ECE 158A: Lecture 2

Fall 2014

Outline

- A brief history of the Internet
- Communication channels:
 - Capacity
 - Latency
- Circuit switch
- Packet switch
- Statistical Multiplexing

Internet: A Brief History

Maps from http://www.vox.com/a/internet-maps

The ARPANET in December 1969

1963: ARPANET

1970: ARPANET expands

1973: ARPANET goes international

1984: ARPANET becomes Internet

Internet: A Brief History

NSFNET T3 Network 1992

1992: NSFNET (backbone)

1994: Privatization backbone

1993: The internet is global

2012: Broadband penetration

Properties of Links

- Capacity: "width" of the link
 - number of bits sent (or received) per unit time (bits/sec or bps)
- Latency (delay): "length" of the link
 - propagation time for data to travel along the link (seconds)

Link rate: Peak achievable rates in practice

Example of Communication Media

- Unshielded Twisted Pair (UTP)
 - Medium used in telephone line
 - Seven categories of increasing quality
 - Data rates from 0.1Mbps (CAT1) to 600Mbps (CAT6)
- Coaxial cable
 - Audio/TV connectors
 - More resilient to external disturbances than UTP but more expensive, short distances
 - Data rates up to hundreds of Mbps
- Fiber optic cable
 - Internet backbones
 - No external disturbance, small and inexpensive
 - Difficult interconnections, limited curvature
 - Data rates up to 10Gbps

Examples of Capacity-Delay

- Propagation speed varies on the material, but it is roughly between 0.5 to 0.8 times the speed of light c, i.e., ~ 1.5x10⁸ msec
- Same city over UTP:
 - Capacity~100Mbps
 - Latency~0.1msec (~15Km)
 - Total bits in link ~ 10,000bits ~ 1.25KBytes
- Cross-country over fiber optic cable:
 - Capacity~10Gbps
 - Latency~10msec (~1500Km)
 - Total bits in link ~ 10^8 bits ~ 12.5 GBytes

Internet Submarines Cables

More maps at http://www.submarinecablemap.com/

Internet Submarine cables

<u>https://www.youtube.com/watch?</u> <u>feature=player_embedded&v=1ex7uTQf4bQ</u>

Packet Delay Sending a 100B packet from A to B?

IGB file in 100B packets Ay Sending a 100B packet from A to B?

Packet Delay: The "pipe" view Sending 100B packets from A to B?

What if we have more nodes?

One link for every node?

Need a scalable way to interconnect nodes

Solution: A switched network

Nodes share network link resources

How is this sharing implemented?

Circuit Switching

Circuit switching

Idea: source reserves network capacity along a path

- (1) Node A sends a reservation request
- (2) Interior switches establish a connection -- i.e., "circuit"
- (3) A starts sending data
- (4) A sends a "teardown circuit" message

Circuit Switching: Sharing a Link

- Time-division
 - Each circuit allocated certain time slots

- Frequency-division
 - Each circuit allocated certain frequencies

Time-Division Multiplexing

- Time divided into frames; frames into slots
- Relative slot position inside a frame determines to which conversation data belongs
 - e.g., slot 0 belongs to orange conversation
- Slots are reserved (released) during circuit setup (teardown)
- If a conversation does not use its circuit capacity is lost!

Circuit switching: pros and cons

- Pros
 - guaranteed performance
 - fast transfer (once circuit is established)
- Cons

Circuit switching: pros and cons

- Pros
 - guaranteed performance
 - fast transfer (once circuit is established)
- Cons
 - wastes capacity if traffic is "bursty"

Circuit switching: pros and cons

- Pros
 - guaranteed performance
 - fast transfers (once circuit is established)
- Cons
 - wastes capacity if traffic is "bursty"
 - connection setup time is overhead

Circuit switching

Circuit switching doesn't "route around trouble"

Circuit switching: pros and cons

- Pros
 - guaranteed performance
 - fast transfers (once circuit is established)
- Cons
 - wastes capacity if traffic is "bursty"
 - connection setup time is overhead
 - recovery from failure is slow

Circuit switching: pros and cons

- Pros
 - guaranteed performance
 - fast transfers (once circuit is established)
- Cons
 - wastes capacity if traffic is "bursty"
 - connection setup adds delay
 - recovery from failure is slow
 - [in the telephone network] designed for a specific app

Packet switching

Packet Switching

- Data is sent as chunks of formatted bits (Packets)
- Packets consist of a "header" and "payload"
 - Data is sent as chunks of formatted bits (Packets)
 - Packets consist of a "header" and "payload"
- Switches "forward" packets based on their headers
- Each packet travels independently
 - no notion of packets belonging to a "circuit"
- No link resources are reserved in advance. Instead packet switching leverages statistical multiplexing

Inventors of Packet Switching

Paul Baran

Donald Davies

Leonard Kleinrock

- Watch the following interview with Prof. Kleinrock for a historical perspective:
- https://www.youtube.com/watch?v=qsgrtrwydjw

Timing in Packet Switching

Timing in Packet Switching

Timing in Packet Switching

Statistical Multiplexing

When Flows Share Total Capacity

Data Rate 1+2+3 >> Capacity

What do we do under overload?

Queues introduce queuing delays

- Recall, packet delay = tx delay + prop delay
- With queues (stat. muxing)
 - packet delay = tx delay + prop delay + queuing delay
- Queuing delay caused by "packet interference"
- Made worse at high load
 - less "idle time" to absorb bursts
 - think about traffic jams at rush hour

Circuit switching: pros and cons

- Pros
 - guaranteed performance
 - fast transfers (once circuit is established)
- Cons
 - wastes capacity if traffic is "bursty"
 - connection setup adds delay
 - recovery from failure is slow

Packet switching: pros and cons

- Cons
 - no guaranteed performance
 - header overhead per packet
 - queues and queuing delays

• Pros

- efficient use of capacity (stat. muxing)
- no overhead due to connection setup
- resilient -- can `route around trouble'