ECE 158A: Lecture 5

Fall 2015

Routing (1)

Location-Based Addressing

e Recall from Lecture 1 that routers maintain routing tables
to forward packets based on their IP addresses

e To allow scalability, IP addresses are assigned based on
location, similarly to phone numbers [area,zone,number]

-"-‘
——
——

1.N 1l

Location-Based Addressing

e Location-based addressing helps reducing the number of
entries in routing tables:

e |P addresses with the same prefix can share the same entry in a
routing table

e A routing table maps prefixes of input IP addresses to
output ports

e Given a destination IP address, the router finds the
longest matching prefix in the routing table

Example

o Packet with destination address 12.82.100.101 is sent to
output port 2, as 12.82.100.xxx is the longest prefix
matching packet’s destination address

128.16.120.xxx
12.82 . xxx.xXxXX
12.82.100.xxx 2

L lll"l
12.82.100.101 i‘, Heumm P

128.16.120.111

Autonomous Systems (AS)

e The Internet is grouped into about 40,000 Autonomous
Systems (AS) or “domains”

e Groups of hosts/routers under a single administrative entity

e Each AS is assigned a unique identifier
e 16 bit AS Number (ASN)

“‘Autonomous System” or “Domain”

Two-Level Routing

e Routing is performed at two levels:

Routing within a domain is called intra-domain routing
Routing across domains is called inter-domain routing

e Reasons:

Routing within a domain requires microscopic knowledge of local
network topology

Domains are managed by different companies/institutions
Intra-domain routing driven by optimal performance
Inter-domain driven by economic trade-offs

Routing Protocols

e Internet routing protocols are responsible for constructing
and updating the routing tables at the routers

e Routing protocols use shortest path algorithms to
establish “good” paths between nodes. Two classical
algorithms:

e Link State: Based on Dijkstra’s Shortest Path Algorithm
e Distance Vector: Based on Bellman-Ford Algorithm

e Routing Protocols used in practice:

e Intra-domain routing: Open Shortest Path First (OSPF) (link
state), Routing Information Protocol (RIP) (distance vector)

e Inter-Domain routing: Border Gateway Protocol (BGP)

Network Representation as a Graph

e Routing algorithms model the network as a graph
e Routers are graph vertices and links are edges

e Edges have an associated “cost” (e.g., distance, queue delay,
cost)

e Goal: Find a least-cost path from any two vertices

Link State vs Distance Vector

e Link State (LS):

e Each node learns the complete network map (global information)
e Each node computes shortest paths independently and in parallel

e Distance Vector (DV):

e No node has the complete picture (local information)

e Nodes cooperate to compute shortest paths in a distributed
manner

e LS uses global information, while DV is asynchronous,
and distributed.

e LS has higher messaging overhead and higher
processing complexity, but is less vulnerable to looping

Link-State

Link State Routing

e Each node maintains its local “link state” (LS)
e i.e., alist of its directly attached links and their costs

(N1,N2)
(N1,N4)
(N1,N5)

N6 I N7 =T

Link State Routing

e Each node maintains its local “link state” (LS)

e Each node floods its local link state

e 0N receiving a new LS message, a router forwards the message
to all its neighbors other than the one it received the message
from

Host C

Host D

(N1.N2)
(N1, N4)
(N1, N5)

(N1,N2)
(N1, N4)
(N1, N5)

(N1N2) \
(N1, N4)
(N1, N5)
(N1,N2)
(N1, N4)
(N1, N5 =

(N1,N2)

(N1.N2)
(N1, N4)

(N1, N5) (N1,N2)

(N1, N4)
(N1, N5)
(N1, N4)

(N1, N5)

Host B
Host E

N1,N2

e [
N1, N5) | =
() l %

N

Link State Routing

e Each node maintains its local “link state” (LS)
e Each node floods its local link state

e Hence, each node learns the entire network topology
e Can use Dijkstra’s to compute the shortest paths between nodes

Dijkstra’s Shortest Path Algorithm

e INPUT:
e Network topology (graph), with link costs

e OUTPUT:

e Least cost paths from one node to all other nodes

e lterative: after k iterations, a node knows the least cost
path to its k closest neighbors

Notation

e c(i,j): cost=0 from nodeitoj(« ifiand jare not
neighbors)

e D(v): total cost of the current least-cost path from source
to destination v

e p(Vv): v's predecessor along path from source to v
e S: set of nodes whose least cost path is known

[Source]>

Dijkstra’ s Algorithm

* ¢(i,)): link cost from node i to

1 Initialization: . D(v): { cost .
2 S={A} (v): current cost source — v
3 forall nodes v * p(v): V's predecessor along

4 if v adjacentto A path from source to v

5 then D(v) = c(A,v); . S: set of nodes whose least
6 else D(v) = &©; cost path definitively known

7

8 Loop

9 find wnotin S such that D(w) is a minimum;

10 addwto S;

11 update D(v) for all v adjacent to w and not in S:
12 if D(w) + c(w,v) < D(v) then
Il w gives us a shorter path to v than we 've found so far
13 D(v) = D(w) + c(w,v); p(v) = w;
14 until all nodes in S;

Example: Dijkstra’ s Algorithm

Step setS D(B),p(B) D(C),p(C) D(D),p(D) D(E),p(E) D(F),p(F
0 A 2.A 5A 1,A o0 é‘L
1
2
3
4
5

1 Initialization:

2 S={A}

3 forall nodes v

4 if vadjacentto A

3 then D(v) = c(A,v);
6 else D(v) = 0;

Example: Dijkstra’ s Algorithm

set S D(B),pz(liz D(C),p(C) D(D),p(2) D(E).p(E) D(F),p(F)

A

5A 1,A o0 0

8 Loop
9 <findwnotin S s.t. D(w) is @a minimum;
10 addwto S;
11 update D(v) for all v adjacent
tow and not in S:
12 If D(w) + c(w,v) < D(v) then
13 D(v) = D(w) + c(w,v); p(v) = w;
14 until all nodes in S;

Example: Dijkstra’ s Algorithm

Step

AL WIN = O

setS D(B),p(B) D(C),p(C) D(D),p(D) D(E)’%(E) D(F),%g:)

A

AD

2,A

5,A 1,A

8 Loop
9. find-w-notin S s.t. D(w) is @ minimum;
10 addwto S;
11 update D(v) for all v adjacent
tow and not in S:
12 If D(w) + c(w,v) < D(v) then
13 D(v) = D(w) + c(w,v); p(v) = w;
14 until all nodes in S;

Example: Dijkstra’ s Algorithm

Step

AL WIN = O

D(C),p©D(D),p(D) D(E),p(E) D(F),p(F)
0 0

5.A 1A
4.D 2,D

8 Loop
9 findwnotinS s.t. D(w) is @a minimum;
10 addwto S;
11 update D(v) for all v adjacent
tow and not in S:
12 If D(w) + c(w,v) < D(v) then
13 D(v) = D(w) + c(w,v); p(v) = w;
14 until all nodes in S;

Example: Dijkstra’ s Algorithm

setS D(B),p(B) D(C),p(C) D(D).p(D) D(E),p(E) D(F),p(F)

A 2,A 5A 1,A 0 0
AD 4,D 2,D
ADE 3,E 4,E

8 Loop
9 findwnotinS s.t. D(w) is @a minimum;
10 addwtoS;

11 update D(v) for all v adjacent
tow and notin S:

12 If D(w) + c(w,v) < D(v) then

13 D(v) = D(w) + c(w,v); p(v) = w;

14 until all nodes in S;

Example: Dijkstra’ s Algorithm

setS D(B),p(B) D(C),p(C) D(D),p(D) D(E),pég) D(F),%gF)

A 2,A 5,A 1,A
AD 4,D 2,D
ADE 3,E 4,E
ADEB

8 Loop
9 findwnotinS s.t. D(w) is @a minimum;
10 addwtoS;

11 update D(v) for all v adjacent
tow and notin S:

12 If D(w) + c(w,v) < D(v) then

13 D(v) = D(w) + c(w,v); p(v) = w;

14 until all nodes in S;

Example: Dijkstra’ s Algorithm

Step

AL WIN = O

setS D(B),p(B) D(C),p(C) D(D),p(D) D(E),pég) D(F),%g:)

A 2,A 9,A 1,A
AD 4,D 2,D
ADE 3,E 4,E
ADEB

ADEBC
8 Loop
9 findwnotinS s.t. D(w) is @a minimum;
10 addwtoS;

11 update D(v) for all v adjacent
tow and notin S:

12 If D(w) + c(w,v) < D(v) then

13 D(v) = D(w) + c(w,v); p(v) = w;

14 until all nodes in S;

Example: Dijkstra’ s Algorithm

set S

A

AD

ADE
ADEB
ADEBC
ADEBCF

D(B),p(B) D(C),p(C) D(D),p(D) D(E).,p(E) D(F),p(F)
0 o

2,A 9,A 1,A
4.D 2,D
3,E 4 E
8 Loop
9 findwnotinS s.t. D(w) is @a minimum;
10 addwtoS;

11 update D(v) for all v adjacent
tow and notin S:

12 If D(w) + c(w,v) < D(v) then

13 D(v) = D(w) + c(w,v); p(v) = w;

14 until all nodes in S;

Example: Dijkstra’ s Algorithm

Step setS__D(B),p(B) D(C),p(C) D(D),p(B) D(E),p(E) D(F).p(F)
0 A 2,A 5,A 1,A 0
1 AD 4.D 2,D
2 ADE 3,E 4,E
3 ADEB
4 ADEBC
5 ADEBCF

To determine path A — C (say),
work backward from C via p(v)

The Routing Table

e Running Dijkstra at node A gives the shortest path from
A to all destinations

e We then construct the routing table

Destination Link

B (A,B)
C (A,D)
D (A,D)
E (A,D)
F (A,D)

Algorithmic Complexity

e How many messages needed to flood link state
messages?
e O(|N||E|), where |N| is no. nodes; |E| is no. edges in graph

e Processing complexity for Dijkstra’s algorithm?

e O(|N|?), because we check all nodes w not in S at each iteration
and we have O(|N]) iterations

e more efficient implementations: O(|N| log(|N]))

Dijkstra in action

Dijkstra in action

w - e

pE4E T eX 4]
(R X2 3 2 ZeXege

ERR RN 13
(EXE T E T LT
FRRRERRRRC

(R EEES X X T
(EXE Y

(AR RS 2 2 22 2 2)
R RERRRRRRRN
FRRRARRRERRES
ERRARRRRRRS
EEZ TS
EEZ TR
(EEZ 22T

EZ 22X 2R 2R R R
e an sl

ks nss 009
I IS . =0
T L e
([E XXX ZoReReRe]

ZZ 2222 2R3 2
pEOE ReReRe

»
»
o
o
®
b
»
*
*
-

KBS BES
KRB REY
KRB EREES
KEssnsee®

