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Routing (1)!



Location-Based Addressing 
  Recall from Lecture 1 that routers maintain routing tables  

to forward packets based on their IP addresses 
  To allow scalability, IP addresses are assigned based on 

location, similarly to phone numbers [area,zone,number] 



Location-Based Addressing 
  Location-based addressing helps reducing the number of 

entries in routing tables:  
  IP addresses with the same prefix can share the same entry in a 

routing table 

  A routing table maps prefixes of input IP addresses to 
output ports 

  Given a destination IP address, the router finds the 
longest matching prefix in the routing table 



Example   
  Packet with destination address 12.82.100.101 is sent to 

output port 2, as 12.82.100.xxx is the longest prefix 
matching packet’s destination address 
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Autonomous Systems (AS)  
  The Internet is grouped into about 40,000 Autonomous 

Systems (AS) or “domains” 
  Groups of hosts/routers under a single administrative entity  

  Each AS is assigned a unique identifier 
  16 bit AS Number (ASN)a network under a single administrative 

entity 
“Autonomous System” or “Domain” 



Two-Level Routing 
  Routing is performed at two levels: 

  Routing within a domain is called intra-domain routing 
  Routing across domains is called inter-domain routing  

  Reasons: 
  Routing within a domain requires microscopic knowledge of local 

network topology 
  Domains are managed by different companies/institutions 
  Intra-domain routing driven by optimal performance 
  Inter-domain driven by economic trade-offs 



Routing Protocols 
  Internet routing protocols are responsible for constructing 

and updating the routing tables at the routers 
  Routing protocols use shortest path algorithms to 

establish “good” paths between nodes. Two classical 
algorithms: 
  Link State: Based on Dijkstra’s Shortest Path Algorithm 
  Distance Vector: Based on Bellman-Ford Algorithm 

  Routing Protocols used in practice: 
  Intra-domain routing: Open Shortest Path First (OSPF) (link 

state), Routing Information Protocol (RIP) (distance vector) 
  Inter-Domain routing: Border Gateway Protocol (BGP) 



Network Representation as a Graph 
  Routing algorithms model the network as a graph 

  Routers are graph vertices and links are edges 
  Edges have an associated “cost” (e.g., distance, queue delay, 

cost) 

  Goal: Find a least-cost path from any two vertices   
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Link State vs Distance Vector 
  Link State (LS):  

  Each node learns the complete network map (global information) 
  Each node computes shortest paths independently and in parallel 

  Distance Vector (DV):  
  No node has the complete picture (local information) 
  Nodes cooperate to compute shortest paths in a distributed 

manner 

  LS uses global information, while DV is asynchronous, 
and distributed. 

  LS has higher messaging overhead and higher 
processing complexity, but is less vulnerable to looping 



Link-State!



Link State Routing 
  Each node maintains its local “link state” (LS) 

  i.e., a list of its directly attached links and their costs 
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Link State Routing 
  Each node maintains its local “link state” (LS) 
  Each node floods its local link state  

  on receiving a new LS message, a router forwards the message 
to all its neighbors other than the one it received the message 
from 
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Link State Routing 
  Each node maintains its local “link state” (LS) 
  Each node floods its local link state  
  Hence, each node learns the entire network topology 

  Can use Dijkstra’s to compute the shortest paths between nodes 
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Dijkstraʼs Shortest Path Algorithm 
  INPUT: 

  Network topology (graph), with link costs 

  OUTPUT: 
  Least cost paths from one node to all other nodes 

  Iterative: after k iterations, a node knows the least cost 
path to its k closest neighbors 

https://en.wikipedia.org/wiki/Edsger_W._Dijkstra 



Notation 
  c(i,j): cost ≥ 0 from node i to j (∞ if i and j are not 

neighbors) 
  D(v): total cost of the current least-cost path from source 

to destination v 
  p(v): v’s predecessor along path from source to v 
  S: set of nodes whose least cost path is known 

A 

E D 

C B 

F 

2 

2 

1 
3 

1 

1 

2 

5 
3 

5 

Source!



Dijkstra’s Algorithm 

1  Initialization:  
2    S = {A}; 
3    for all nodes v  
4      if v adjacent to A  
5        then D(v) = c(A,v);  
6        else D(v) =      ; 
7  
8   Loop  
9      find w not in S such that D(w) is a minimum;  
10    add w to S;  
11    update D(v) for all v adjacent to w and not in S:  
12       if  D(w) + c(w,v) < D(v) then 
              // w gives us a shorter path to v than we’ve found so far  
13          D(v) = D(w) + c(w,v); p(v) = w; 
14  until all nodes in S;  

•  c(i,j): link cost from node i to j 

•  D(v): current cost source → v 
•  p(v): v’s predecessor along 

path from source to v 
•  S: set of nodes whose least 

cost path definitively known 



Example: Dijkstra’s Algorithm!
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2    S = {A}; 
3    for all nodes v  
4      if v adjacent to A  
5        then D(v) = c(A,v);  
6        else D(v) =     ; 
… 



Example: Dijkstra’s Algorithm!

Step 
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8   Loop  
9      find w not in S s.t. D(w) is a minimum;  
10    add w to S;  
11  update D(v) for all v adjacent  
          to w and not in S:  
12  If D(w) + c(w,v) < D(v) then 
13      D(v) = D(w) + c(w,v); p(v) = w; 
14    until all nodes in S;  
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Example: Dijkstra’s Algorithm!
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To determine path A → C (say), 
work backward from C via p(v)  



The Routing Table 
  Running Dijkstra at node A gives the shortest path from 

A to all destinations 
  We then construct the routing table 
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Algorithmic Complexity 
  How many messages needed to flood link state 

messages?  
  O(|N||E|), where |N| is no. nodes; |E| is  no. edges in graph 

  Processing complexity for Dijkstra’s algorithm? 
  O(|N|2), because we check all nodes w not in S at each iteration 

and we have O(|N|) iterations 
  more efficient implementations: O(|N| log(|N|)) 



Dijkstra in action 



Dijkstra in action 


