
UCSD ECE 158A Extra Problems Review 1.
Data Networks I
Massimo Franceschetti

Problems

Problem 1 Assume that a host A in Berkeley sends a stream of packets to a host B in Boston.
Assume also that all links operate at 100Mbps and that it takes 130ms for the first
acknowledgment to come back after A sends the first packet. Say that A sends one
packet of 1KByte and then waits for an acknowledgment before sending the next packet,
and so on. What is the long-term average bit rate of the connection? Assume now
that A sends N packets before it waits for the first acknowledgment, and that A sends
the next packet every time an acknowledgement is received. Express the long-term
average bit rate of the connection as a function of N . [Note: 1Mbps = 106 bits per
second; 1ms = 1 millisecond = 10−3 second.]
SOLUTION:
In the first case the long term average bit-rate is B1 = 1kByte/0.13s = 61, 538bps.

For the second case, we proceed as follows. Let T = 130ms. It can be written as
T = 2T0 + T1, where T0 is the propagation delay and T1 is the time to send a 1kByte
packet (at time T0 the first bit of the packet reaches B, at time T0 + T1 the last bit of
the packet reaches B, and the ACK is received by A at T0 + T1 + T0). We have that
T1 = 1kByte/1000Mbps = 0.08ms and T0 = (T − T1)/2 = 64.96ms.

When A sends N packets before it waits for the first ACK, we have that N packets
are sent to B by time 2T0 + T1. The resulting bandwidth would be

B(N) = N ·B1 = N · 61, 538bps. (1)

Equation 1 suggests that we can reach an arbitrarily large bit-rate by increasing N ,
which is not consistent with the link capacity of 100Mbps. However, we cannot increase
the bit-rate if A completes the transmission of the N -th packet after the is received
1-st ACK. In such a case A has to complete the transmission of the N -th packet before
starting the transmission of the transmission of the (N + 1)-th packet. A completes
the transmission of the N -th packet at time N · T1, while A receives the first ACK at
time 2T0 + T1. Therefore, Equation 1 is valid for values of N such that

N · T1 ≤ 2T0 + T1,

that is N ≤ N∗ = 2T0/T1 + 1 = 1, 625. The resulting bit rate is

B(N) =

{
N · 61, 538bps, N ≤ N∗

N∗ · 61, 538bps = 100Mbps, N > N∗.
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Problem 2. We want to multicast N packets p1, . . . , pN across a link, but unfortunately packets
can get lost. We decide to implement a FEC strategy, which consists in generating and
transmitting M > N packets c1, . . . , cM . Each packet ci is obtained as a combination
(modulo-2 sum) of a subset of p1, . . . , pN . For example, fixed ai,1, ai,2, . . . , ai,N ∈ {0, 1}

ci =
[
ai,1 ai,2 . . . ai,N

] 
p1
p2
. . .
pN


means that ci is obtained as the (bit-by-bit) modulo-2 sum of the packets pj corre-
sponding to all coefficients ai,j that are equal to 1.

Out of all M transmitted packets, M ′ ≤ M are received. Let these packets be
ci1 , ci2 , . . . , ciM′ , where i1, . . . , iM ′ are distinct indices in {1, . . . ,M}. The received pack-
ets ci1 , . . . , ciM′ and the original packets p1, . . . , pN are related as

ci1
ci2
. . .
ciM′

 =


ai1,1 ai1,2 . . . ai2,N
ai2,1 ai2,2 . . . ai2,N

...
...

...
aiM′ ,1 aiM′ ,2 . . . aiM′ ,N



p1
p2
. . .
pN



= A


p1
p2
. . .
pN

 .
Note that A is a M ′ × N matrix. We have that p1, . . . , pN can be recovered from
ci1 , . . . , ciM′ if and only if A has rank N .

1) What is the minimum M ′ below which it is not possible to recover p1, . . . , pN?

If A has rank N , we can select N linearly independent rows of it and obtain a N ×N
matrix A′ of rank N (note that A′ is therefore invertible).

2) How can we use A′ to recover p1, . . . , pN from the received packets cj1 , . . . , cjN
corresponding to the chosen rows of A′?

Assume now that we want to transmit packets p1, p2, p3 and that we choose to adopt
a FEC strategy sending 5 packets c1, . . . , c5 obtained as follows

c1
c2
c3
c4
c5

 =


1 0 0
0 1 0
0 0 1
1 1 0
0 1 1


 p1
p2
p3

 .
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3) If we receive c1, c2, c4, can we recover p1, p2, p3? If so, explain how, if not, explain
why.

4) If we receive c1, c2, c4, c5, can we recover p1, p2, p3? If so, explain how, if not, explain
why.

5) Assume that each of the packets c1, . . . , c5 get lost with probability ρ independently
of the other. What is the probability that p1, p2, p3 can be recovered?

What is the minimum M ′ below which it is not possible to recover p1, . . . , pN?

SOLUTION:

1) We need to receive M ′ ≥ N packets (so the minimum is N). If M ′ < N we cannot
build a N ×N matrix A′ which is invertible and allows to recover the original packets.
If M ′ ≥ N , then the packets can be recovered if and only if there is a N×N submatrix
A′ of A (obtained choosing N linearly independent rows of A) that is invertible.

2) How can we use A′ to recover p1, . . . , pN from the received packets cj1 , . . . , cjN
corresponding to the chosen rows of A′? Let c be the vector of the N received packets
corresponding to the selected row in A′ (which is invertible and has inverse (A′)−1).
Let p be the vector of the original packets. Then p can be recovered as

p = (A′)−1c.

3) If we receive c1, c2, c4, can we recover p1, p2, p3? If so, explain how, if not, explain
why.

The matrix A corresponding to the received packets c1, c2, c4 is

A =

 1 0 0
0 1 0
1 1 0


The matrix has rank 2, and thus it is not invertible. Therefore, p1, p2, p3 cannot be
recovered.

4) If we receive c1, c2, c4, c5, can we recover p1, p2, p3? If so, explain how, if not, explain
why.

The matrix A corresponding to the received packets c1, c2, c4, c5 is

A =


1 0 0
0 1 0
1 1 0
0 1 1


The matrix has rank 3. We can choose the rows of A the received packets c1, c2, c6,
obtaining

A′ =

 1 0 0
0 1 0
0 1 1

,


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which is, of course, invertible, and can be used to recover p1, p2, p3.

5) Assume that each of the packets c1, . . . , c5 get lost with probability ρ independently
of the other. What is the probability that p1, p2, p3 can be recovered?

Consider the case of 3 received packets out of c1, . . . , c5. Out of the
(

5
3=10

)
possibilities,

only 2 choices do not allow to build a matrix with rank 3 and therefore do not allow
to recover p1, p2, p3. These cases are c1, c2, c4 c2, c3, c5. The other 8 possibilities lead
to correct recovery p1, p2, p3. Given a set of 3 packets, the event of receiving these 3
packets and not receiving the other 2 packets has probability (1−ρ)3ρ2. Therefore the
probability of the 8 possibilities is 8(1− ρ)3ρ2.

Consider the case of 4 received packets out of c1, . . . , c5. Out of the
(

5
4=5

)
possibilities,

all lead to correct recovery p1, p2, p3. Given a set of 4 packets, the event of receiving
these 4 packets and not receiving the other packet has probability (1−ρ)4ρ. Therefore
the probability of the 8 possibilities is 5(1− ρ)4ρ.

Consider the case of 5 received packets out of c1, . . . , c5. This possibility leads to correct
recovery p1, p2, p3, and has probability (1− ρ)5.

The probability of successful recovery is therefore

Precovery = 8(1− ρ)3ρ2 + 5(1− ρ)4ρ+ (1− ρ)5.

Problem 3. In class we saw that power law distributions have been proposed to model the popu-
larity of websites, the degree distribution of the hyperlink structure of the World Wide
Web, the connections between routers in the Internet. In this problem we will discover
the close relationship between one of such distributions (called the Pareto distribution)
and the Exponential distribution.

A random variable X has the Pareto distribution with scale parameter xm > 0 and
index α > 0 if its Cumulative Distribution Function is given by

Fp(x) = Pr(X ≤ x) = 1−
(xm
x

)α
, x ≥ xm

Fp(x) =0, x < xm.

1) What it the probability density function pp(x) of X? SOLUTION: Taking the
derivative of Fp(x) we get pp(x) = α(xm)αx−α−1 for x ≥ xm and 0 otherwise.

2) Show that the probability density function pp(x) of X integrates to 1. SOLUTION:
Compute the integral.

3) Let the survival function of X be F̄p(x) = Pr(X > x). What is F̄ (x)? SOLUTION:
F̄ (x) =

(
xm
x

)α
for x ≥ xm, 1 otherwise.

4) For which values of α is E[X] (the expected value of X) finite? SOLUTION:
Compute the expectation and show that if α > 1 then the integral is finite and E(X) =
αxm
α−1 . If α ≤ 1 then the integral is infinite.
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5) What happens to the distribution of X when α→∞? SOLUTION:

pp(x) = α(xm/x)αx−1 for x ≥ xm

As α → ∞ the above expression is infinite when x = xm while it is zero for x > xm.
For x < xm the pdf is zero. Since it needs to sum to one, it follows that the pdf tends
to a Dirac impulse centered ata x = xm.

A variable Y has the Exponential distribution with rate λ if its Cumulative Distribution
Function is Fe(y) = Pr(Y ≤ y) = 1− e−λy for all y ≥ 0, and Fe(y) = 0 for y < 0. Let
X have a Pareto distribution with parameters xm and α. Let Z = log(X/xm), where
log denotes the natural logarithm.

6) Show that Pr(Z < z) = Pr(X < xme
z).

7) From the last answer, conclude that Z is Exponential with rate α.

Problem 4. Consider two different links that can be modeled as M/M/1 queues, denoted respec-
tively as Q1 and Q2. Q1 has a server with service rate µ1 = 200 packets per second
(in this problem, we assume all packets have the same length). Q2 has a server with
service rate µ2 = 300 packets per second. There is a single incoming packet flow with
arrival rate λ = 400 packets per second, and we need to split it among Q1 and Q2 in a
fair way. λ1 will denote the flow sent to Q1, while λ2 will denote the flow sent to Q2.

Part I. Observing that µ2 = 3µ1/2, we try to split the incoming flow in the same
proportion, that is, λ2 = 3λ1/2. We get λ1 = 160 packets per second, λ2 = 240 packets
per second.

a) Compute the load factors ρ1 and ρ2 of Q1 and Q2.

ρ1 =
λ1
µ1

= 160/200 = 0.8

ρ2 =
λ2
µ2

= 240/300 = 0.8.

b) Compute the average time T1 that a packet spends in Q1, and the average time T2
that a packet spends in Q2.

T1 =
1

µ1 − λ1
=

1

200− 160
= 25ms

T2 =
1

µ2 − λ2
=

1

300− 240
= 16.7ms

c) In your opinion, was the traffic flow split in a fair way between Q1 and Q2?

No, even if the load factor is the same in the two queue, the average times that packets
spends in them are different.
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Part II. We want to split the traffic flow (λ1 to Q1, λ2 to Q2) in such a way that the
average times T1 and T2 are equal.

d)Write T2 as a function of µ2 and λ1.

T2 =
1

µ2 − (λ− λ1)

e) Compute the value of λ1 such that T1 = T2.

1

µ1 − λ1
=

1

µ2 − (λ− λ1)

µ2 − (λ− λ1) = µ1 − λ1

λ1 = (µ1 − µ2 + λ)/2 = 150 packets per second

f) Compute the corresponding value of λ2.

λ2 = λ− λ1 = 250 packets per second

g) Compute the load factors ρ1 and ρ2 of Q1 and Q2.

ρ1 =
λ1
µ1

= 150/200 = 0.75

ρ2 =
λ2
µ2

= 250/300 = 0.833

h) Compute the average time T1 that a packets spends in Q1, and the average time T2
that a packets spends in Q2.

T1 =
1

µ1 − λ1
=

1

200− 150
= 20ms

T2 =
1

µ2 − λ2
=

1

300− 250
= 20ms

i) In terms of average time a packet spends in the system, is it better to have the traffic
split between Q1 and Q2 (as we just computed), or to have the entire flow λ sent to
a queue Q3 with service rate µ3 = µ1 + µ2 = 500 packets per second. As part of your
answer, you need to compute the average time T3 a packets would spend in Q3.

T3 =
1

µ3 − λ
=

1

500− 400
= 10ms. This is better
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Part III. We want to split the traffic flow (λ1 to Q1, λ2 to Q2) in a way that T1 = T2/2.

j) Find λ1, λ2, ρ1, ρ2, T1, T2 in this case. You must choose λ1 and λ2 to be integer, but
such that |T1 − T2/2| < 0.2ms.

1

µ1 − λ1
=

1

2

1

µ2 − (λ− λ1)

2µ2 − 2(λ− λ1) = µ1 − λ1

λ1 = (µ1 − 2µ2 + 2λ)/3 = 133 packets per second

λ2 = λ− λ1 = 267 packets per second

ρ1 = λ1/µ1 = 133/200 = 0.665

ρ2 = λ2/µ2 = 267/300 = 0.89

T1 =
1

µ1 − λ1
=

1

200− 133
= 14.9ms

T2 =
1

µ2 − λ2
=

1

300− 267
= 30ms
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