ECE 158A: Lecture 13

Fall 2015

Random Access and Ethernet

Random Access

- Basic idea: Exploit statistical multiplexing
 - Do not avoid collisions, just recover from them
- When a node has packet to send
 - Transmit at full channel data rate
 - No *a priori* coordination among nodes
- Two or more transmitting nodes ⇒ collision
- Random access MAC protocol specifies:
 - How to detect collisions
 - How to recover from collisions

Key Ideas of Random Access

Carrier sense

- Listen before speaking, and don't interrupt
- Check if someone else is already sending data and wait till the other node is done

Collision detection

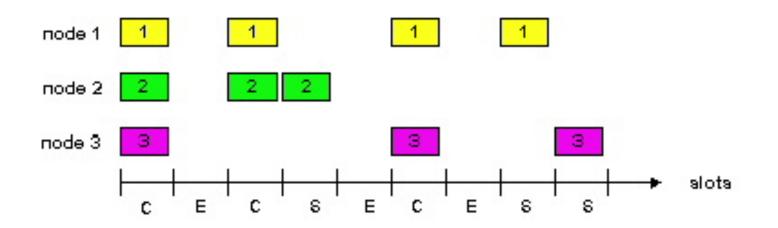
- If someone else starts talking at the same time, stop
- Realize when two nodes are transmitting at once by detecting that the data on the wire is garbled

• Randomness

- Don't start talking again right away
- Wait for a random time before trying again

Aloha net (70's)

- First random access network
- Setup by Norm Abramson at the University of Hawaii
- First data communication system for Hawaiian islands
 - Hub at University of Hawaii, Oahu
- Alohanet had two radio channels:
 - Random access:
 - Sites sending data
 - Broadcast:
 - Hub rebroadcasting data



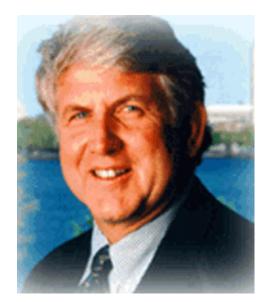
Aloha Signaling

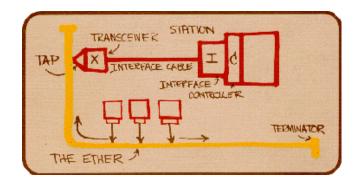
- Two channels: random access, broadcast
- Sites send packets to hub (random)
 - If received, hub sends ACK (random)
 - If not received (collision), site resends
- Hub sends packets to all sites (broadcast)
 - Sites can receive even if they are also sending
- Questions:
 - When do you resend? Resend with probability p
 - How does this perform? Will analyze in class, stay tuned....

Slot-by-slot Aloha Example

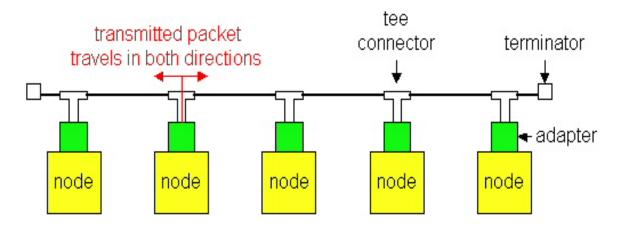
- Legend:
 - C = collision
 - E = empty slot
 - S = success

Carrier Sense Multiple Access

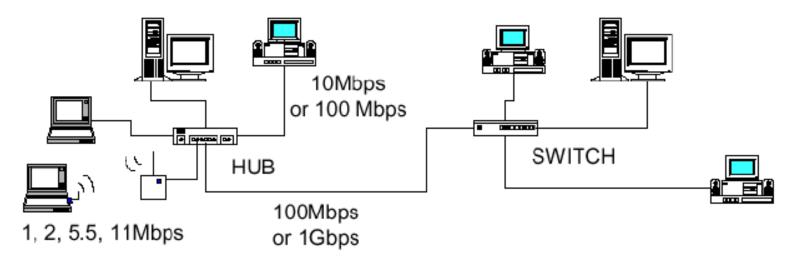

- CSMA: Listen before transmit
 - If channel sensed idle: transmit entire frame
 - If channel sensed busy, defer transmission
- Human analogy: do not interrupt others
- Does this eliminate all collisions?
- No, because of nonzero propagation delay


CSMA/CD (Collision Detection)

- Collision detection easy in wired LANs:
 - Compare transmitted, received signals
- Collision detection difficult in wireless LANs:
 - Reception shut off while transmitting
 - Even if on, might not be able to hear the other sender, even though the receiver can
 - Leads to use of collision avoidance instead (WiFi)


Ethernet Multiple Access

Ethernet



- Bob Metcalfe, Xerox PARC, visits Hawaii and gets an idea
- Shared wired medium
 - coax cable

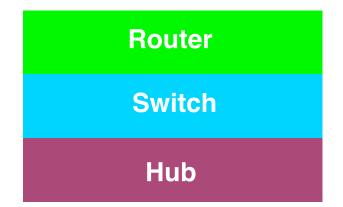
Ethernet: Typical Installation

CSMA/CD Protocol

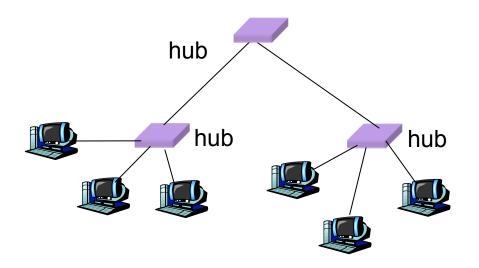
- Carrier sense: wait for link to be idle
- Collision detection: listen while transmitting
 - No collision: transmission is complete
 - Collision: abort transmission
- Random access: binary exponential back-off
 - After collision, wait a random time before trying again
 - After mth collision, choose K randomly from {0, ..., 2^{m-1}}
 - ... and wait for K*512 bit times before trying again
 - Using min packet size as "slot"
 - If transmission occurring when ready to send, wait until end of transmission (CSMA)

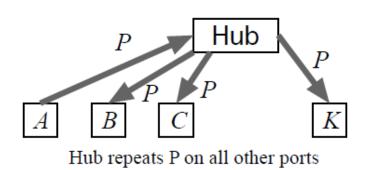
BEB: Theory vs Reality

- In reality, BEB performs well (far from optimal, but no one cares)
- Is mostly irrelevant
 - Almost all current ethernets are **switched**


Shuttling Data at Different Layers

- Different devices switch different things
 - Physical layer: electrical signals (hubs)
 - broadcast all bits
 - Link layer: frames (switches)
 - forward based on MAC addresses
 - Network layer: packets (routers)
 - forward based on IP headers

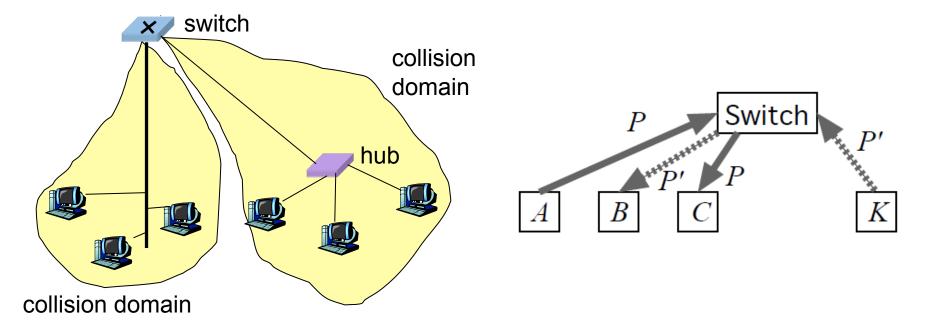




Frame	Packet	ТСР	User
header	header	header	data

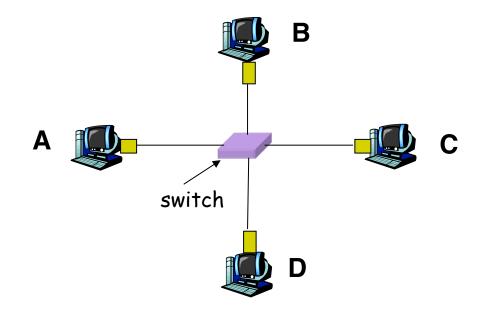
Physical Layer: Hubs

- Joins multiple input lines electrically
- Very similar to physical-layer repeaters, used to amplify signals that need to be transmitted over long distances
- A hub repeats each packet on all its ports



Limitations of Hubs

- One large collision domain
 - Every bit is sent everywhere
 - So, aggregate throughput is limited
 - E.g., three departments each get 10 Mbps independently
 - ... and then if connect via a hub must share 10 Mbps
- Cannot support multiple LAN technologies
 - Repeaters/hubs do not buffer or interpret frames
 - So, can't interconnect between different rates or formats
 - E.g., no mixing 10 Mbps Ethernet & 100 Mbps Ethernet
- Limitations on maximum nodes and distances
 - E.g., still cannot go beyond 2500 meters on Ethernet

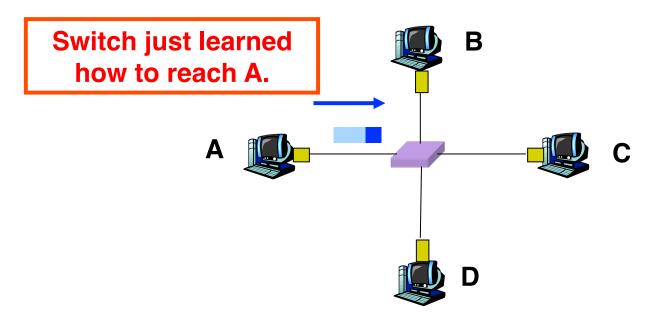

Link Layer: Switches

- Connect two or more LANs at the link layer
 - Extracts destination address from the frame
 - Looks up the destination in a table
 - Forwards the frame to the appropriate port
- Each segment is its own collision domain (if not just a link)

Switched Ethernet

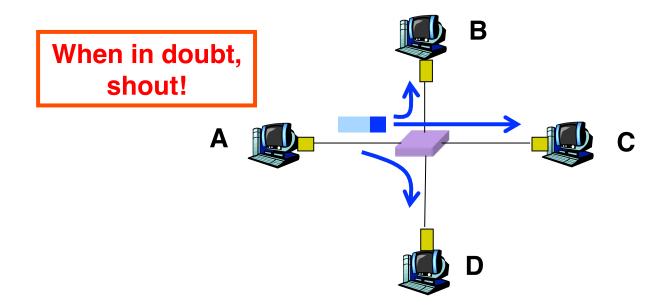
- If host has (dedicated) point-to-point link to switch:
 - Full duplex: each connection can send in both directions
 - Completely avoids collisions
 - No need for carrier sense, collision detection
- For example: Host A can talk to C, while B talks to D

Advantages over Hubs

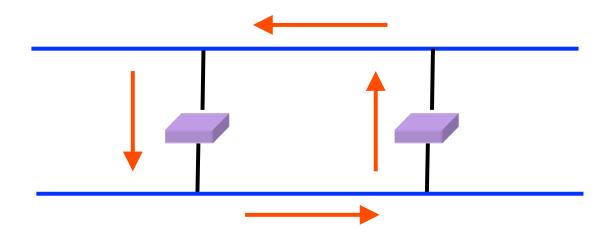

- Only forwards frames as needed
 - Filters frames to avoid unnecessary load on segments
 - Sends frames only to segments that need to see them
- Extends the geographic span of the network
 - Separate collision domains allow longer distances
- Improves privacy by limiting scope of frames
 - Hosts can "snoop" the traffic traversing their segment
 - ... but not all the rest of the traffic
- Applies CSMA/CD in segment (not whole net)
 - Smaller collision domain
- Joins segments using different technologies

Disadvantages over Hubs

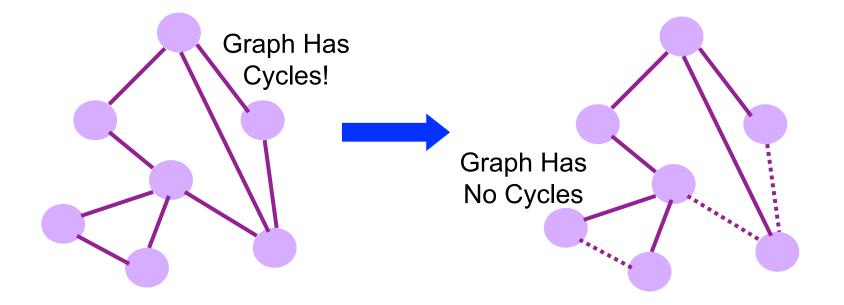
- Higher cost
 - More complicated devices that cost more money
- **Delay** in forwarding frames
 - Switch must receive and parse the frame
 - ... and perform a look-up to decide where to forward
 - Introduces store-and-forward delay
- Need to learn where to forward frames
 - Switch needs to construct a forwarding table
 - Ideally, without intervention from network administrators
 - Solution: self-learning


Self Learning: Building the Table

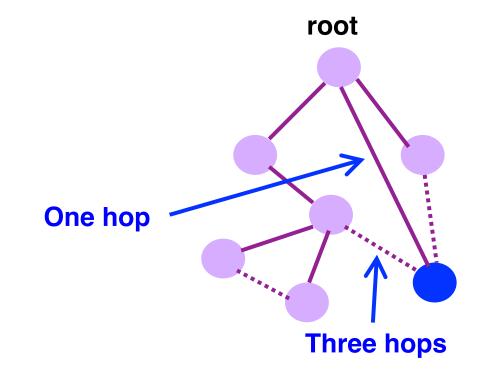
- Switch Table: Map between MAC address and swtich interfaces
- When a frame arrives
 - Inspect *source* MAC address
 - Associate address with the incoming interface
 - Store mapping in a switch table


Self Learning: Handling Misses

- When frame arrives with unfamiliar destination
 - Forward the frame out **all** of the interfaces ("flooding")
 - ... except for the one where the frame arrived
 - Hopefully, this case won't happen very often
 - When destination replies, switch learns that node, too


Flooding Can Lead to Loops

- Switches sometimes need to broadcast frames
 - Upon receiving a frame with an unfamiliar destination
 - Upon receiving a frame sent to the broadcast address
 - Implemented by flooding
- Flooding can lead to forwarding loops
 - E.g., if the network contains a cycle of switches
 - Either accidentally, or by design for higher reliability

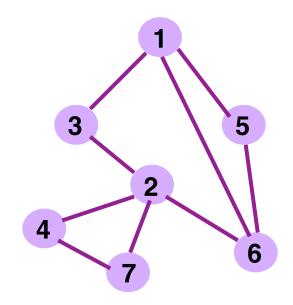

Solution: Spanning Trees

- Avoid using some of the links when flooding
 - Ensure the forwarding topology has no loops
- Switches run a spanning tree protocol
 - Form a sub-graph that covers all vertices but contains no cycles
 - Links not in the spanning tree do not forward frames

Spanning Tree Protocol

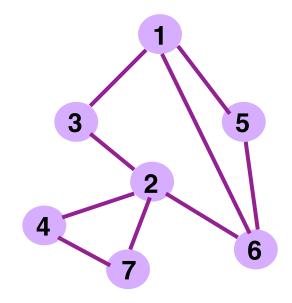
- Switches need to
 - Select a root, e.g., the switch with the smallest identifier (MAC addr)
 - Determine if an interface is on the shortest path from the root. If not, exclude it from the tree if not

Spanning Tree Protocol


- Switches exchange messages with information (myID, CurrentRootID, DistanceToCurrentRoot)
 - *myID*: ID (MAC address) of the switch
 - *CurrentRootID*: ID of the proposed root
 - DistanceToCurrentRoot: Distance from the switch to the proposed root
- A switch only relays messages whose CurrentRootID is the smallest the switch has seen so far
 - Before forwarding the message, the DistanceToCurrentRoot is increased by 1

Steps in Spanning Tree Algorithm

- Initially, each switch proposes itself as the root
 - Switch sends a message out every interface
 - ... proposing its ID as CurrentRootID and distance 0
- Switches update their view of the root
 - Upon receiving a message, check CurrentRootID
 - If that is smaller the switch has seen so far, start viewing that switch as root
- Switches compute their distance from the root
 - Add 1 to the distance received from a neighbor
 - Identify interfaces not on shortest path to the root
 - ... and exclude them from the spanning tree
- If root or shortest distance to it changed, "flood" an updated message


Example From Switch #4's Viewpoint

- Switch #4 thinks it is the root
 - Sends (4, 4, 0) message to 2 and 7
- Then, switch #4 hears from #2
 - Receives (2, 2, 0) message from 2
 - ... and thinks that #2 is the root
 - And realizes it is just one hop away
- Then, switch #4 hears from #7
 - Receives (7, 2, 1) from 7
 - And realizes this is a longer path
 - So, prefers its own one-hop path
 - And removes 4-7 link from the tree

Example From Switch #4's Viewpoint

- Switch #2 hears about switch #1
 - Switch 2 hears (3, 1, 1) from 3
 - Switch 2 starts treating 1 as root
 - And sends (2, 1, 2) to neighbors
- Switch #4 hears from switch #2
 - Switch 4 starts treating 1 as root
 - And sends (4, 1, 3) to neighbors
- Switch #4 hears from switch #7
 - Switch 4 receives (7, 1, 3) from 7
 - And realizes this is a longer path
 - So, prefers its own three-hop path
 - And removes 4-7 link from the tree

Summary

- Ethernet as an exemplar of link-layer technology
- Simplest form, single segment:
 - Carrier sense, collision detection, and random access
- Extended to span multiple segments:
 - Hubs: physical-layer interconnects
 - Switches: link-layer interconnects
- Key ideas in switches
 - Self learning of the switch table
 - Spanning trees