ECE 158A: Lecture 7

Fall 2015

Outline

- We have discussed IP shortest path routing
- Now we have a closer look at the IP addressing mechanism
- We are still at the networking layer, we will examine:
 - IP Headers
 - IP Addressing
 - Routers

Encapsulation

• IP, like any other protocol, adds control information as a packet header

IP Header

• IP packet is divided in header and payload

- Payload contains TCP/UDP header
- IP routers only read the IP packet header
- IP header must contain all information needed to perform tasks of routing layer

Routing Layer Tasks

- Routing layer is responsible for
 - Reading packet correctly
 - Getting packet to the destination; getting responses back to the source
 - Carrying data
 - Telling host what to do with packet once arrived
 - Specifying any special network handling of the packet
 - Dealing with problems that arise along the path
- All the control information needed to achieve these tasks is contained in the IP header

General philosophy

- Smart edge DUMB Core
- If something goes wrong don't deal with it, just drop the packet!
- TPC will take care of it

IPv4 Header Structure

4-bit Version	4-bit Header Length	8-bit Type of Service (TOS)	16-bit Total Length (Bytes)					
	16-bit Id	entification	3-bit Flags	13-bit Fragment Offset				
8-bit Time to Live (TTL) 8-bit Protocol 16-bit Header Checksum								
32-bit Source IP Address								
32-bit Destination IP Address								
Options (if any)								
Payload								

Reading Packet Correctly

Reading Packet Correctly

- Version number (4 bits)
 - Indicates the version of the IP protocol
 - Necessary to know what other fields to expect
 - Typically "4" (for IPv4), and sometimes "6" (for IPv6)
- Header length (4 bits)
 - Number of 32-bit words in the header
 - Typically "5" (for a 20-byte IPv4 header)
 - Can be more when IP options are used
- Total length (16 bits)
 - Number of bytes in the packet
 - Maximum size is 65,535 bytes
 - ... though underlying links may impose smaller limits

Get to the Destination (and Back)

4-bit Version	4-bit Header Length	8-bit Type of Service (TOS)	16-bit Total Length (Bytes)				
	16-bit Id	entification	3-bit Flags	13-bit Fragment Offset			
8-bit 1 Live	ſime to (TTL)	8-bit Protocol	16-bit Header Checksum				
32-bit Source IP Address							
32-bit Destination IP Address							
Options (if any)							
Payload							

How to Handle Packet

How to Handle Packet

- Protocol (8 bits)
 - Identifies the higher-level protocol
 - Important for demultiplexing at receiving host

- Most common examples
 - E.g., "6" for the Transmission Control Protocol (TCP)
 - E.g., "17" for the User Datagram Protocol (UDP)

Potential Problems

Potential Problems

- Three potential problems
- Header Corrupted: Checksum, 16 bits
 - Checksum over packet header
 - If not correct, router discards packets
 - Recalculated at every router
- Packet in a Loop: Time-to-Live (TTL), 8 bits
 - Decremented at each hop, packet discarded if reaches 0
 - ...and "time exceeded" message is sent to the source
 - Used to avoid infinite loops
- Packet too large: Fragmentation

Potential Problems

- When forwarding a packet, an Internet router can fragment it into multiple pieces ("fragments") if the packet is too big for next hop link
 - too big = exceeds the link's "Max Transmission Unit" (MTU)
- Must reassemble to recover original packet
 - Need fragmentation information (32 bits)
 - Packet identifier, flags, and fragment offset

IP Fragmentation: Example

Special Handling

Not often used

IP Addresses

IP Addresses (IPv4)

• Unique 32-bit, e.g., 12.34.158.5:

12	34	158	5
00001100	00100010	10011110	00000101

- Bits are partitioned into a prefix and suffix components
- Prefix is the network component; suffix is host component

 Notation: 12.34.158.0/23 represents a "slash 23" network with a 23 bit prefix and 2⁹ host addresses

History of IP Addressing

- First design: network 8 bits and host 24 bits
 - Can only index 256 networks!
- Next design: Partition addresses in classes
 - Can only support three sizes of networks

Class D and E used for multicast and experiments

IP Address Utilization ('97)

- <u>http://www.caida.org/research/traffic-analysis/fix-west-1998/ipv4space/</u>
- Map of available IPv4 address space with traffic activity superimposed (in yellow),

Current IP Addressing

- To offer a better tradeoff between size of the routing table and efficient use of the IP address space, today we use CIDR
- CIDR = Classless Inter-Domain Routing
- Idea: Flexible division between network and host addresses
- Boundary between network and host must be explicitly specified
 - Informally, slash 26, i.e., 128.23.9/26
 - Formally, represent length of prefix with a 32-bit mask: 255.255.255.192 where all network prefix bits set to "1" and host suffix bits to "0"

Subnets via IP Masks

- Subnet masks add another variable-length layer to hierarchy
 - Subnet a class B into several chunks

- Example: An organization needs 500 addresses.
 - A single class C address not enough (254 hosts).
 - Instead a class B address is allocated. (~65K hosts)
- CIDR allows an arbitrary prefix-suffix boundary
 - Hence, organization allocated a single /23 address

Hierarchical Allocation of Addresses

- Internet Corporation for Assigned Names and Numbers (ICANN) gives large blocks to
- Regional Internet Registries (e.g., ARIN), which give blocks to
 - ARIN = American Registry for Internet Numbers
- Large institutions (ISPs), which give addresses to
- Individuals and smaller institutions
- Example: ICANN > ARIN > AT&T > UCSD > ECE

Allocation of IP Addresses

http://en.wikipedia.org/wiki/List_of_assigned_/
8 IPv4 address blocks

Example in More Detail

- ICANN gives ARIN several /8s
- ARIN gives AT&T one /8, **12.0/8**
 - Network Prefix: 00001100
- AT&T gives UCSD a /16, 12.197/16
 - Network Prefix: 0000110011000101
- UCSD gives ECE a /24, **12.197.45/24**
 - Network Prefix: 00001100110001010010101
- ECE gives me a specific address **12.197.45.23**
 - Address: 00001100110001010010110100010111

How to Get and IP Address

- In practice, there are two ways network administrators use to assign IP addresses
 - Hard-code assignments in a file
 - DHCP: Dynamic Host Configuration Protocol: dynamically get address: "plug-and-play"
 - Host broadcasts "DHCP discover" msg
 - DHCP server responds with "DHCP offer" msg
 - Host requests IP address: "DHCP request" msg
 - DHCP server sends address: "DHCP ack" msg

Summary of Addressing

- Hierarchical addressing
 - Critical for scalable system
 - Do not require everyone to know everyone else
 - Reduces amount of updating when something changes
- Non-uniform hierarchy
 - Useful for heterogeneous networks of different sizes
 - Class-based addressing was far too coarse
 - Classless InterDomain Routing (CIDR) more flexible

IP Routers

IP Routers

- Core building block of the Internet infrastructure
- \$120B+ industry
- Vendors: Cisco, Huawei, Juniper, Alcatel-Lucent (account for >90%)
- Definitions:

- N = number of external router "ports"
- R = speed ("line rate") of a port
- Router capacity = N x R

R bits/sec

Networks and routers

Examples of routers (core)

Juniper T4000

- R= 10/40 Gbps
- NR = 4 Tbps

Cisco CRS

- R=10/40/100 Gbps
- NR = 322 Tbps

72 racks, 1MW

Examples of routers (edge)

Cisco ASR 1006

- R=1/10 Gbps
- NR = 40 Gbps

Juniper M120

- R= 2.5/10 Gbps
- NR = 120 Gbps

Examples of routers (small business)

Cisco 3945E

- R = 10/100/1000 Mbps
- NR < 10 Gbps

In Summary

- Base-level protocol (IP) provides minimal service level
 - Allows highly decentralized implementation
 - Each step involves determining next hop
 - Most of the work at the endpoints
- IP forwarding → global addressing, alternatives, lookup tables
- IP addressing \rightarrow hierarchical, CIDR
- IP service \rightarrow best effort, simplicity of routers
- IP packets \rightarrow header fields, fragmentation, ICMP