ECE 158A: Lecture 5

Fall 2015

Routing (1)

Location-Based Addressing

- Recall from Lecture 1 that routers maintain routing tables to forward packets based on their IP addresses
- To allow scalability, IP addresses are assigned based on location, similarly to phone numbers [area,zone,number]

Location-Based Addressing

- Location-based addressing helps reducing the number of entries in routing tables:
 - IP addresses with the same prefix can share the same entry in a routing table
- A routing table maps prefixes of input IP addresses to output ports
- Given a destination IP address, the router finds the longest matching prefix in the routing table

Example

 Packet with destination address 12.82.100.101 is sent to output port 2, as 12.82.100.xxx is the longest prefix matching packet's destination address

Autonomous Systems (AS)

- The Internet is grouped into about 40,000 Autonomous Systems (AS) or "domains"
 - Groups of hosts/routers under a single administrative entity
- Each AS is assigned a unique identifier
 - 16 bit AS Number (ASN)

Two-Level Routing

- Routing is performed at two levels:
 - Routing within a domain is called intra-domain routing
 - Routing across domains is called inter-domain routing
- Reasons:
 - Routing within a domain requires microscopic knowledge of local network topology
 - Domains are managed by different companies/institutions
 - Intra-domain routing driven by optimal performance
 - Inter-domain driven by economic trade-offs

Routing Protocols

- Internet routing protocols are responsible for constructing and updating the routing tables at the routers
- Routing protocols use shortest path algorithms to establish "good" paths between nodes. Two classical algorithms:
 - Link State: Based on Dijkstra's Shortest Path Algorithm
 - Distance Vector: Based on Bellman-Ford Algorithm
- Routing Protocols used in practice:
 - Intra-domain routing: Open Shortest Path First (OSPF) (link state), Routing Information Protocol (RIP) (distance vector)
 - Inter-Domain routing: Border Gateway Protocol (BGP)

Network Representation as a Graph

- Routing algorithms model the network as a graph
 - Routers are graph vertices and links are edges
 - Edges have an associated "cost" (e.g., distance, queue delay, cost)

Goal: Find a least-cost path from any two vertices

Link State vs Distance Vector

- Link State (LS):
 - Each node learns the complete network map (global information)
 - Each node computes shortest paths independently and in parallel
- Distance Vector (DV):
 - No node has the complete picture (local information)
 - Nodes cooperate to compute shortest paths in a distributed manner
- LS uses global information, while DV is asynchronous, and distributed.
- LS has higher messaging overhead and higher processing complexity, but is less vulnerable to looping

Link-State

Link State Routing

- Each node maintains its local "link state" (LS)
 - i.e., a list of its directly attached links and their costs

Link State Routing

- Each node maintains its local "link state" (LS)
- Each node floods its local link state
 - on receiving a new LS message, a router forwards the message to all its neighbors other than the one it received the message from

Link State Routing

- Each node maintains its local "link state" (LS)
- Each node floods its local link state
- Hence, each node learns the entire network topology
 - Can use Dijkstra's to compute the shortest paths between nodes

Dijkstra's Shortest Path Algorithm

- INPUT:
 - Network topology (graph), with link costs
- OUTPUT:
 - Least cost paths from one node to all other nodes
- Iterative: after *k* iterations, a node knows the least cost path to its *k* closest neighbors

Notation

- c(i,j): cost ≥ 0 from node i to j (∞ if i and j are not neighbors)
- D(v): total cost of the current least-cost path from source to destination v
- p(v): v's predecessor along path from source to v
- S: set of nodes whose least cost path is known

Dijkstra's Algorithm

```
    c(i,j): link cost from node i to j

  Initialization:

    D(v): current cost source → v

   S = \{A\};
3

    p(v): v's predecessor along

   for all nodes v
                                                 path from source to v
     if v adjacent to A
4
      then D(v) = c(A,v);
5

    S: set of nodes whose least

6
      else D(v) = \infty;
                                                 cost path definitively known
8
   Loop
     find w not in S such that D(w) is a minimum;
10
     add w to S:
11
     update D(v) for all v adjacent to w and not in S:
12
       if D(w) + c(w,v) < D(v) then
         Il w gives us a shorter path to v than we've found so far
         D(v) = D(w) + c(w,v); p(v) = w;
13
14 until all nodes in S;
```

5	Step	set S	D(B),p(B)	D(C),p(C)	D(D),p(D)	D(E),p(E)	D(F),p(F)
	O	Α	2,A	5,A	1,A	∞	∞
	1						
	2						
	3						
	4						
	5						


```
1 Initialization:
2 S = {A};
3 for all nodes v
4 if v adjacent to A
5 then D(v) = c(A,v);
6 else D(v) = ∞;
...
```

St	tep	set S	D(B),p(B)	D(C),p(C)	D(D),p(D)	D(E),p(E)	D(F),p(F)
_	0	Α	2,A	5,A	(1,A)	∞	
→	1						
	2						
	3						
	4						
-	5						
		5 2 2 1	5	8 9 10 11 12 13 14	add w to S ; update D(v) to w and r If D(w) + c(v D(v) = D(for all v adjant not in S : (w,v) < D(v) th (w) + c(w,v); p	en

S	Step	set S	D(B),p(B)	D(C),p(C)	D(D),p(D)	D(E),p(E)	D(F),p(F)
	0	Α	2,A	5,A	1,A	∞	∞
_	1	AD					
	2						
	3						
	4						
	5						

- 8 Loop
- 9 find w not in **S** s.t. D(w) is a minimum;
- 10 add **w** to **S**;
- 11 update D(v) for all v adjacent to w and not in S:
- 12 If D(w) + c(w,v) < D(v) then
- 13 D(v) = D(w) + c(w,v); p(v) = w;
- -14 until all nodes in S;

Step	set S	D(B),p(B)	D(C),p@D([D),p(D)	D(E),p(E)	
0	Α	2,A	5,A	1,Δ	∞	∞
1	AD		4 ,D		2,D	
2				1		
3						
4					\	
5						


```
8 Loop9 find w not in S s.t. D(w) is a minimum;
```

- 10 add **w** to **S**;
- 11 update D(v) for all **v** adjacent to **w** and not in **S**:
- 12 If D(w) + c(w,v) < D(v) then
- 13 D(v) = D(w) + c(w,v); p(v) = w;
- -14 until all nodes in S;

St	ер	set S	D(B),p(B)	D(C),p(C)	D(D),p(D)		D(F),p(F)
	0	Α	2,A	5,A	1,A	∞	\sim
	1	AD		4,D		2,D	
\rightarrow	2	ADE		3,E			4,E
	3						
	4						
	5						


```
    8 Loop
    9 find w not in S s.t. D(w) is a minimum;
    10 add w to S;
    11 update D(v) for all v adjacent to w and not in S:
    12 If D(w) + c(w,v) < D(v) then</li>
    13 D(v) = D(w) + c(w,v); p(v) = w;
    14 until all nodes in S;
```

S	tep	set S	D(B),p(B)	D(C),p(C)	D(D),p(D)	D(E),p(E)	D(F),p(F)
	0	Α	2,A	5,A	1,A	∞	∞
	1	AD		4,D		2,D	
	2	ADE		3,E			4,E
→	3	ADEB					
	4						
	5						


```
    8 Loop
    9 find w not in S s.t. D(w) is a minimum;
    10 add w to S;
    11 update D(v) for all v adjacent to w and not in S:
    12 If D(w) + c(w,v) < D(v) then</li>
    13 D(v) = D(w) + c(w,v); p(v) = w;
    14 until all nodes in S;
```

S	tep	set S	D(B),p(B)	D(C),p(C)	D(D),p(D)	D(E),p(E)	D(F),p(F)
	0	А	2,A	5,A	1,A	∞	∞
	1	AD		4,D		2,D	
	2	ADE		3,E			4,E
	3	ADEB					
\rightarrow	4	ADEBC					
	5						


```
    8 Loop
    9 find w not in S s.t. D(w) is a minimum;
    10 add w to S;
    11 update D(v) for all v adjacent to w and not in S:
    12 If D(w) + c(w,v) < D(v) then</li>
    13 D(v) = D(w) + c(w,v); p(v) = w;
    14 until all nodes in S;
```

S	tep	set S	D(B),p(B)	D(C),p(C)	D(D),p(D)	D(E),p(E)	D(F),p(F)
	0	Α	2,A	5,A	1,A	∞	∞
	1	AD		4,D		2,D	
	2	ADE		3,E			4,E
	3	ADEB					
	4	ADEBC					
\rightarrow	5	ADEBCF					


```
9 find w not in S s.t. D(w) is a minimum;

10 add w to S;

11 update D(v) for all v adjacent

to w and not in S:

12 If D(w) + c(w,v) < D(v) then

13 D(v) = D(w) + c(w,v); p(v) = w;

14 until all nodes in S;
```

S	tep	set S	D(B),p(B)	D(C),p(C)	D(D),p(D)	D(E),p(E)	D(F),p(F)
	0	Α	2,A	5,A	(1,A)	8	∞
	1	AD		4,D		2,D	
	2	ADE		(3,E			4,E
	3	ADEB					
	4	ADEBC					
	5	ADEBCF					

To determine path $A \rightarrow C$ (say), work backward from C via p(v)

The Routing Table

- Running Dijkstra at node A gives the shortest path from A to all destinations
- We then construct the routing table

Destination	Link
В	(A,B)
С	(A,D)
D	(A,D)
E	(A,D)
F	(A,D)

Algorithmic Complexity

- How many messages needed to flood link state messages?
 - O(|N||E|), where |N| is no. nodes; |E| is no. edges in graph
- Processing complexity for Dijkstra's algorithm?
 - O(|N|²), because we check all nodes w not in S at each iteration and we have O(|N|) iterations
 - more efficient implementations: O(|N| log(|N|))

Dijkstra in action

Dijkstra in action

