
ECE 158A - Multicast and coding for erasures

Multi-cast traffic

For multi-cast traffic the shortest tree to reach all destinations is not the tree
of shortest paths and routing algorithms must be modified accordingly. Once
this tree is established there is an additional difficulty due to errors.

Retransmissions to make multicast reliable are not practical. If a packet
gets lost near the root of the multicast tree, then too many users will need
to notify the sender for retransmission. A better strategy is to deal with this
possibility in advance, through Forward Error Correction (FEC). The idea is
to add redundancy to the transmitted packet to deal with possible errors. In a
sense, we trade bandwidth for reliability.

Network coding can also be used to improve the overall throughput of the
multi-cast tree.

How to implement multicast efficiently on the Internet is still a topic of dis-
cussion and even its implementation at the application level or at the networking
level is debated. There is a strong interest in this due to streaming and content
distribution applications.

0.1 Example

We want to multicast N packets p1, . . . , pN across a link, but unfortunately
packets can get lost. We decide to implement a FEC strategy, which consists
in generating and transmitting M > N packets c1, . . . , cM . Each packet ci
is obtained as a combination (modulo-2 sum) of a subset of p1, . . . , pN . For
example, fixed ai,1, ai,2, . . . , ai,N ∈ {0, 1}

ci =
[
ai,1 ai,2 . . . ai,N

] 
p1
p2
. . .
pN


means that ci is obtained as the (bit-by-bit) modulo-2 sum of the packets pj
corresponding to all coefficients ai,j that are equal to 1.
Out of all M transmitted packets, M ′ ≤ M are received. Let these packets
be ci1 , ci2 , . . . , ciM′ , where i1, . . . , iM ′ are distinct indices in {1, . . . ,M}. The

1



received packets ci1 , . . . , ciM′ and the original packets p1, . . . , pN are related as
ci1
ci2
. . .
ciM′

 =


ai1,1 ai1,2 . . . ai2,N
ai2,1 ai2,2 . . . ai2,N

...
...

...
aiM′ ,1 aiM′ ,2 . . . aiM′ ,N




p1
p2
. . .
pN



= A


p1
p2
. . .
pN

 .

Note that A is a M ′ × N matrix. We have that p1, . . . , pN can be recovered
from ci1 , . . . , ciM′ if and only if A has rank N . If A has rank N , we can select N
linearly independent rows of it and obtain a N ×N matrix A′ of rank N (note
that A′ is therefore invertible).

We now ask the following questions:

1. What is the minimum M ′ below which it is not possible to recover p1, . . . , pN?
We need to receive M ′ ≥ N packets (so the minimum is N). If M ′ < N we
cannot build a N ×N matrix A′ which is invertible and allows to recover
the original packets. If M ′ ≥ N , then the packets can be recovered if and
only if there is a N ×N submatrix A′ of A (obtained choosing N linearly
independent rows of A) that is invertible.

2. How can we use A′ to recover p1, . . . , pN from the received packets cj1 , . . . , cjN
corresponding to the chosen rows of A′?

ANSWER: Let c be the vector of the N received packets corresponding
to the selected row in A′ (which is invertible and has inverse (A′)−1). Let
p be the vector of the original packets. Then p can be recovered as

p = (A′)−1c.

3. Assume now that we want to transmit packets p1, p2, p3 and that we choose
to adopt a FEC strategy sending 6 packets c1, . . . , c6 obtained as follows

c1
c2
c3
c4
c5
c6

 =


1 0 0
0 1 0
0 0 1
1 1 0
1 0 1
0 1 1


 p1

p2
p3

 .

2



If we receive c1, c2, c4, can we recover p1, p2, p3? If so, explain how, if not,
explain why.

ANSWER: The matrix A corresponding to the received packets c1, c2, c4
is

A =

 1 0 0
0 1 0
1 1 0


The matrix has rank 2, and thus it is not invertible. Therefore, p1, p2, p3
cannot be recovered.

4. If we receive c1, c2, c4, c6, can we recover p1, p2, p3? If so, explain how, if
not, explain why.

ANSWER: If we receive c1, c2, c4, c6, can we recover p1, p2, p3? If so, ex-
plain how, if not, explain why.

The matrix A corresponding to the received packets c1, c2, c4, c6 is

A =


1 0 0
0 1 0
1 1 0
0 1 1


The matrix has rank 3. We can choose the rows of A the received packets
c1, c2, c6, obtaining

A′ =

 1 0 0
0 1 0
0 1 1

,


which is, of course, invertible, and can be user to recover p1, p2, p3.

0.2 One step further: network coding

A similar idea has been proposed to improve network throghput in multi-cast
transmissions. The butterfly network in Section 5.5.4 of Walrand’s book il-
lustrate the idea. This can be extended to random linear combinations at
intermediate nodes. As long as the receivers get enough independent linear
combinations of the data, they will be able to invert the system and decode
correctly. Further reading is provided in the handout on network coding on the
web page.

3


