
ECE 158A 2019 Fall Midterm Practice Questions

Problem 1 (packet delay)

A file of size x is divided into n packets of equal sizes (ignoring header size) and transmitted over a path
from node S to node D. The path consists of m links. The rate and the physical length of the i-th link
are known to be ri and li.The intermediate nodes separating the links are store-and-forward devices,
each of which introduces a processing delay dproc. Determine the following:

(a) The time difference between the arrivals of two successive packets at the destiny D.

Ans: The time difference equals
x/n

mini∈{1,...,m} ri

where x/n is the packet size, mini∈{1,...,m} ri is the rate of the bottleneck link.

(b) The total time required to transfer the file.

Ans: The delay experienced by the first packet on the i-th link and the node following it equals
li
v

+
x/n

ri
+ dproc. Thus the total delay it experiences is

1

v

m∑
i=1

li +
x

n
·

m∑
i=1

1

ri
+m · dproc

The answer to part (a) is also the time difference between the reception of the the last bit of two
succesive packets. So the time difference between the completions of receiving the first and the
last packets is n− 1 times the answer to (a). The total delay is the delay experienced by the first
packet plus this time difference.

1

v

m∑
i=1

li +
x

n
·

(
m∑
i=1

1

ri
+

n− 1

mini∈{1,...,m} ri

)
+m · dproc

Problem 2 (Queueing)

Consider two different links that can be modeled as M/M/1 queues, denoted respectively as Q1 and Q2.
Q1 has a server with service rate µ1 = 200 packets per second (in this problem, we assume all packets
have the same length). Q2 has a server with service rate µ2 = 300 packets per second. There is a single
incoming packet flow with arrival rate λ = 400 packets per second, and we need to split it among Q1
and Q2 in a fair way. λ1 will denote the flow sent to Q1, while λ2 will denote the flow sent to Q2.

(a) Observing that µ2 = 3µ1/2, we try to split the incoming flow in the same proportion, that is,
λ2 = 3λ1/2. We get λ1 = 160 packets per second, λ2 = 240 packets per second.

1) Compute the load factors ρ1 and ρ2 of Q1 and Q2.

ρ1 =
λ1
µ1

= 160/200 = 0.8

ρ2 =
λ2
µ2

= 240/300 = 0.8

1



2) Compute the average time T1 that a packet spends in Q1, and the average time T2 that a
packet spends in Q2.

T1 =
1

µ1 − λ1
=

1

200− 160
= 25ms

T2 =
1

µ2 − λ2
=

1

300− 240
= 16.7ms

3) In your opinion, was the traffic flow split in a fair way between Q1 and Q2?

No, even if the load factor is the same in the two queue, the average times that packets spends
in them are different.

(b) We want to split the traffic flow (λ1 to Q1, λ2 to Q2) in such a way that the average times T1 and
T2 are equal.

4) Write T2 as a function of µ2 and λ1.

T2 =
1

µ2 − (λ− λ1)

5) Compute the value of λ1 such that T1 = T2.

1

µ1 − λ1
=

1

µ2 − (λ− λ1)

µ2 − (λ− λ1) = µ1 − λ1
λ1 = (µ1−µ2 + λ)/2 = 150 packets per second

6) Compute the corresponding value of λ2.

λ2 = λ− λ1 = 250 packets per second

7) Compute the load factors ρ1 and ρ2 of Q1 and Q2.

ρ1 =
λ1
µ1

= 150/200 = 0.75

ρ2 =
λ2
µ2

= 250/300 = 0.833

8) Compute the average time T1 that a packets spends in Q1, and the average time T2 that a
packets spends in Q2.

T1 =
1

µ1 − λ1
=

1

200− 150
= 20ms

T2 =
1

µ2 − λ2
=

1

300− 250
= 20ms

9) In terms of average time a packet spends in the system, is it better to have the traffic split
between Q1 and Q2 (as we just computed), or to have the entire flow λ sent to a queue Q3
with service rate µ3 = µ1 + µ2 = 500 packets per second. As part of your answer, you need
to compute the average time T3 a packets would spend in Q3.

T3 =
1

µ3 − λ
=

1

500− 400
= 10ms. This is better

(c) We want to split the traffic flow (λ1 to Q1, λ2 to Q2) in a way that T1 = T2/2.

10) Find λ1, λ2, ρ1, ρ2, T1, T2 in this case.

1

µ1 − λ1
=

1

2
· 1

µ2 − (λ− λ1)

2µ2 − 2(λ− λ1) = µ1 − λ1

2



λ1 = (µ1 − 2µ2 + 2λ)/3 = 133 packets per second

λ2 = λ− λ1 = 267 packets per second

ρ1 = λ1/µ1 = 133/200 = 0.665

ρ2 = λ2/µ2 = 267/300 = 0.89

T1 =
1

µ1 − λ1
=

1

200− 133
= 14.9ms

T2 =
1

µ2 − λ2
=

1

300− 267
= 30ms

Problem 3 (Dijkstra’s algorithm)

Perform Dijkstra’s algorithm on the network shown below to determine the shortest path from each node
to node F.

Ans:

Step Set S D(A), p(A) D(B), p(B) D(C), p(C) D(D), p(D) D(E), p(E)

1 F ∞ ∞ ∞ 1,F 1,F
2 F,E ∞ ∞ 6,E 1,F
3 F,E,D ∞ ∞ 2,D
4 F,E,D,C 6,C 3,C
5 F,E,D,C,B 4,B

Problem 4 (Bellman-Ford algorithm)

Consider the network described by the directed graph above.

(a) Apply Bellman-Ford algorithm to determine the shortest path from each node to node A.

Sol: Nodes whose shortest path length changes in one iteration send update messages to their
successor nodes in the next iteration. Assume all messages in each iteration are sent simutaneous,
so the messages all contain the information from the previous iteration, not affected by any change
made in the current iteration. The algorithm converges when no node’s shortest path length changes
in an iteration. In the table below, the shortest path’s length from each node is underlined.

3



Iteration B C D E nodes whose shortest
number A C D A B D E B E A C D path length changed

1 1 ∞ ∞ 8 ∞ ∞ ∞ ∞ ∞ 5 ∞ ∞ B(∞→ 1), C(∞→ 8), E(∞→ 5)
2 1 9 ∞ 8 7 ∞ 6 3 6 5 9 ∞ C(8→ 6), D(∞→ 3)
3 1 7 4 8 7 2 6 3 6 5 7 6 C(6→ 2)
4 1 3 4 8 7 2 6 3 6 5 3 6 E(5→ 3)
5 1 3 4 8 7 2 4 3 4 5 3 6

(b) Assume that after the algorithm in (a) converges, the cost of the link from E to A suddenly drops
from 5 to 1. Show how the Bellman-Ford algorithm adapts to this change.

Ans: Copy the final state of part (a), change the length of the direct path from E to A from 5 to
1, and use this as the initial state.

Iteration B C D E nodes whose shortest
number A C D A B D E B E A C D path length changed

1 1 3 4 8 7 2 4 3 4 1 3 6 E(3→ 1)
2 1 3 4 8 7 2 2 3 2 1 3 6 D(3→ 2)
3 1 3 3 8 7 1 2 3 2 1 3 5 C(2→ 1)
4 1 2 3 8 7 1 2 3 2 1 2 5

(c) Assume the link cost from E to A resumes its previous value after the algorithm coverges in (b).
How many iterations does it take the Bellman-Ford algorithm to return to the old result?

Ans: Copy the final state of part (b), change the length of the direct path from E to A back to 5,
and use this as the initial state. It can be seen that after 5 iterations the algorithm converges and
the old result is resumed.

Iteration B C D E nodes whose shortest
number A C D A B D E B E A C D path length changed

1 1 2 3 8 7 1 2 3 2 5 2 5 E(1→ 2)
2 1 2 3 8 7 1 3 3 3 5 2 5 D(2→ 3)
3 1 2 4 8 7 2 3 3 3 5 2 6 C(1→ 2)
4 1 3 4 8 7 2 3 3 3 5 3 6 E(2→ 3)
5 1 3 4 8 7 2 4 3 4 5 3 6

Problem 5 (FEC)

We want to multicast N packets p1, p2, ..., pN across a link, but unfortunately packets can get lost. We
decide to implement a FEC strategy, which consists in generating and transmitting M > N packets
c1, ..., cM . Each packet ci is obtained as a combination (modulo-2 sum) of a subset of p1, p2, ..., pN . For
example, fixed ai,1, ai,2, ..., ai,N ∈ {0, 1}

ci =
[
ai,1 ai,2 ... ai,N

]
·


p1
p2
...
pN


means that ci is obtained as the (bit-by-bit) modulo-2 sum of the packets pj corresponding to all co-
effcients ai,j that are equal to 1. Out of all M transmitted packets, M ′ ≤ M are received. Let these
packets be ci1 , ci2 , ..., ciM′ , where i1, i2, ..., iM ′ are distinct indices in {1, ...,M}. The received packets
ci1 , ..., ciM′ and the original packets p1, ..., pN are related as

ci1
ci2
...

ciM′

 =


ai1,1 ai1,2 ... ai1,N
ai2,1 ai2,2 ... ai2,N

...
...

...
aiM′ ,1 aiM′ ,2 ... aiM′ ,N




p1
p2
...
pN

 , A ·


p1
p2
...
pN


Note that A is a M ′ × N matrix. We have that p1, ..., pN can be recovered from ci1 , ci2 , ..., ciM′ if and
only if A has rank N .

4



(a) What is the minimum M ′ below which it is not possible to recover p1, ..., pN? If A has rank N , we
can select N linearly independent rows of it and obtain a N ×N matrix A′ of rank N (note that
A′ is therefore invertible).

Ans: We need to receive M ′ ≥ N packets (so the minimum is N). If M ′ < N we cannot build a
N ×N matrix A′ which is invertible and allows to recover the original packets. If M ′ ≥ N , then
the packets can be recovered if and only if there is a N ×N submatrix A′ of A (obtained choosing
N linearly independent rows of A) that is invertible.

(b) How can we use A′ to recover p1, ..., pN from the received packets ci1 , ci2 , ..., ciM′ corresponding to
the chosen rows of A′?

Ans: p = (A′)−1c

Assume now that we want to transmit packets p1, p2, p3 and that we choose to adopt a FEC strategy
sending 5 packets c1, ..., c5 obtained as follows

c1
c2
c3
c4
c5

 =


1 0 0
0 1 0
0 0 1
1 1 0
0 1 1


 p1
p2
p3


(c) If we receive c1, c2, c4, can we recover p1, p2, p3? If so, explain how, if not, explain why.

Ans: The matrix A corresponding to the received packets c1, c2, c4 is

A =

 1 0 0
0 1 0
1 1 0


The matrix has rank 2, and thus it is not invertible. Therefore, p1, p2, p3 cannot be recovered.

(d) If we receive c1, c2, c4, c5, can we recover p1, p2, p3? If so, explain how, if not, explain why. The
matrix A corresponding to the received packets c1, c2, c4, c5 is

A =


1 0 0
0 1 0
1 1 0
0 1 1


The matrix has rank 3. We can choose the rows of A the received packets c1, c2, c5, obtaining

A =

 1 0 0
0 1 0
0 1 1


which is, of course, invertible, and can be used to recover p1, p2, p3.

(e) Assume that each of the packets c1, ..., c5 get lost with probability ρ independently of the other.
What is the probability that p1, p2, p3 can be recovered? Consider the case of 3 received packets

out of c1, ..., c5. Out of the

(
5
3

)
= 10 possibilities, only 2 choices do not allow to build a matrix

with rank 3 and therefore do not allow to recover p1, p2, p3. These cases are c1, c2, c4 and c2, c3, c5.
The other 8 possibilities lead to correct recovery p1, p2, p3. Given a set of 3 packets, the event of
receiving these 3 packets and not receiving the other 2 packets has probability (1−ρ)3ρ2. Therefore
the probability of the 8 possibilities is 8(1− ρ)3ρ2.

Consider the case of 4 received packets out of c1, ..., c5. Out of the

(
5
4

)
= 5 possibilities, all

lead to correct recovery p1, p2, p3. Given a set of 4 packets, the event of receiving these 4 packets
and not receiving the other packet has probability (1 − ρ)4ρ. Therefore the probability of the 8
possibilities is 5(1− ρ)4ρ.

Consider the case of 5 received packets out of c1, ..., c5. This possibility leads to correct recovery
p1, p2, p3, and has probability (1− ρ)5. The probability of successful recovery is therefore

Precovery = 8(1− ρ)3ρ2 + 5(1− ρ)4ρ+ (1− ρ)5

5


