
ECE 158A: Lecture 5

Fall 2015

Routing (1)!

Location-Based Addressing
  Recall from Lecture 1 that routers maintain routing tables

to forward packets based on their IP addresses
  To allow scalability, IP addresses are assigned based on

location, similarly to phone numbers [area,zone,number]

Location-Based Addressing
  Location-based addressing helps reducing the number of

entries in routing tables:
  IP addresses with the same prefix can share the same entry in a

routing table

  A routing table maps prefixes of input IP addresses to
output ports

  Given a destination IP address, the router finds the
longest matching prefix in the routing table

Example
  Packet with destination address 12.82.100.101 is sent to

output port 2, as 12.82.100.xxx is the longest prefix
matching packet’s destination address

1

2 128.16.120.111

12.82.100.101

… …

 3 12.82.xxx.xxx

 1 128.16.120.xxx

12.82.100.xxx 2

Autonomous Systems (AS)
  The Internet is grouped into about 40,000 Autonomous

Systems (AS) or “domains”
  Groups of hosts/routers under a single administrative entity

  Each AS is assigned a unique identifier
  16 bit AS Number (ASN)a network under a single administrative

entity
“Autonomous System” or “Domain”

Two-Level Routing
  Routing is performed at two levels:

  Routing within a domain is called intra-domain routing
  Routing across domains is called inter-domain routing

  Reasons:
  Routing within a domain requires microscopic knowledge of local

network topology
  Domains are managed by different companies/institutions
  Intra-domain routing driven by optimal performance
  Inter-domain driven by economic trade-offs

Routing Protocols
  Internet routing protocols are responsible for constructing

and updating the routing tables at the routers
  Routing protocols use shortest path algorithms to

establish “good” paths between nodes. Two classical
algorithms:
  Link State: Based on Dijkstra’s Shortest Path Algorithm
  Distance Vector: Based on Bellman-Ford Algorithm

  Routing Protocols used in practice:
  Intra-domain routing: Open Shortest Path First (OSPF) (link

state), Routing Information Protocol (RIP) (distance vector)
  Inter-Domain routing: Border Gateway Protocol (BGP)

Network Representation as a Graph
  Routing algorithms model the network as a graph

  Routers are graph vertices and links are edges
  Edges have an associated “cost” (e.g., distance, queue delay,

cost)

  Goal: Find a least-cost path from any two vertices

A

E D

C B

F

2

2

1
3

1

1

2

5
3

5

Link State vs Distance Vector
  Link State (LS):

  Each node learns the complete network map (global information)
  Each node computes shortest paths independently and in parallel

  Distance Vector (DV):
  No node has the complete picture (local information)
  Nodes cooperate to compute shortest paths in a distributed

manner

  LS uses global information, while DV is asynchronous,
and distributed.

  LS has higher messaging overhead and higher
processing complexity, but is less vulnerable to looping

Link-State!

Link State Routing
  Each node maintains its local “link state” (LS)

  i.e., a list of its directly attached links and their costs

(N1,N2)
(N1,N4)
(N1,N5)

Host A

Host B
Host E

Host D

Host C

N1 N2

N3

N4

N5

N7 N6

Link State Routing
  Each node maintains its local “link state” (LS)
  Each node floods its local link state

  on receiving a new LS message, a router forwards the message
to all its neighbors other than the one it received the message
from

Host A

Host B
Host E

Host D

Host C

N1 N2

N3

N4

N5

N7 N6

(N1,N2)
(N1, N4)
(N1, N5)

(N1,N2)
(N1, N4)
(N1, N5)

(N1,N2)
(N1, N4)
(N1, N5)

(N1,N2)
(N1, N4)
(N1, N5)

(N1,N2)
(N1, N4)
(N1, N5)

(N1,N2)
(N1, N4)
(N1, N5)

(N1,N2)
(N1, N4)
(N1, N5)

(N1,N2)
(N1, N4)
(N1, N5)

(N1,N2)
(N1, N4)
(N1, N5)

(N1,N2)
(N1, N4)
(N1, N5)

Link State Routing
  Each node maintains its local “link state” (LS)
  Each node floods its local link state
  Hence, each node learns the entire network topology

  Can use Dijkstra’s to compute the shortest paths between nodes

Host A

Host B
Host E

Host D

Host C

N1 N2

N3

N4

N5

N7 N6

A

B E

D
C

A

B E

D
C

A

B E

D
C

A

B E

D
C

A

B E

D
C

A

B E

D
C

A

B E

D
C

Dijkstraʼs Shortest Path Algorithm
  INPUT:

  Network topology (graph), with link costs

  OUTPUT:
  Least cost paths from one node to all other nodes

  Iterative: after k iterations, a node knows the least cost
path to its k closest neighbors

https://en.wikipedia.org/wiki/Edsger_W._Dijkstra

Notation
  c(i,j): cost ≥ 0 from node i to j (∞ if i and j are not

neighbors)
  D(v): total cost of the current least-cost path from source

to destination v
  p(v): v’s predecessor along path from source to v
  S: set of nodes whose least cost path is known

A

E D

C B

F

2

2

1
3

1

1

2

5
3

5

Source!

Dijkstra’s Algorithm

1 Initialization:
2 S = {A};
3 for all nodes v
4 if v adjacent to A
5 then D(v) = c(A,v);
6 else D(v) = ;
7
8 Loop
9 find w not in S such that D(w) is a minimum;
10 add w to S;
11 update D(v) for all v adjacent to w and not in S:
12 if D(w) + c(w,v) < D(v) then
 // w gives us a shorter path to v than we’ve found so far
13 D(v) = D(w) + c(w,v); p(v) = w;
14 until all nodes in S;

•  c(i,j): link cost from node i to j

•  D(v): current cost source → v
•  p(v): v’s predecessor along

path from source to v
•  S: set of nodes whose least

cost path definitively known

Example: Dijkstra’s Algorithm!

Step
0
1
2
3
4
5

set S
A

D(B),p(B)
2,A

 D(C),p(C)
5,A

D(D),p(D)
1,A

D(E),p(E) D(F),p(F)

A

E D

C B

F
2

2
1

3

1

1

2

5
3

5 1 Initialization:
2 S = {A};
3 for all nodes v
4 if v adjacent to A
5 then D(v) = c(A,v);
6 else D(v) = ;
…

Example: Dijkstra’s Algorithm!

Step
0
1
2
3
4
5

set S
A

D(B),p(B)
2,A

D(C),p(C)
5,A

…
8 Loop
9 find w not in S s.t. D(w) is a minimum;
10 add w to S;
11  update D(v) for all v adjacent
 to w and not in S:
12  If D(w) + c(w,v) < D(v) then
13  D(v) = D(w) + c(w,v); p(v) = w;
14 until all nodes in S;

A

E D

C B

F
2

2
1

3

1

1

2

5
3

5

D(D),p(D)
1,A

D(E),p(E) D(F),p(F)

Example: Dijkstra’s Algorithm!

Step
0
1
2
3
4
5

set S
A

AD

D(B),p(B)
2,A

D(C),p(C)
5,A

D(D),p(D)
1,A

D(E),p(E) D(F),p(F)

A

E D

C B

F
2

2
1

3

1

1

2

5
3

5
…
8 Loop
9 find w not in S s.t. D(w) is a minimum;
10 add w to S;
11  update D(v) for all v adjacent
 to w and not in S:
12  If D(w) + c(w,v) < D(v) then
13  D(v) = D(w) + c(w,v); p(v) = w;
14 until all nodes in S;

Example: Dijkstra’s Algorithm!

Step
0
1
2
3
4
5

set S
A

AD

D(B),p(B)
2,A

D(C),p©
5,A
4,D

D(D),p(D)
1,A

D(E),p(E)

2,D

D(F),p(F)

A

E D

C B

F
2

2
1

3

1

1

2

5
3

5
…
8 Loop
9 find w not in S s.t. D(w) is a minimum;
10 add w to S;
11  update D(v) for all v adjacent
 to w and not in S:
12  If D(w) + c(w,v) < D(v) then
13  D(v) = D(w) + c(w,v); p(v) = w;
14 until all nodes in S;

Example: Dijkstra’s Algorithm!

Step
0
1
2
3
4
5

set S
A

AD
ADE

D(B),p(B)
2,A

D(C),p(C)
5,A
4,D
3,E

D(D),p(D)
1,A

D(E),p(E)

2,D

D(F),p(F)

4,E

A

E D

C B

F
2

2
1

3

1

1

2

5
3

5
…
8 Loop
9 find w not in S s.t. D(w) is a minimum;
10 add w to S;
11  update D(v) for all v adjacent
 to w and not in S:
12  If D(w) + c(w,v) < D(v) then
13  D(v) = D(w) + c(w,v); p(v) = w;
14 until all nodes in S;

Example: Dijkstra’s Algorithm!

Step
0
1
2
3
4
5

set S
A

AD
ADE

ADEB

D(B),p(B)
2,A

D(C),p(C)
5,A
4,D
3,E

D(D),p(D)
1,A

D(E),p(E)

2,D

D(F),p(F)

4,E

A

E D

C B

F
2

2
1

3

1

1

2

5
3

5
…
8 Loop
9 find w not in S s.t. D(w) is a minimum;
10 add w to S;
11  update D(v) for all v adjacent
 to w and not in S:
12  If D(w) + c(w,v) < D(v) then
13  D(v) = D(w) + c(w,v); p(v) = w;
14 until all nodes in S;

Example: Dijkstra’s Algorithm!

Step
0
1
2
3
4
5

set S
A

AD
ADE

ADEB
ADEBC

D(B),p(B)
2,A

D(C),p(C)
5,A
4,D
3,E

D(D),p(D)
1,A

D(E),p(E)

2,D

D(F),p(F)

4,E

A

E D

C B

F
2

2
1

3

1

1

2

5
3

5
…
8 Loop
9 find w not in S s.t. D(w) is a minimum;
10 add w to S;
11  update D(v) for all v adjacent
 to w and not in S:
12  If D(w) + c(w,v) < D(v) then
13  D(v) = D(w) + c(w,v); p(v) = w;
14 until all nodes in S;

Example: Dijkstra’s Algorithm!

Step
0
1
2
3
4
5

set S
A

AD
ADE

ADEB
ADEBC

ADEBCF

D(B),p(B)
2,A

D(C),p(C)
5,A
4,D
3,E

D(D),p(D)
1,A

D(E),p(E)

2,D

D(F),p(F)

4,E

A

E D

C B

F
2

2
1

3

1

1

2

5
3

5
…
8 Loop
9 find w not in S s.t. D(w) is a minimum;
10 add w to S;
11  update D(v) for all v adjacent
 to w and not in S:
12  If D(w) + c(w,v) < D(v) then
13  D(v) = D(w) + c(w,v); p(v) = w;
14 until all nodes in S;

Example: Dijkstra’s Algorithm!

Step
0
1
2
3
4
5

set S
A

AD
ADE

ADEB
ADEBC

ADEBCF

D(B),p(B)
2,A

D(C),p(C)
5,A
4,D
3,E

D(D),p(D)
1,A

D(E),p(E)

2,D

D(F),p(F)

4,E

A

E D

C B

F
2

2
1

3

1

1

2

5
3

5
To determine path A → C (say),
work backward from C via p(v)

The Routing Table
  Running Dijkstra at node A gives the shortest path from

A to all destinations
  We then construct the routing table

A

E D

C B

F
2

2
1

3

1

1

2

5
3

5 Destination Link
B (A,B)

C (A,D)

D (A,D)

E (A,D)

F (A,D)

Algorithmic Complexity
  How many messages needed to flood link state

messages?
  O(|N||E|), where |N| is no. nodes; |E| is no. edges in graph

  Processing complexity for Dijkstra’s algorithm?
  O(|N|2), because we check all nodes w not in S at each iteration

and we have O(|N|) iterations
  more efficient implementations: O(|N| log(|N|))

Dijkstra in action

Dijkstra in action

