ecture i

Classes of Transformations

Hermitian

Symmetric Matrices

Skew Matrices

Unitary and Orthogonal Matrices

Examples

Eigenbases

Diagonalizat

Non-Hermitain Matrices

Lecture 4 ECE 278 Mathematics for MS Comp Exam

Hermitian and Symmetric Matrices

Classes of Transformations

Hermitian and Symmetric Matrices

Skew Matrices

Unitary and Orthogonal Matrices

Examples

Eigenbases

Diagonalizat

NonHermitain

Matrices

A discrete linear transformation is self-adjoint when the matrix representation A
 of that transformation is a square matrix that satisfies

$$\mathbb{A} = \mathbb{A}^H \tag{1}$$

(Book uses $\overline{\mathbb{A}}^T$ for \mathbb{A}^H)

- The matrix is called a hermitian matrix
 - elements a_{ij} of the matrix may be complex with $a_{ij} = a_{ii}^*$
 - have real eigenvalues
 - Converse is not true! (Matrices w/ real eigenvalues need not be hermitian.)
 - Distinct eigenvalues have orthogonal eigenvectors
- When the elements are real

$$\mathbb{A} = \mathbb{A}^T \tag{2}$$

- The matrix is called a symmetric matrix
 - ullet elements a_{ij} of the matrix **must** be real with $a_{ij}=a_{ji}$
 - have real eigenvalues (Lie on the real line.)
 - Distinct eigenvalues have orthogonal eigenvectors

skew-Hermitian and skew-Symmetric Matrices

Classes of Transformations Hermitian and Symmetric

Matrices Skew

Unitary and Orthogonal Matrices

Examples

Eigenbases

Diagonalizat ...

Non-Hermitain Matrices • A discrete linear transformation is **skew-hermitian** when the matrix representation A of that transformation is a square matrix that satisfies

$$-\mathbb{A} = \mathbb{A}^H \tag{3}$$

- ullet elements a_{ij} of the matrix may be complex with $a_{ij}=-a_{ji}^*$
- Eigenvalues are imaginary or zero
- Distinct eigenvalues have orthogonal eigenvectors
- When the elements are real

$$-\mathbb{A} = \mathbb{A}^T \tag{4}$$

The matrix is called a skew-symmetric matrix

- elements a_{ij} of the matrix **must** be real with $a_{ij} = -a_{ji}$
- Eigenvalues are imaginary or zero (Lie on the imaginary line.)
- Distinct eigenvalues have orthogonal eigenvectors

Unitary and Orthogonal Matrices

Classes of Transformations Hermitian

and Symmetric Matrices Skew Matrices

Unitary a Orthogon Matrices

Examples

Eigenbases

Diagonalizat

NonHermitain
Matrices

ullet A discrete linear transformation is **unitary** when the matrix representation ${\mathbb A}$ of that transformation is a square matrix that satisfies

$$\mathbb{A}^{-1} = \mathbb{A}^H \tag{5}$$

When the elements are real

$$\mathbb{A}^{-1} = \mathbb{A}^T \tag{6}$$

The matrix is called a orthogonal matrix

- These matrices preserve the norm or the inner product
- Eigenvalues are real or come in complex conjugate pairs with the magnitude of the eigenvalue equal to to one
 - All eigenvalues lie on the unit circle
- Determinant has a magnitude that is one

$$|\det A| = 1$$

 \bullet For orthogonal matrix with real elements , this means that $\det \! \mathbb{A} = \pm 1.$

ECE 278 Math for MS Exam- Winter 2019 Lecture 4

- Informally, they do not change the "length of the vector"
 - Note that the vector could be a function or matrix

Example of Orthogonal Matrix

Classes of Transformations Hermitian and Symmetric

Matrices Skew Matrices

Unitary and Orthogonal Matrices

Examples

Eigenbases Diagonalizat

Non-Hermitain Matrices The matrix

$$\mathbb{R} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \tag{7}$$

is a **rotation matrix** in a plane in a counterclockwise direction by an angle θ

- This is an orthogonal, skew-symmetric matrix
- The characteristic equation is

$$(\cos \theta - \lambda)(\cos \theta - \lambda) + \sin^2 \theta = 0$$
$$\lambda^2 - 2\cos \theta \lambda + 1 = 0$$

Using the quadratic formula gives

$$\lambda_{1,2} = \frac{2\cos\theta \pm \sqrt{4\cos^2\theta - 4}}{2}$$
$$= \cos\theta \pm i\sin\theta$$
$$= e^{\pm i\theta}$$

These are the eigenvalues. (Note unit magnitude and lie on unit circle.)

Classes of Transformations Hermitian

Hermitian and Symmetric Matrices

Skew Matrices Unitary and Orthogonal

Matrices Examples

Eigenbases

Diagonalizat

Non-Hermitain Matrices • The eigenvectors are

$$\begin{bmatrix} \cos \theta - (\cos \theta \pm i \sin \theta) & -\sin \theta \\ \sin \theta & \cos \theta - (\cos \theta \pm i \sin \theta) \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = 0$$
$$\rightarrow \sin \theta (\pm ix + y = 0) \rightarrow v_{1,2} = \begin{bmatrix} \pm i \\ 1 \end{bmatrix}$$

As a check

$$\left[\begin{array}{cc} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{array}\right] \left[\begin{array}{c} i \\ 1 \end{array}\right] = \left[\begin{array}{c} -\sin\theta + i\cos\theta \\ \cos\theta + i\sin\theta \end{array}\right] = \lambda_1 \left[\begin{array}{c} i \\ 1 \end{array}\right]$$

 Generalizes transformations described by orthogonal matrices in a plane or in 3-space are rotations

6

Example of Hermitian Matrix -1

Classes of Transformations

Hermitian and Symmetric

Matrices Skew Matrices

Unitary and Orthogonal Matrices

Example

Eigenbases

Diagonalizat ...

Non-Hermitain Matrices The matrix

$$A = \begin{bmatrix} 2 & -3i \\ 3i & 2 \end{bmatrix}$$
 (8)

The characteristic equation is

$$\left|\begin{array}{cc} 2-\lambda & -3\mathrm{i} \\ 3\mathrm{i} & 2-\lambda \end{array}\right| = (2-\lambda)(2-\lambda) - 9 = \lambda^2 - 4\lambda - 5 = 0$$

ullet Roots are $\lambda_1=5$ and $\lambda_2=-1$

• Eigenvectors are solutions to

$$\begin{bmatrix} 2 - \lambda_{1,2} & -3i \\ 3i & 2 - \lambda_{1,2} \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \mathbf{0}$$

• For $\lambda_1 = 5$

$$\left[\begin{array}{cc} -3 & -3i \\ 3i & -3 \end{array}\right] \left[\begin{array}{c} x \\ y \end{array}\right] = \mathbf{0}$$

 \bullet Second equation is i times first equation. Setting y=1 gives

$$\mathbf{e}_1 = \left[\begin{array}{c} -i \\ 1 \end{array} \right]$$

 $\bullet \ \, \mathsf{For} \,\, \lambda_1 = -1$

$$\left[\begin{array}{cc} 3 & -3i \\ 3i & 3 \end{array}\right] \left[\begin{array}{c} x \\ y \end{array}\right] = \mathbf{0}$$

ullet Second equation is $-\mathrm{i}$ times first equation. Setting y=1 gives

$$\mathbf{e}_2 = \left[\begin{array}{c} \mathbf{i} \\ 1 \end{array} \right]$$

- Note $\mathbf{e}_1 \cdot \mathbf{e}_2 = \mathbf{e}_1^H \cdot \mathbf{e}_2 = \left[\begin{array}{cc} \mathbf{i} & 1 \end{array} \right] \left[\begin{array}{cc} \mathbf{i} \\ 1 \end{array} \right] = 0$ so they are orthogonal.
- Normalizing by $1/\sqrt{2}$ makes them orthonormal.

Eigenbases

Classes of Transformations

Hermitian and Symmetric Matrices

Skew Matrices Unitary and

Orthogonal Matrices Examples

Diagonalizat

Non-Hermitain Matrices

- \bullet When the square matrix $\mathbb A$ has **distinct eigenvalues**, then the transformation described by $\mathbb A$ has a basis of the eigenvectors of $\mathbb A$
 - (not necessarily an orthogonal basis)
 - Can make it an orthonormal basis using Gram-Schmidt (See Lecture 3)
- ullet A hermitian (symmetric) matrix has an **orthonormal basis** of eigenvector for \mathbb{R}^n
- \bullet This means that we can express any vector ${\bf x}$ in \mathbb{R}^n as a superposition of the eigenvectors of the transformation that we are interested in
 - Linear time-invariant systems
 - Modes within electromagnetics

Classes of Transformations Hermitian

and Symmetric Matrices Skew

Matrices
Unitary and
Orthogonal
Matrices

Examples

Eigenbases

Non-Hermitain Matrices • Using the set of eigenvectors $\{\mathbf e_n\}$ of $\mathbb R^n$ as a basis, we can express any vector $\mathbf x$ in $\mathbb R^n$ as a superposition of the basis vectors as

$$\mathbf{x} = c_1 \mathbf{e}_1 + c_2 \mathbf{e}_2 + \ldots + c_n \mathbf{e}_n$$

 \bullet Apply the transformation described by $\mathbb A$ to the input vector $\mathbf x$

$$\mathbf{y} = \mathbf{A}\mathbf{x}$$

$$= \mathbf{A} (c_1 \mathbf{e}_1 + c_2 \mathbf{e}_2 + \dots + c_n \mathbf{e}_n)$$

$$= c_1 \mathbf{A} \mathbf{e}_1 + c_2 \mathbf{A} \mathbf{e}_2 + \dots + c_n \mathbf{A} \mathbf{e}_n$$

$$= c_1 \lambda_1 \mathbf{e}_1 + c_2 \lambda_2 \mathbf{e}_2 + \dots + c_n \lambda_n \mathbf{e}_n$$

- When input is expressed in terms of eigenvector of transformation, output of transformation simply scales each component by the corresponding eigenvalue.
- The is one of the fundamental methods of analysis for linear systems.

Eigenbases

Classes of Transformations

Hermitian and Symmetric

Matrices Skew Matrices

Unitary and Orthogonal Matrices

Examples

Eigenbases Diagonaliza

Non

Non-Hermitain Matrices

- Previous lecture states that when the geometric multiplicity is equal to the algebraic multiplicity for every eigenvalue, the matrix is diagonalizable
- Restrict our discussion to hermitian matrices
 - Real eigenvalues and orthogonal eigenvectors
- \bullet Any hermitian matrix $\mathbb A$ can be diagonalized with a matrix $\mathbb X$ as follows

$$\mathbb{D} = \mathbb{X}^{-1} \mathbb{A} \mathbb{X}$$

where the matrix $\ensuremath{\mathbb{X}}$ is formed from the orthogonal (column) eigenvectors of $\ensuremath{\mathbb{A}}$

ullet Diagonal elements are the eigenvalues of ${\mathbb A}$

Example

Classes of Transformations

Hermitian and Symmetric Matrices

Skew Matrices

Unitary and Orthogonal Matrices

Examples

Eigenbases Diagonaliza

Non-

Non-Hermitain Matrices • From earlier example, normalized eigenvectors are

$$\mathbf{e}_1 = \frac{1}{\sqrt{2}} \left[\begin{array}{c} -\mathrm{i} \\ 1 \end{array} \right] \qquad \mathbf{e}_2 = \frac{1}{\sqrt{2}} \left[\begin{array}{c} \mathrm{i} \\ 1 \end{array} \right]$$

Therefore

$$\mathbb{X} = \frac{1}{\sqrt{2}} \left[\begin{array}{cc} -\mathrm{i} & \mathrm{i} \\ 1 & 1 \end{array} \right]$$

ullet This matrix is unitary so that $\mathbb{A}^{-1}=\mathbb{A}^H$ with

$$X^{-1} = X^{H} = \frac{1}{\sqrt{2}} \begin{bmatrix} i & 1\\ -i & 1 \end{bmatrix}$$

Then

$$\begin{split} \mathbb{X}^{-1}\mathbb{A}\mathbb{X} &= \frac{1}{\sqrt{2}} \left[\begin{array}{cc} \mathrm{i} & 1 \\ -\mathrm{i} & 1 \end{array} \right] \left[\begin{array}{cc} 2 & -3\mathrm{i} \\ 3\mathrm{i} & 4 \end{array} \right] \frac{1}{\sqrt{2}} \left[\begin{array}{cc} -\mathrm{i} & \mathrm{i} \\ 1 & 1 \end{array} \right] \\ &= \frac{1}{2} \left[\begin{array}{cc} \mathrm{i} & 1 \\ -\mathrm{i} & 1 \end{array} \right] \left[\begin{array}{cc} -5\mathrm{i} & -\mathrm{i} \\ 5 & 1 \end{array} \right] \\ &= \left[\begin{array}{cc} 5 & 0 \\ 0 & -1 \end{array} \right] \end{split}$$

Classes of Transformations Hermitian and Symmetric

Matrices Skew Matrices Unitary and Orthogonal

Matrices Examples

Eigenbases Diagonalizat

Non-Hermitain Matrices

- A transformation described by a matrix need not have real eigenvalues and the eigenvectors need not be orthogonal as would be the case for a hermitian matrix.
- ullet A useful decomposition of the matrix ${\mathbb A}$, called the $\emph{singular-value decomposition},$ is

$$\mathbb{A} = \mathbb{U} \mathbb{M} \mathbb{V}^{H}. \tag{9}$$

- \bullet The matrices $\mathbb U$ and $\mathbb V$ are each unitary.
- ullet The columns of ${\mathbb U}$ are the eigenvectors of ${\mathbb A}{\mathbb A}^H$
- The columns of \mathbb{V} are the eigenvectors of $\mathbb{A}^H\mathbb{A}$.
- ullet The only nonzero elements of the matrix ${\mathbb M}$ are on the diagonal, whose elements are denoted m_k .
- These elements are called the *singular values* of \mathbb{A} .
- They are the nonnegative square roots $\sqrt{\xi_k}$ of the eigenvalues ξ_k of the real symmetric matrix $\mathbb{A}\mathbb{A}^H$ so that $\xi_k = |m_k|^2$.

- ullet The matrices ${\mathbb U}$ and ${\mathbb V}$ are each unitary.
- ullet The columns of ${\mathbb U}$ are the eigenvectors of ${\mathbb A}{\mathbb A}^H$
- The columns of \mathbb{V} are the eigenvectors of $\mathbb{A}^H\mathbb{A}$.
 - \bullet The only nonzero elements of the matrix $\mathbb M$ are on the diagonal, whose elements are denoted $m_k.$
 - \bullet These elements are called the singular values of $\mathbb{A}.$
- They are the nonnegative square roots $\sqrt{\xi_k}$ of the eigenvalues ξ_k of the real symmetric matrix $\mathbb{A}\mathbb{A}^H$ so that $\xi_k=|m_k|^2$.
- When $\mathbb A$ describes a transformation of the amplitude of a signal, the real symmetric matrix $\mathbb A\mathbb A^H$ describes the transformation of the signal power.