
ECE 158A: Lecture 6

Fall 2015

Routing (2)!

Review: Autonomous Systems
  The Internet is grouped into about 40,000 Autonomous

Systems (AS) or “domains”
  Groups of hosts/routers under a single administrative entity

  Each AS is assigned a unique identifier
  16 bit AS Number (ASN)a network under a single administrative

entity
“Autonomous System” or “Domain”

Review: Two-Level Routing
  Routing is performed at two levels:

  Routing within a domain is called intra-domain routing
  Routing across domains is called inter-domain routing

Review: LS vs DV
  Link State (LS):

  Each node learns the complete network map (global information)
  Each node computes shortest paths independently and in parallel

  Distance Vector (DV):
  No node has the complete picture (local information)
  Nodes cooperate to compute shortest paths in a distributed

manner

  LS uses global information, while DV is asynchronous,
and distributed.

  LS has higher messaging overhead and higher
processing complexity, but is less vulnerable to looping

Distance Vector!

Learning-by-Doing
  In-class networking experiment:

  Source node: The instructor
  Destination node: The youngest student in the room
  Routers: Everybody else

  Goal: By only communicating to your neighbors
  Identify the destination
  Be ready to route a packet toward the destination

  Hint: maintain a vector for next hop to all ages and
exchange it

  Ready-Set-Go!

Distance Vector Routing
  Each router knows only the next hop for each node, not

the complete path

  Each router knows and updates provisional cost to
every other router
  E.g.: Router A: “I can get to router B with cost 11”

  Routers exchange this distance vector information with
their neighboring routers
  Vector because one entry per destination

  Routers look over the set of options offered by their
neighbors and select the best one

  Iterative process converges to set of shortest paths

Bellman-Ford Algorithm
  INPUT:

  Link costs to each neighbor
(Not full topology)

  OUTPUT:
  Next hop to each destination and the corresponding cost
 (Not the complete path to the destination)

  My neighbors tell me how far they are from destination
  Compute: (cost to neighbors) + (neighborr’s cost to destination)
  Pick minimum as my choice
  Advertise that cost to my neighbors

Bellman-Ford Overview!

  Each router maintains a table
  Best known distance from X to Y,
 via Z as next hop = DZ(X,Y)

  Each local iteration caused by:
  Local link cost change
  Message from neighbor

  Notify neighbors only if least cost
path to any destination changes
  Neighbors then notify their neighbors

if necessary

wait for (change in local link
cost or msg from neighbor)

recompute distance table

if least cost path to any dest
has changed, notify
neighbors

Each node:

Bellman-Ford Overview
  Each router maintains a table

  Row for each possible destination
  Column for each directly-attached neighbor to node
  Entry in row Y and column Z of node X ⇒ best known distance

from X to Y, via Z as next hop = DZ(X,Y)

A C
1 2

7

B D 3

1

B C
B 2 8
C 3 7
D 4 8

Node A

Neighbor
(next-hop)

Destinations DC(A, D)

Bellman-Ford Overview
  Each router maintains a table

  Row for each possible destination
  Column for each directly-attached neighbor to node
  Entry in row Y and column Z of node X ⇒ best known distance

from X to Y, via Z as next hop = DZ(X,Y)

A C
1 2

7

B D 3

1

B C
B 2 8
C 3 7
D 4 8

Node A

Smallest distance in row Y = shortest
Distance of A to Y, D(A, Y)

Distance Vector Algorithm
1 Initialization:
2 for all neighbors V do
3 if V adjacent to A
4 D(A, V) = c(A,V);
5  else
6  D(A, V) = ∞;
7  send D(A, Y) to all neighbors
 loop:
8 wait (until A sees a link cost change to neighbor V /* case 1 */
9 or until A receives update from neighbor V) /* case 2 */
10 if (c(A,V) changes by ±d) /* ⇐ case 1 */
11 for all destinations Y that go through V do
12 DV(A,Y) = DV(A,Y) ± d
13 else if (update D(V, Y) received from V) /* ⇐ case 2 */
 /* shortest path from V to some Y has changed */
14 DV(A,Y) = DV(A,V) + D(V, Y); /* may also change D(A,Y) */
15 if (there is a new minimum for destination Y)
16 send D(A, Y) to all neighbors
17 forever

•  c(i,j): link cost from node i to j
•  DZ(A,V): cost from A to V via Z

•  D(A,V): cost of A’s best path to V

Example: Initialization!

A C
1 2

7

B D 3

1

B C
B 2 ∞
C ∞ 7
D ∞ ∞

Node A

A C D
A 2 ∞ ∞
C ∞ 1 ∞
D ∞ ∞ 3

Node B

Node C

A B D
A 7 ∞ ∞
B ∞ 1 ∞
D ∞ ∞ 1

B C
A ∞ ∞
B 3 ∞
C ∞ 1

Node D 1 Initialization:
2 for all neighbors V do
3 if V adjacent to A
4 D(A, V) = c(A,V);
5  else
6  D(A, V) = ∞;
7  send D(A, Y) to all neighbors

Example: C sends update to A!

A C
1 2

7

B D 3

1

B C
B 2 8
C ∞ 7
D ∞ 8

Node A

A C D
A 2 ∞ ∞
C ∞ 1 ∞
D ∞ ∞ 3

Node B

Node C

A B D
A 7 ∞ ∞
B ∞ 1 ∞
D ∞ ∞ 1

B C
A ∞ ∞
B 3 ∞
C ∞ 1

Node D 7   loop:
 …
13 else if (update D(A, Y) from C)
14 DC(A,Y) = DC(A,C) + D(C, Y);
15 if (new min. for destination Y)
16 send D(A, Y) to all neighbors
17 forever

DC(A, B) = DC(A,C) + D(C, B) = 7 + 1 = 8
DC(A, D) = DC(A,C) + D(C, D) = 7 + 1 = 8

Example: Now B sends update to A!

A C
1 2

7

B D 3

1

B C
B 2 8
C 3 7
D 5 8

Node A

A C D
A 2 ∞ ∞
C ∞ 1 ∞
D ∞ ∞ 3

Node B

Node C

A B D
A 7 ∞ ∞
B ∞ 1
D ∞ ∞ 1

Node D 7   loop:
 …
13 else if (update D(A, Y) from B)
14 DB(A,Y) = DB(A,B) + D(B, Y);
15 if (new min. for destination Y)
16 send D(A, Y) to all neighbors
17 forever

DB(A, C) = DB(A,B) + D(B, C) = 2 + 1 = 3

DB(A, D) = DB(A,B) + D(B, D) = 2 + 3 = 5

B C
A ∞ ∞
B 3 ∞
C ∞ 1

Example: After 1st Full Exchange!

A C
1 2

7

B D 3

1

B C
B 2 8
C 3 7
D 5 8

Node A Node B

Node C

A B D
A 7 3 ∞
B 9 1 4
D ∞ 4 1

Node D

B C
A 5 8
B 3 2
C 4 1

A C D
A 2 8 ∞
C 9 1 4
D ∞ 2 3

Assume all send
messages at same time

End of 1st Iteration: All nodes
know the best two-hop paths

Example: Now A sends update to B!

A C
1 2

7

B D 3

1

B C
B 2 8
C 3 7
D 5 8

Node A Node B

Node C

A B D
A 7 3 ∞
B 9 1 4
D ∞ 4 1

Node D

B C
A 5 8
B 3 2
C 4 1

A C D
A 2 8 ∞
C 5 1 4
D 7 2 3

7   loop:
 …
13 else if (update D(B, Y) from A)
14 DA(B,Y) = DA(B,A) + D(A, Y);
15 if (new min. for destination Y)
16 send D(B, Y) to all neighbors
17 forever

DA(B, C) = DA(B,A) + D(A, C) = 2 + 3 = 5

DA(B, D) = DA(B,A) + D(A, D) = 2 + 5 = 7

Where does this 7 come from? What harm does this cause?

Example: End of 2nd Full Exchange!

A C
1 2

7

B D 3

1

B C
B 2 8
C 3 7
D 4 8

Node A

A C D
A 2 4 8
C 5 1 4
D 7 2 3

Node B

Node C

A B D
A 7 3 6
B 9 1 3
D 12 3 1

Node D

B C
A 5 4
B 3 2
C 4 1

End of 2nd Iteration: All nodes
knows the best three-hop paths

Assume all send
messages at same time

Example: End of 3rd Full Exchange!

A C
1 2

7

B D 3

1

B C
B 2 8
C 3 7
D 4 8

Node A

A C D
A 2 4 7
C 5 1 4
D 6 2 3

Node B

Node C

A B D
A 7 3 5
B 9 1 3
D 11 3 1

Node D

B C
A 5 4
B 3 2
C 4 1

What route does this 11 represent?

Assume all send
messages at same time

Intuition
  Initial state: best one-hop paths
  One simultaneous round: best two-hop paths
  Two simultaneous rounds: best three-hop paths
  …
  Kth simultaneous round: best (k+1) hop paths

  Must eventually converge
  as soon as it reaches longest best path

  …..but how does it respond to changes in cost?

DV: Link Cost Changes!
A C

1 4

50

B
1

“good news travels fast”

“bad news travels slowly”

Link State vs. Distance Vector
  Message Complexity:

  LS: O(|N| |E|)
  DV: O(|E| k), where k is the number of iterations

  Speed of convergence:
  LS: O(|N|2)
  DV: slow in case of failures and can have routing loops while

converging

  Robustness: what happens if router malfunctions?
  LS: Each node computes only its own table. An advertised

incorrect link cost might not impact all nodes
  DV: Each node’s table is used by other nodes; errors propagate

through the entire network

  Privacy: LS offers no privacy---global sharing of
information

Inter-domain Routing
  Issues of autonomy escalate in inter-domain routing

  AS want freedom to pick routes based on policy
  “My traffic can’t be carried over my competitor’s network”
  “I don’t want to carry A’s traffic through my network”
  Not expressible as Internet-wide “shortest path”!

  AS want autonomy
  Want to choose their own internal routing protocol
  Want to choose their own policy

  AS want privacy
  Other AS are business rivals
  Choice of network topology, routing policies, etc.

Business Relationships
  AS topology reflects business relationships between

them

  Business relationships impact which routes are
acceptable.

  Routing follows the money, not the shortest path

Border Gateway Protocol (BGP)
  Inspired by distance vector:

  An AS advertises its best routes to one or more IP prefixes
  Each AS selects the “best” route it hears advertised for a prefix
  No global sharing of network topology information
  Iterative and distributed convergence on paths

  Implemented at border routers of each domain

Border router
Internal router

Differences between BGP and DV
  Best-policy path: BGP selects the best route based on

policy, not shortest distance (least cost)

  Path-vector routing: To avoid loops, BGP advertises the
entire path to destination rather than just the cost

2 3

1

Node 2 may prefer
 “2, 3, 1” over “2, 1”

C B A

d

“d: path (B,A)” “d: path (A)”

data traffic data traffic

Differences between BGP and DV
  Selective routing: For policy reasons, an AS may choose

not to advertise a route to a destination

AS2

AS3 AS1 Example: AS2 does not want to
carry traffic between AS1 and AS3

1

2 3

1 3 0
 1 0

3 2 0
 3 0

2 1 0
 2 0

0

“1” prefers “1 3 0”
over “1 0” to reach “0”

Example of Policy Oscillation

“2” prefers “2 1 0”
over “2 0” to reach “0”

“3” prefers “3 1 0”
over “3 0” to reach “0”

Step-by-Step of Policy Oscillation!

Initially: Nodes 1, 2, 3 know only shortest path to 0

1

2 3

1 3 0
 1 0

3 2 0
 3 0

2 1 0
 2 0

0

1 advertises its path 1 0 to 2

1

2 3

1 3 0
 1 0

3 2 0
 3 0

2 1 0
 2 0

0

Step-by-Step of Policy Oscillation!

1

2 3

1 3 0
 1 0

3 2 0
 3 0

2 1 0
 2 0

0

Step-by-Step of Policy Oscillation!

1

2 3

1 3 0
 1 0

3 2 0
 3 0

2 1 0
 2 0

0

3 advertises its path 3 0 to 1

Step-by-Step of Policy Oscillation!

1

2 3

1 3 0
 1 0

3 2 0
 3 0

2 1 0
 2 0

0

Step-by-Step of Policy Oscillation!

1

2 3

1 3 0
 1 0

3 2 0
 3 0

2 1 0
 2 0

0

1 withdraws its path 1 0 from 2

Step-by-Step of Policy Oscillation!

1

2 3

1 3 0
 1 0

3 2 0
 3 0

2 1 0
 2 0

0

Step-by-Step of Policy Oscillation!

1

2 3

1 3 0
 1 0

3 2 0
 3 0

2 1 0
 2 0

0

advertise: 2 0

2 advertises its path 2 0 to 3

Step-by-Step of Policy Oscillation!

1

2 3

1 3 0
 1 0

3 2 0
 3 0

2 1 0
 2 0

0

Step-by-Step of Policy Oscillation!

1

2 3

1 3 0
 1 0

3 2 0
 3 0

2 1 0
 2 0

0

3 withdraws its path 3 0 from 1

Step-by-Step of Policy Oscillation!

1

2 3

1 3 0
 1 0

3 2 0
 3 0

2 1 0
 2 0

0

Step-by-Step of Policy Oscillation!

1

2 3

1 3 0
 1 0

3 2 0
 3 0

2 1 0
 2 0

0

1 advertises its path 1 0 to 2

Step-by-Step of Policy Oscillation!

1

2 3

1 3 0
 1 0

3 2 0
 3 0

2 1 0
 2 0

0

Step-by-Step of Policy Oscillation!

1

2 3

1 3 0
 1 0

3 2 0
 3 0

2 1 0
 2 0

0

withdraw: 2 0

2 withdraws its path 2 0 from 3

Step-by-Step of Policy Oscillation!

Step-by-Step of Policy Oscillation
  Back to the starting point

1

2 3

1 3 0
 1 0

3 2 0
 3 0

2 1 0
 2 0

0

Performance Issue
  BGP outages are the biggest source of Internet

problems
  BGP protocol is both bloated and underspecified

  Lots of leeway in how to set and interpret attribute values, route
selection rules, etc.

  Necessary to allow autonomy, diverse policies
  But also gives operators plenty of rope

  Much of this configuration is manual and ad hoc

  And the core abstraction is fundamentally flawed
  per-router configuration to effect AS-wide policy
  Strong industry interest in changing this!

