
on ingestion is used to improve data reliability.

Within the Policy-Driven Repository Interoperability
(PoDRI) and CineGrid projects, the iRODS middleware is
used to implement distributed repositories to handle digital
preservation and disaster management. The principal goal of
the PoDRI project is to investigate interoperability mecha-
nisms between iRODS and Fedora repositories at the pol-
icy level. We seek an approach in which iRODS adds a
digital preservation layer to the Fedora system [13,14] that
enforces policies, including ingestion, administration, pres-
ervation, assessment, and access procedures. CineGrid is a
global consortium of universities, public and private sector
institutions, corporations, and high-speed network provid-
ers [15,16]. Under the National Digital Information Infra-
structure and Preservation Program (NDIIP) funded by the
Library of Congress, CineGrid has partnered with Academy
of Motion Picture Arts and Sciences (AMPAS) to prototype a
digital preservation solution to meet challenges in archiving
digital material for the Academy Film Archive [17]. Built
upon iRODS technology, distributed CineGrid repositories
have been established at CineGrid partner sites at the Univer-
sity of California in San Diego, the Czech Republic National
Research and Education Network, the Electronic Visualiza-
tion Laboratory at the University of Illinois at Chicago, the
Japan Keio University Research Institute for Digital Media
and Content, and the University of Amsterdam, Netherland.

In this article, we will first discuss, in general, the
requirements for establishing a generic digital preservation
environment that can manage massive datasets for both the
CineGrid and PoDRI projects. We will then give an intro-
duction to iRODS and its micro-service model. We will
demonstrate how policies can be turned into computer action-
able rules that control the execution of procedures composed
from micro-services. Three main policies for data inges-
tion, deletion, and automatic replication (so-called self-heal-
ing capability) will be discussed in detail. We will describe
a policy execution model to demonstrate how an interop-
erability mechanism can be constructed to enforce iRODS
policies for Fedora. And finally, we will present recent
research results from the PODRI project and describe a proof-
of-concept model using two digital library technologies to
jointly manage a digital repository, by combining two tech-
nologies through policy-level integration.

2 Digital preservation environment

As we discussed above, data loss may occur across all types
of storage systems. This risk is certainly true for reposito-
ries within PoDRI and of CineGrid. The question is, with
the existing hardware infrastructure including storage and
network connections, if we can find a solution to build a

http://irods.diceresearch.org

Digital repository

safe environment in which digital data can be preserved for
the long term. It will be helpful to give a detailed discus-
sion of the requirements for building durable and safe digital
repositories and the solutions that iRODS can offer through a
distributed data management approach along with its micro-
service execution model.

2.1 Data model

iRODS provides two data models. One is the iRODS man-
aged data content, in which all data files are stored inside
iRODS vaults and can be only accessed through iRODS inter-
face. Another one is the virtual data link model in which
external files are registered into an iRODs data grid without
physically making a copy. In some cases, the original data
owners wish to keep the data files on their original disks.
In this case, data files can be registered into iRODS as the
prime copies. In this model, the files can be accessed both as
a regular files in disks and through iRODS.

iRODS maintains a logical name space for each digital
object as a persistent object identifier. Based on this nam-
ing method, an iRODS URI scheme has been implemented
in the iRODS’ Jargon Java toolkit that can be used for inte-
gration with other software system. In the PoDRI project,
the iRODS URI scheme is used to virtually register iRODS
objects, including digital content, system metadata, and user-
defined metadata, into the Fedora system [18,19].

2.2 Data replication

Data replication is the key mechanism iRODS uses to handle
digital preservation challenge in a distributed environment.
To maintain the data integrity of a file, duplicated copies (at
least three), or replicas, of each file must be kept in reposito-
ries in different locations on different storage systems. Note
that the crucial file replication operation must be supported
by a high throughput bandwidth network. And in the software
layer, support for parallel file transfer is highly desired. To
accelerate file transfer, iRODS has implemented both parallel
file transfer using multiple TCP/IP streams and the Reliable
Blast UDP protocol.

2.3 Adaptive interface for new storage technology

The preservation environment should be capable of integrat-
ing new types of storage into the system. iRODS has a flexible
storage driver interface that maps from standard POSIX I/O
operations to the protocol required by different types of stor-
age systems such as UNIX, HPSS, and Windows. For a new
storage system, a new driver can be developed and plugged
into the iRODS framework. The iRODS storage interface
supports most system-level storage APIs such as open, close,
read, write, seek, stat, and sync in UNIX.

2.4 Metadata

Representation information is a type of preservation metada-
ta that describes the provenance, structure, and procedures
that can be applied to records. A preservation environment
must be capable of managing multiple types of representation
metadata [20,21]. The iRODS has a flexible metadata model
that supports triplets of attribute name, attribute value, and
attribute unit (optional), which are stored in the iCAT cata-
log. Each collection and even individual records may have a
unique set of metadata. In addition, an XML data model has
been incorporated within iRODS to support more complex
metadata structures and migrate metadata between different
representation standards. Note that all state information gen-
erated within iRODS is accessible as metadata on one of five
logical name spaces for files, users, storage systems, rules,
and micro-services.

When iRODS is integrated with other software systems
such as Fedora, the ability to cross-register metadata between
the systems is desirable. State information created within
iRODS should be accessible from Fedora. Representation
information generated in Fedora should be accessible from
iRODS. As mentioned in the Sect.2.1, both iRODS system
metadata and user-defined metadata can be exposed to other
software systems through a URI scheme, which can be used
to register iRODS metadata as datastreams in Fedora objects.

2.5 Self-healing capability

When maintaining several copies for each digital object, a
preservation environment should be capable of self-healing.
The system should automatically detect corrupted copies and
make necessary repairs. This requires an integrity mechanism
such as checksums, synchronization mechanisms to manage
updates to replicas, query mechanisms on the iCAT catalog
to identify files within a collection, and iteration mechanisms
to loop over the files. A micro-service has been developed to
handle the complex logic in this self-healing function, which
will be described in detail in Sect. 5.3.

2.6 Disaster management

Through iRODS, CineGrid is managing a collection that
has been distributed and replicated across storage locations
within the U.S., Netherlands, Czech Republic, and Japan.
Through periodic validations of the integrity of the replicated
collections, a true disaster-proof environment for CineGrid
digital asset has been created.

2.7 Security

Currently, iRODS can use three authentication mechanisms,
ranging from a challenge-response method, to Public Key

@ Springer

B. Zhu et al.

Infrastructure (PKI) authentication based on Grid Security
Infrastructure [22], to Kerberos-based authentication.

The iRODs peer-to-peer servers are installed at the appli-
cation level under a regular user account. The implication
is that the data at that storage location are owned by the
Unix user account. iRODS employs trust virtualization, to
conduct operations on behalf of the user at the remote stor-
age location. iRODS authenticates each user independently
of the storage system, checks authorization for each opera-
tion, and then authenticates to the remote server to perform
the operations on behalf of the user. This is a single sign-on
environment, in which the user does not require a separate
account at each location where data are stored. It is highly
recommended that the local site administrator set read and
write permission for the iRODS user account that runs the
iRODS server to an explicit vault area only. In this way, the
iRODS server is sandboxed in a restricted area(s).

When registering a virtual data link, the iRODS server
checks whether the user issuing the iRODS file registration
command is the owner of the file to be registered into iRODS.

2.8 Audit trail

In order to validate chain of custody, a preservation envi-
ronment needs the ability to track all operations performed
upon a record, including who issued the operation and when
the operation was executed. When deploying iRODS serv-
ers, there is an option to turn on audit trails. The iRODS audit
trail function records a wide range of information including
all operations performed on data files and collections. For a
complete list of the audit trail information managed within
iRODS, please check out the iRODS web site at http://www.
irods.org.

2.9 Reconfigurable policy implementation

Whether an object-oriented approach or micro-service-
oriented approach is used, the goal is to build digital reposito-
ries in which policies are not hard-coded but can be deployed
dynamically. Policy deployment is simplified when policies
can be grouped into modules, when execution priority can be
set between policies, and when more than one policy can be
applied on a given operation. In the next two sections, we will
introduce the micro-service model, and provide examples of
mapping policies to computer actionable rules to demonstrate
how this requirement is handled in iRODS.

3 About iRODS
Based on the SRB technology, iRODS is second generation

middleware developed by the Data Intensive Environments
(DICE) group at the Univ. of North Carolina, Chapel Hill

@ Springer

Admin Interface

|]
Rule [Metadata

| Client Interface

Config

Service v o A

Rule Invoker Modifier| Modifier | Modifier

I I Manager Module | Module | Module
Consistency

Check
Modules

Resource-based Metadata-based
Services Senvices

1
_ Storage Senvice
Drivers Modules

M:tadata
Persistent
Repositony

e

Fig. 1 A Schematic diagram of the iRODS software architecture

iRODS Catalog

and Univ. of California, San Diego. iRODS provides the
data management functions needed in a distributed environ-
ment such as a file transfer service, data replication services,
and metadata management services. iRODS supports scal-
able solutions for collections ranging from a few gigabytes-
to petabytes-sized collections comprised from hundreds of
millions of files. Applications range from data grids to share
data, to digital libraries, to preservation environment, to data
processing pipelines.

As is shown in Fig.1, iRODS drivers are the layer of
software that access heterogeneous storage systems such as
UNIX files and HPSS tape systems. Within this layer, iRODS
uses a well-defined set of I/O calls that are POSIX compliant
and can be easily used to adapt to any new storage hard-
ware. A metadata catalog called iCAT, is managed within a
relational database and is accessed through a special iCAT-
enabled server. The iCAT stores information about datasets,
the distributed storage systems, user accounts, etc. Files in
iRODS are organized inside a hierarchy of logical collections
thatis similar to the UNIX directory system. The difference is
that UNIX files reside on mounted disks while iRODS stores
the files across distributed machines. A virtual organization
managed by a catalog is called an iRODS zone. Different
zones can talk to each other through the iRODS federation
mechanism. Policies can be defined to control the sharing
and access of files across zones once certain permissions are
set properly. The capability of managing distributed storage
provides an ideal solution for the CineGrid project in which
movie or media files from different project collaborators are
organized into a logical shared collection. The flexibility of
the iRODS storage driver model allows different types of
storages to be integrated, forming a sustainable digital pres-
ervation environment that can incorporate new storage tech-
nologies when they become available.

http://www.irods.org
http://www.irods.org

Digital repository

4 Micro-services

In iRODS, data management operations are encapsulated
within micro-services that are implemented in C [23]. Each
micro-service is intended to be a simple function that can be
composed with other micro-services to implement a proce-
dure. The micro-services can exchange information through
parameters, through structures in memory, or through com-
munication over a network to another iRODS server. The
specification of an iRODS rule is defined as a chain of micro-
services and rules. The rules are currently stored in an ASCII
file. This allows system administrators to change the behavior
of the data management system without the need to recom-
pile the software. Various combinations of micro-services
can transform an iRODS data grid from a data sharing envi-
ronment into a digital library or a preservation environment.
This malleability makes it possible to use a generic iRODS
framework to implement a wide variety of data management
applications.

Micro-services are provided that implement traditional
workflow mechanisms such as queries on the metadata cat-
alog, loops over query results, conditional execution, simple
mathematic functions, and error recovery. The rules that con-
trol the execution of the micro-services are triggered when
specific locations within the iRODS framework are executed.
Sixty-four policy hooks are provided to control manipulation
of files (creation, deletion, replication, migration), control
creation and deletion of users, control creation and deletion of
storage systems, etc. Hooks are provided to execute both pre-
and post-processing policies. Pre-processing policies typi-
cally provide additional permission controls, extraction of
metadata, and creation of derived data products, post-pro-
cessing policies typically control redaction, delayed opera-
tions, and creation of presentation products.

4.1 iRODS micro-service model

A wide range of micro-services are available for creating pro-
cedures within iRODS. They include functions to manipulate
data objects, collections, the iCAT catalog, metadata, XML
processing, and storage resources [24]. There are also many
specialized micro-services that are used to integrate libraries
such as the Hierarchical Data Format (HDF) data sub-setting
routines, to access remote web services, to execute XSLT
transformations, and to manipulate containers such as tar
files.

Micro-services are controlled by iRODS rules, each of
which is composed of one or a chain of one or more micro-
services. A rule engine inside iRODS is responsible for exe-
cuting the workflow of chained micro-services [25,26]. The
syntax for an iRODS rule is defined by four parts: the action
name which identifies the hook within the iRODS frame-
work where the rule will be invoked, a condition that must

be met for the rule to execute, the chain of micro-services and
rules to be executed, and a recovery chain of micro-services].
These four components are combined to form into a single
string separated by “|.”

actionDef | condition | workflow-chain | recovery-chain

In the case of deploying a rule that will be executed at
one of the policy management hooks in the iRODS frame-
work, the reserved action name should be used. For example,
“acPostProcForPut” is the reserved name for post-process-
ing rules applied after an object is uploaded into iRODS.

4.2 Micro-service versus workflow

The micro-service model is, in essence, a server-side work-
flow. Traditional scientific workflow systems such as Kepler
[27], move the data to a compute server where the workflow
actions are applied. A scientific workflow typically consists
of modules that execute a computational algorithm, image
processing, data parsing, etc. These are basically software
applications (or business logic procedures in industry) that
generate file-based output, or a simple set of output param-
eters. In the iRODS server-side workflow, however, sophis-
ticated structures can be generated by a micro-service and
stored in memory for use by the next micro-service in the
chain. This makes execution of simple functions much more
efficient within iRODS than in traditional workflows or web
services. Default data structures are defined for each of the
output structures used by the micro-services. In effect, the
iRODS framework not only supports dynamic composition
of workflows but also explicitly identifies and manages all
data structures generated by each micro-service.

4.3 Automating administrative tasks

Rules can be designed to automate administrative tasks such
as migration of data to new storage systems, execution of
retention schedules, and monitoring of system status. Rules
can be deferred for execution at a later time, such as a post-
processing rule for creating a replica on a tape archive. Rules
can also be executed periodically, such as verification of
integrity, verification that the right number of copies are
present, and verification that the correct file distribution is
in effect.

5 Mapping policies to software implementation

When constructing distributed repositories, it is desirable
for system administers to have the ability to reconfigure the
system to automate administrative tasks and enforce local
policies. In the CineGrid project, three policies for deletion

@ Springer

B. Zhu et al.

| User uploads files into the dropbox I
|

Make necessary replicas

|
I Verify checksums I ~
|
[Store chedsums iniCAT |
|
Move files from the dropbox to
CineGrid Repository
|

—— - p——————
.

AutoMove Micro senvice

Change ownership of the files

Fig. 2 Data ingestion process

control, data ingestion control, and digital preservation con-
trol, were discussed and designed in detail. In this section,
we will present three examples to demonstrate how to design
iRODS rules using micro-services to enforce CineGrid poli-
cies. For the digital preservation policy, a new micro-service
was developed and plugged into the iRODS release. This
micro-service implements a self-healing function for digi-
tal objects within CineGrid. It can also be used by other
data management systems that require a similar functional-
ity. The iRODS environment enables reuse of workflow com-
ponents, simplifying the creation of new data management
applications. The iRODS environment also makes it possible
to create generic rule sets that can be modified to include the
specific policies of other data management applications. We
also present a framework for modeling and executing iRODS
rules from Fedora to demonstrate an approach that can be
used by other data management systems for integrating with
the iRODS policy-based data management.

5.1 Data ingestion policy

CineGrid repositories are distributed internationally. A data
contributor can deposit his valuable media digital content
into a designated repository once the content is approved by
the CineGrid curator. CineGrid developed a data ingestion
policy that addresses the followings:

e FEach data contributor is given a designated place, called
a dropbox, to upload their media files.

e The data integrity must be verified once a file is inside
CineGrid.

e The system automatically moves a data file into its official
place, change the ownership from original data contribu-
tor to CineGrid curator, and make the required replicas.

When using iRODS, the first two bullets can be taken care

of by using the checksum verification option when upload-
ing a data file into its designated dropbox. As is shown in

@ Springer

Fig. 2, operations mentioned in the third bullet are carried
out by a new micro-service, “msiDataObjAutoMove.” The
data ingestion rule is deployed through the reserved action,
“acPostProcForPut,” which is a trigger for post-processing
after a data file is created (or uploaded) inside iRODS, and the
micro-services, “msiDataObjAutoMove” and “msiDataObj-
Rep:”

acPostProcForPut | $objPath like /Cine/home/user8/drop
box/* | msiDataObjRepl ($objPath, CineGrpResc,*st)
msiDataObjRepl ($objPath, CineGrpResc, *st)
msiDataObjAutoMove ($objPath, /Cine/home/user8/drop-
box,/Cine/CinegridContent/CogScience, CineCurator,
true) | nop#nop#nop

In this example, any file uploaded by the “user8” in his
dropbox will be first replicated twice into a group resource,
“CineGrpResc.” It then calls the “msiDataObjAutoMove”
micro-service to move the data file along with its replicas
to the destination collection, “/Cine/CinegridContent/Cog-
Science.” The “CineCurator” is the user account used by
CineGrid data curator and will be the new owner for the
newly uploaded data file. The “true” value for the last param-
eter tells the micro-service to compute the (MDS5) checksum
and store it in the iCAT catalog if the system has not already
done so. The “##” is used to chain micro-services in sequen-
tial order according to iRODS rule syntax [28]. This rule is
activated once it is added to the “core.irb” file, the main rule
configuration file for an iRODS server.

5.2 Deletion policy

Once a digital file has been approved and becomes an offi-
cial asset inside a preservation system, the file should never
be deleted. This means that a rigid policy of no deletion for
any official media files must be enforced inside the iRODS
data grid. When files are managed in a regular disk, there is
still a possibility that they can be deleted accidentally by a
privileged user using a forcing option. However, this risk can
be avoided when all digital assets are stored and managed
by iRODS middleware. In iRODS, there is a built-in action,
“acDataDeletePolicy,” which is a trigger for an iRODS rule
to be executed before a file is deleted. This built-in action
can be used to invoke an existing micro-service, “msiDele-
teDisallowed,” to form a rule that enforces the rigid deletion
denial policy. The deployment of the rule is simply a text
entry in “core.irb:”

acDataDeletePolicy | $objPath like /Cine/CinegridCon-
tent/*
| msiDeleteDisallowed | nop

Digital repository

| Query iRODS o get a list of all data files |

For each file

Chedk the integrity of
each replica
I

Remowve corrupted replica(s)

Compute checksum
and compare it with
stored one in iCAT

Is required number
of good replicas
present’?
No
Make required number of
replicals)

Replicas are
created in a group
resource

Fig. 3 Digital preservation policy specifies a procedure for automatic
repair for corrupted data files

In this example, a deletion denial policy has been imple-
mented for all objects under the collection “/Cine/Cinegrid-
Content.” The “$objPath” is a default logical name for the
iRODS internal object path variable. The “nop” is a reserved
word representing a null value in iRODS’ rule language. In
this example, it means no recovery chain is defined. Notice
that the rule can be easily disabled by commenting out the line
in “core.irb.” The management of versions of the core.irb file
is necessary to ensure that a consistent rule set is being run.

5.3 Digital preservation policy

The enforcement of integrity is an essential property of a
preservation environment. As we mentioned in Sect. 2.5, it
requires that the system have a self-healing capability, mean-
ing that the system periodically checks the integrity of digital
assets and makes necessary repairs when it finds corrupted
copies.

To ensure the data integrity inside repositories, a certain
number of replicas is maintained so that the system can make
necessary repairs from a good copy. It is usually recom-
mended to have at least three copies to minimize the risk
of losing data. A digital preservation micro-service, called
“msiAutoReplicateService,” runs periodically inside iRODS
to protect data loss due to possible corruption of data files.
Fig. 3 shows the procedure of the micro-service. For each
replica of a file, it computes the checksum and compares the
result with the checksum stored in iCAT catalog. If a mis-
match is found, it deletes the replica and creates a new replica
from a good copy in another storage place.

Here is an example that checks the collection “/Cine/Cine-
gridContent” weekly ensure that a minimum of three replicas
have been created in the group resource “CineGrpResc.”

DigitalPreserve || delayExec(<ET>6</ET><EF>7d</EF>,
msiAutoReplicateService(/Cine/CinegridContent, true, 3,
CineGrpResc, null), nop) | nop

In this example, “DigitalPreserve” is the name of the rule.
There is no condition for the execution of this rule. The
“delayExec” is a micro-service that is used to execute a
delayed or a periodic rule. Note that the service can also
be executed on a refined garrulity and in parallel by break-
ing a top collection into sub-collections and deploying the
service multiple times (multiple entries in “core.irb”) for the
sub-collections.

5.4 Enforcing iRODS rules in Fedora

One of the goals of the PoDRI project is to investigate
the interoperability of policies between Fedora and iRODS.
When iRODS serves as a storage layer for Fedora, for exam-
ple, it will be extremely useful if the above digital preser-
vation rule can be configured and deployed from Fedora by
defining the minimum number of copies and the time between
tests.

There are four types of digital objects in Fedora: data
objects, service definition objects, service deployment
objects, and content model objects [29,30]. A service def-
inition or SDef object defines a set of operations that can be
performed for certain types of data objects. A service deploy-
ment or SDep object specifies where and how to execute the
function. A content model (CModel) object performs dis-
semination for a type (or class) of data objects in Fedora.

The “iRule” is an iRODS UNIX client command for inter-
active execution of a rule by an iRODS server. A Web ser-
vice can be developed with the iRODS Jargon toolkit to act
as a client for iRODS servers to invoke a rule operation, i.e.,
performing the “iRule” function. A simplified schematic ver-
sion of input message for the “iRule” web service can be one
of the following:

<message name= “iruleRequest”>
<part name= “actionDef” type= “xs:string”/ >
<part name= “condition” type= “xs:string”/ >
<part name= “workflow-chain” type= “xs:string”/ >
<part name= “recovery-chain” type= “xs:string”/ >
</message>

Three objects, “iRule-ServiceDef,” “iRule-ServiceDep,”
and “iRule-ContentModel” for disseminating iRODS rules
can be created based on this Web service. Each iRODS rule
can be mapped into Fedora as a data object that has a relation
for “hasModel” pointing to the content model, “iRule-Con-
tentModel.” With this association, the data object is consid-
ered as an iRule type object in Fedora. It also has a datastream
that is an XML document containing iRODS rule parameters

@ Springer

B. Zhu et al.

described in “iruleRequest” message. The “iRule-Service-
Def” has an operation, “iRule-Execute,” that is the access
point for the datastream.

The web service needs another input message to specify
the storage policy, which generically targets at all storage
systems including UNIX, iRODS, database, etc. This mes-
sage specifies the target storage place to deploy the action
of the policy. In the iRODS case, the input message contains
basically iRODS storage configuration, including hostname,
port number, iRODS storage resource, plus the user login
information.

6 Technology fusion

Led by Professor Richard Marciano at the University of
North Carolina (UNC), the PoDRI project has been investi-
gating cross-repository policy-level interoperability, mainly
between iRODS and Fedora. The project team consists of
researchers from the Sustainable Archives & Leveraging Tec-
hnologies (SALT) lab, the School of Information and Library
Science, and the Libraries at UNC, iRODS team members
from UNC and UCSD, and a senior researcher from the
Fedora team. The research focus of the project aims at finding
answers of the following [31]:

e Can a preservation environment be assembled from two
or more existing repositories?

e Can the policies of the federation be enforced across
repositories?

e What fundamental mechanisms are needed within a repo-
sitory to implement new policies?

The high-level investigation of the two technologies presents
a new horizon to build digital repositories. It allows us to
extract the key requirements and structure of digital library
technology, including digital object modeling, management
of preservation information, and configurable policy enforce-
ment. Pcolar et al. [31] conducted comprehensive research
for both iRODS and Fedora and presented a set of “concep-
tual operations” for a wide range of policy-level integration
of iRODS and Fedora, from data structure, storage module,
management of metadata, audit trail, provenance informa-
tion, and policies. Note that policies are expressed as Fedora
Digital objects (FDO), stored and preserved in the corre-
sponding repository, as described in Sect. 5.4.

An exciting prototype is deploying both iRODS and
Fedora simultaneously to construct and manage a digital
repository as depicted in Fig. 4. iRODS is mainly used as
arule engine for policy implementation and Fedora provides
rich data modeling semantics such as complex objects and
flexible metadata modeling.

@ Springer

Usger f Applications .

1

repository policies 8
I | :
IRODS |delete | Fedora |2
create, read, create, read, g
delete, storage scan _E__
policy operations, >
scan =]
L 4 L 4 ~U_-_;
Data Data S

o Q
Objects Streams @

Fig. 4 Managing a digital repository using a hybrid model of iRODS
and Fedora

Compared with iRODS, Fedora provides a flexible and
extensible object model through its FOXML schema. It can
easily incorporate any descriptive digital preservation meta-
data standards such as PREMIS and METS. For the data
structure in the repository to store digital objects, Pcolar et al.
even described a way to model the iRODS hierarchical data
structure through its content modeling method in Fedora.
On the other hand, iRODS has a configurable micro-service
model that is used to map policies to actionable computer
code to enforce policies in both system level and user level
as described in Sects. 4 and 5. iRODS provides a powerful
policy engine in the proposed hybrid approach to enforce
digital preservation policies such as data replication and data
integrity check. Another advantage of iRODS is its capability
of handling large digital objects such as movie files in a dis-
tributed environment. The two systems can not only co-exist
to jointly manage a digital repository but also complement
each other’s functions.

With Fedora’s method of storing datasets, a digital repos-
itory consists of two main collections of FDOs and data-
streams. An important concept in Fedora for the relationship
between digital objects and their catalog is that the catalog
can be re-built anytime by a Fedora’s walk-through function.
The function scans an entire collection of digital objects and
reconstructs the catalog. In the proposed hybrid model, a dig-
ital object, or a dataset, can be created through either iRODS
or Fedora. When a dataset is created through iRODS, the peri-
odic Fedora walk-through function will automatically pick
up the new dataset and register it in Fedora’s catalog. Simi-
larly, there is a need to develop a similar walk-through func-
tion in iRODS to register any digital objects created through
Fedora.

In the proposed hybrid model, each system can indepen-
dently manage a repository. This means that the repository
does not depend on each individual technology. In other
words, when one of the technologies is obsolete or depre-

Digital repository

cated, the repository can be continuously managed by another
technology and thus, in some sense, the repository can be
decoupled from a particular technology.

7 Summary

In constructing distributed digital repositories, a policy-
driven system provides an ideal solution to update and
enforce preservation policies. The iRODS middleware pro-
vides the essential functions that are needed to manage dis-
tributed data. Through the iRODS micro-service oriented
model, policies for managing distributed repositories can be
dynamically reconfigured, constructed, and enforced. Easy
system integration of iRODS with other software systems
allows policies to be designed and enforced through a web
service interface. The research development in the area of
the policy interoperability between iRODS and Fedora dem-
onstrate that both technologies can be combined to construct
and manage a digital repository that provides flexible object
modeling and a configurable policy oriented system in con-
structing a digital preservation environment.

Acknowledgments This study was supported by a Research and
Demonstration grant from the Institute of Museum and Library Services
(IMLS LG-06-09-0184-09), “Policy-Driven Repository Interoperabil-
ity,” a National Science Foundation grant, “Software Development for
Cyber Infrastructure,” and CineGrid Exchange Development project.

References

1. Sloman, M.: Policy driven management for distributed systems.
J. Netw. Syst. Manag. 2(4), 333-360 (1994)

2. Moffett, J.D., Sloman, M.S.: The representation of policies as sys-
tem object. In: Proceedings of Conference on Organizational Com-
puter Systems, Atlanta, SIGOIS Bulletin, vol. 12, pp. 171-184
(1991)

3. Alspaugh, S., Chervenak, A., Deelman, E.: Policy-Driven Data
Management for Distributed Scientific Collaborations Usings Rule
Engine, SCOS8. Austin, Texas. 15-21 November 2008

4. Moore, R., Rajasekar, A., Wan, M., Schroeder, W.: Policy-based
distributed data management systems. In: The 4th International
Conference on Open Repositories, Atlanta, Georgia, 19 May 2009

5. Introduction to iRODS. https://www.irods.org/index.php/Intro
duction_to_iRODS. Accessed 2 Feb 2010

6. Hedges, M., Hasan, A., Blanke, T.: Management and preserva-
tion of research data with iRODS. In: Proceedings of the ACM
first workshop on CyberInfrastructure: information management
in eScience, pp. 17-22 (2007)

10.

11.

12.
13.

14.

15.
16.

17.

18.

19.
20.

21.

22.

23.

24.

25.

26.

217.

28.
29.

30.

31.

. Moore, Reagan W.: Towards a Theory of Digital Preservation,

1IDC, vol. 3, June 2008

. Storage Resource Broker. http://www.sdsc.edu/srb/index.php/

Main_Page. Accessed 2 Feb 2010

. Rajasekar, A., Wan, M., Moore, R.: MySRB & SRB—Compo-

nents of a Data Grid. In: The 11th International Symposium on
High Performance Distributed Computing (HPDC-11), Edinburgh,
Scotland, 24-26 July 2002

Moore, R., Jagatheesan, A., Rajasekar, A., Wan, M., Schroeder,
W.: Data grid management systems. In: Proceedings of the 21st
IEEE/NASA Conference on Mass Storage Systems and Technolo-
gies (MSST), College Park, Maryland, 13—-16 April 2004
http://www.datarecovery.com.sg/data_recovery/types_of_raid_con
figurations.htm. Accessed 2 Feb 2010

http://www.teragrid.org. Accessed 2 Feb 2010

Fedora Commons. http://www.fedora-commons.org. Accessed 2
Feb 2010

http://en.wikipedia.org/wiki/Fedora_Commons. Accessed 2 Feb
2010

http://www.cinegrid.org. Accessed 2 Feb 2010

Laurin Herr. CineGrid @GLIF 2009. http://www.glif.is/meetings/
2009/rap/herr-cinegrid.pdf. Accessed 2 Feb 2010

The Digital Dilemma. http://www.oscars.org/science-technology/
council/projects/digitaldilemma/index.html. Accessed 2 Feb 2010
Zhu, B., Marciano, R., Moore, R.: Enabling Inter-repository Access
Management between iRODS and Fedora. In: The 4th International
Conference on Open Repositories. Atlanta, Georgia, 19 May 2009
https://www.irods.org/index.php/Fedora. Accessed 2 Feb 2010
Dappert, A., Caplan P., Guenther, R.: Digital Preservation Meta-
data. http://www.planets-project.eu/docs/presentations/Dappert_
PreservationMetadata.pdf. Accessed 2 Feb 2010

PREMIS Data Dictionary for Preservation Metadata. http:/
www.loc.gov/standards/premis/v2/premis-2-0.pdf. Accessed 2
Feb 2010

Grid Security Infrastructure (in iRODS). https://www.irods.org/
index.php/GSI. Accessed 2 Feb 2010

Micro-Services. https://www.irods.org/index.php/Micro-Services.
Accessed 2 Feb 2010

Released Micro Services. https://www.irods.org/index.php/Releas
ed_Micro_Services. Accessed 2 Feb 2010

Rules. https://www.irods.org/index.php/Rules. Accessed 2 Feb
2010

iRODS Rules. https://www.irods.org/index.php/Rules. Accessed 2
Feb 2010

The Kepler Project. https://kepler-project.org. Accessed 2 Feb
2010

https://www.irods.org/index.php/Rules. Accessed 2 Feb 2010
http://fedora-commons.org/confluence/display/FCR30/Fedora+Di
gital+Object+Model. Accessed 2 Feb 2010
http://www.fedora-commons.org/documentation/3.0/userdocs/digi
talobjects/objectModel.html. Accessed 2 Feb 2010

Pcolar, D., Davis, D., Zhu, B., Chassanoff, A., Hou, C.Y., Marciano,
R.: Policy-Driven repository interoperability: enabling integration
patterns for iRODS and Fedora. In: 7th International Conference
on Preservation of Digital Objects (iPRES2010), Vienna, Austria,
19-24 September 2010

@ Springer

https://www.irods.org/index.php/Introduction_to_iRODS
https://www.irods.org/index.php/Introduction_to_iRODS
http://www.sdsc.edu/srb/index.php/Main_Page
http://www.sdsc.edu/srb/index.php/Main_Page
http://www.datarecovery.com.sg/data_recovery/types_of_raid_configurations.htm
http://www.datarecovery.com.sg/data_recovery/types_of_raid_configurations.htm
http://www.teragrid.org
http://www.fedora-commons.org
http://en.wikipedia.org/wiki/Fedora_Commons
http://www.cinegrid.org
http://www.glif.is/meetings/2009/rap/herr-cinegrid.pdf
http://www.glif.is/meetings/2009/rap/herr-cinegrid.pdf
http://www.oscars.org/science-technology/council/projects/digitaldilemma/index.html
http://www.oscars.org/science-technology/council/projects/digitaldilemma/index.html
https://www.irods.org/index.php/Fedora
http://www.planets-project.eu/docs/presentations/Dappert_PreservationMetadata.pdf
http://www.planets-project.eu/docs/presentations/Dappert_PreservationMetadata.pdf
http://www.loc.gov/standards/premis/v2/premis-2-0.pdf
http://www.loc.gov/standards/premis/v2/premis-2-0.pdf
https://www.irods.org/index.php/GSI
https://www.irods.org/index.php/GSI
https://www.irods.org/index.php/Micro-Services
https://www.irods.org/index.php/Released_Micro_Services
https://www.irods.org/index.php/Released_Micro_Services
https://www.irods.org/index.php/Rules
https://www.irods.org/index.php/Rules
https://kepler-project.org
https://www.irods.org/index.php/Rules
http://fedora-commons.org/confluence/display/FCR30/Fedora+Digital+Object+Model
http://fedora-commons.org/confluence/display/FCR30/Fedora+Digital+Object+Model
http://www.fedora-commons.org/documentation/3.0/userdocs/digitalobjects/objectModel.html
http://www.fedora-commons.org/documentation/3.0/userdocs/digitalobjects/objectModel.html

	Digital repository: preservation environment and policy implementation
	Abstract
	1 Introduction
	2 Digital preservation environment
	2.1 Data model
	2.2 Data replication
	2.3 Adaptive interface for new storage technology
	2.4 Metadata
	2.5 Self-healing capability
	2.6 Disaster management
	2.7 Security
	2.8 Audit trail
	2.9 Reconfigurable policy implementation

	3 About iRODS
	4 Micro-services
	4.1 iRODS micro-service model
	4.2 Micro-service versus workflow
	4.3 Automating administrative tasks

	5 Mapping policies to software implementation
	5.1 Data ingestion policy
	5.2 Deletion policy
	5.3 Digital preservation policy
	5.4 Enforcing iRODS rules in Fedora

	6 Technology fusion
	7 Summary
	Acknowledgments
	References

