Autocovariance

Magnitude/Pha Representation

Marginal Phase Distribution

Poisson Count Process

> Probability Mass Function

Mean and Variance

Sum of Two Poissons

Waiting Time

Lecture 12 ECE 278 Mathematics for MS Comp Exam

Autocovariance

Magnitude/Pha Representation

Marginal Phase Distribution

Poisson Count Process

Probability Mass Function

Mean and Variance

Sum of Two Poissons Waiting Time

- A complex gaussian random variable $\underline{z} = \underline{x} + i\underline{y}$ has components \underline{x} and \underline{y} described by a real bivariate gaussian random variable (\underline{x}, y) .
- A complex gaussian random vector denoted as $\underline{\mathbf{z}} = \underline{\mathbf{x}} + i\underline{\mathbf{y}}$ has components \underline{z}_k described by a real bivariate gaussian random variable $(\underline{x}_k, \underline{y}_k)$.
- A complex gaussian random variable $\underline{z} = \underline{x} + i\underline{y}$ with independent, zero-mean components \underline{x} and \underline{y} of equal variance is a circularly-symmetric gaussian random variable.

Autocovariance

- Magnitude/Ph: Representation
- Marginal Phase Distribution
- Poisson Count Process
- Probability Mass Function Mean and
- Variance Sum of Two Poissons
- Waiting Time

- The corresponding probability density function is called a complex circularly-symmetric gaussian probability density function.
- A complex circularly-symmetric gaussian random variable has the property that $e^{i\theta}\underline{z}$ has the same probability density function for all θ .
- Generalizing, a complex, jointly gaussian random vector $\underline{\mathbf{z}} = \underline{\mathbf{x}} + i\underline{\mathbf{y}}$ is circularly symmetric when the vector $e^{i\theta}\underline{\mathbf{z}}$ has the same multivariate probability density function for all θ .
- Such a probability density function must have a zero mean.

Autocovariance

Magnitude/Ph Representation

Marginal Phase Distribution

Poisson Count Process

Probability Mass Function

Mean and Variance

Sum of Two Poissons Waiting Time • The multivariate probability density function for a complex circularly-symmetric gaussian random vector <u>z</u> is

$$f_{\underline{\mathbf{z}}}(\mathbf{z}) = \frac{1}{\pi^N \det \mathbb{W}} e^{-\mathbf{z}^H \mathbb{W}^{-1} \mathbf{z}}.$$
 (1)

- Using the properties of determinants, the leading term $(\pi^N \det \mathbb{W})^{-1}$ in (1) can be written as $\det(\pi \mathbb{W})^{-1}$.
- $\bullet\,$ The term $\mathbb W$ in (1) is the autocovariance matrix given by

$$\mathbb{W} \doteq \langle \underline{\mathbf{z}} \underline{\mathbf{z}}^H \rangle \tag{2}$$

with H denoting the complex conjugate transpose.

• Because \underline{z} is complex, this matrix is hermitian.

- Magnitude/Ph Representa-
- Marginal Phase Distribution
- Poisson Count Process
- Probability Mass Function
- Mean and Variance
- Sum of Two Poissons Waiting Time

• The *complex covariance matrix* for this block, can be written as

$$W_{\text{noise}} = \langle \underline{\mathbf{n}} \, \underline{\mathbf{n}}^H \rangle$$
$$= 2\sigma^2 \mathbb{I}, \qquad (3)$$

where ${\rm I\hspace{-0.1em}I}$ is the M by M identity matrix.

• The corresponding probability density function is

Į

$$f(\mathbf{n}) = \frac{1}{(2\pi\sigma^2)^M} e^{-|\mathbf{n}|^2/2\sigma^2},$$
 (4)

where $|\mathbf{n}|^2 = \sum_{k=1}^M |n_k|^2 = \sum_{k=1}^M (x_k^2 + y_k^2)$ is the squared euclidean length of the random complex vector $\underline{\mathbf{n}}$.

Autocovariance

Magnitude/Ph Representation

Marginal Phase Distribution

Poisson Count Process

Probability Mass Function Mean and

Variance Sum of Two

Poissons Waiting Time • Start with components are independent with the corresponding bivariate gaussian density function given by

$$F(x,y) = f_{\underline{x}}(x)f_{\underline{y}}(y)$$

= $\left(\frac{1}{\sqrt{2\pi\sigma}}e^{-x^2/2\sigma^2}\right)\left(\frac{1}{\sqrt{2\pi\sigma}}e^{-y^2/2\sigma^2}\right).$ (5)

- The two marginal probability density functions are both gaussian with the same variance.
- The two samples described by this joint distribution are independent.

Autocovariance

Magnitude/Pl Representation

Marginal Phase Distribution

Poisson Count Process

Probability Mass Function Mean and Variance

Sum of Two Poissons Waiting Time

- For a magnitude/phase representation of a circularly-symmetric gaussian, the probability density function of the magnitude f(A) can be obtained by a change of variables using $P = A^2/2$ and dP/dA = A, where the factor of 1/2 accounts for the passband signal.
- This variable transformation yields

$$f(A) = \frac{A}{\sigma^2} e^{-A^2/2\sigma^2}$$
 for $A \ge 0$. (6)

- This is the distribution f(A) for the magnitude
- It is a Rayleigh probability density function

Autocovariance

Magnitude/Pha Representation

Marginal Phase Distributior

Poisson Count Process

Probability Mass Function Mean and Variance

Sum of Two Poissons Waiting Time

- .Similarly, the probability density function $f(\phi)$ for the phase is a uniform probability density function $f(\phi) = (1/2\pi) \operatorname{rect}(\phi/2\pi)$.
- The joint probability density function of these two independent (polar) components is

$$f(A,\phi) = f_{\underline{A}}(A)f_{\underline{\phi}}(\phi) = \frac{A}{2\pi\sigma^2}e^{-A^2/2\sigma^2} \quad \text{for } A \ge 0.$$
 (7)

• Transforming from polar coordinates to cartesian coordinates recovers (5).

Poisson Count Process

Complex Circularly-Symmetric Gaussians

Autocovariance

Magnitude/Pha Representation

Marginal Phase Distribution

Poisson Count Process

Probability Mass Function Mean and Variance

Sum of Two Poissons Waiting Time

- A Poisson random counting process is shown in Figure 1b.
- It is characterized by a *arrival rate* $\mu(t)$.

Figure: (a) A realization of a random photoelectron arrival process g(t). (b) The integral of g(t) generates the Poisson counting process m(t).

Poisson Count Process

Complex Circularly-Symmetric Gaussians

Autocovariance

Magnitude/Pha Representation

Marginal Phase Distribution

Poisson Count Process

Probability Mass Function Mean and

Variance Sum of Two

Poissons Waiting Time

- A distinguishing feature of a Poisson counting process is that the number of counts in two nonoverlapping intervals are statistically independent for any size or location of the two intervals.
 - This property is called the *independent-increment property* .

Autocovariance

Magnitude/Pha Representation

Marginal Phase Distribution

Poisson Count Process

Probability Mass Functio

Mean and Variance Sum of Two

Poissons Waiting Time

- The probability p_d of generating an event in subinterval Δt is proportional to the product of a *arrival rate* μ and the interval Δt .
- The subinterval Δt can be chosen small enough so that the probability of generating one counting event within Δt is, to within order Δt, given by

$$p_d = \mu \Delta t = \frac{\mu T}{M} = \frac{W}{M},$$
 (8)

where $W = \mu T$ is the mean number of counts over an interval $T = M\Delta t$.

• The probability that no counts are generated within an interval of duration Δt is, to order Δt , $1 - \mu \Delta t$.

Autocovariance

Magnitude/Pha Representation

Marginal Phase Distribution

Poisson Count Process

> Probability Mass Functio Mean and

Variance Sum of Two Poissons

Waiting Time

• The probability of generating m independent counts within a time $T = M\Delta t$ is given by a *binomial probability mass function*

$$p(\mathbf{m}) = \frac{\mathsf{M}!}{\mathsf{m}!(\mathsf{M}-\mathsf{m})!} (p_d)^{\mathsf{m}} (1-p_d)^{\mathsf{M}-\mathsf{m}}$$
 for $\mathsf{m} = 0, 1, 2, \dots, \mathsf{M}$.

• Substituting $p_d = W/M$ from (8) yields

$$p(\mathbf{m}) = \frac{\mathbf{M}!}{\mathbf{M}^{\mathbf{m}}(\mathbf{M}-\mathbf{m})!} \frac{\mathbf{W}^{\mathbf{m}}}{\mathbf{m}!} \left(1 - \frac{\mathbf{W}}{\mathbf{M}}\right)^{\mathbf{M}-\mathbf{m}}$$
$$= \frac{\mathbf{M}(\mathbf{M}-1)\dots(\mathbf{M}-\mathbf{m}+1)}{\mathbf{M}^{\mathbf{m}}} \frac{\mathbf{W}^{\mathbf{m}}}{\mathbf{m}!} \left(1 - \frac{\mathbf{W}}{\mathbf{M}}\right)^{\mathbf{M}-\mathbf{m}}.$$
 (9)

• Referring to (8), if μ and T are both held fixed, then W is constant.

Autocovariance

Magnitude/Ph: Representation

Marginal Phase Distribution

Poisson Count Process

Probability Mass Function Mean and

Mean and Variance Sum of Two

Poissons Waiting Time

- Therefore, in the limit as $W/M = \mu \Delta t$ goes to zero, M goes to infinity.
- The first term in (9) approaches one because the numerator approaches M^m .
- In the last term, the finite value of m relative to the value of M can be neglected.
- This produces $(1 W/M)^M$ which goes to e^{-W} as M goes to infinity.
- $\bullet\,$ Therefore, the probability mass function of the number of counts generated over an interval T is

$$p(\mathbf{m}) = \frac{\mathbf{W}^{\mathbf{m}}}{\mathbf{m}!}e^{-\mathbf{W}}$$
 for $\mathbf{m} = 0, 1, 2, ...$ (10)

which is the **Poisson probability distribution** (or the Poisson probability mass function) with the mean $\langle \underline{m} \rangle$ given by $\mu T = W$.

Computer Engineering

Autocovariance

Magnitude/Pha Representation

Marginal Phase Distribution

Poisson Count Process

Probability Mass Function Mean and Variance

Sum of Two Poissons Waiting Time • The variance of the Poisson probability distribution can be determined using the characteristic function

$$C_{\mathsf{m}}(\omega) = \sum_{\mathsf{m}=0}^{\infty} e^{\mathrm{i}\omega\mathsf{m}} p(\mathsf{m}) = \sum_{\mathsf{m}=0}^{\infty} e^{\mathrm{i}\omega\mathsf{m}} \frac{\mathsf{W}^{\mathsf{m}}}{\mathsf{m}!} e^{-\mathsf{W}}$$

• The summation has the form $\sum_{{\rm m}=0}^\infty \frac{1}{{\rm m}!}x^{\rm m}=e^x$ with $x={\rm W}e^{{\rm i}\omega}.$ Then $C_{\rm m}(\omega)$ reduces as

$$C_{\mathsf{m}}(\omega) = e^{\mathsf{W}(e^{i\omega}-1)}.$$
 (11)

Computer Engineering

Mean and Variance-2

Complex Circularly-Symmetric Gaussians

Autocovariance

Magnitude/Pha Representation

Marginal Phase Distribution

Poisson Count Process

> Probability Mass Function Mean and Variance

Sum of Two Poissons Waiting Time • From Lecture 12, the mean-squared value in terms of the characteristic function is

$$\begin{split} \underline{\mathbf{m}}^{2} \rangle &= \left| \frac{1}{\mathbf{i}^{2}} \frac{\mathrm{d}^{2}}{\mathrm{d}\omega^{2}} C_{\mathbf{m}}(\omega) \right|_{\omega=0} \\ &= e^{\mathbf{W}(e^{\mathbf{i}\omega}-1)} \left(\mathbf{W} e^{\mathbf{i}\omega} + \left(\mathbf{W} e^{\mathbf{i}\omega} \right)^{2} \right) \Big|_{\omega=0} \\ &= \mathbf{W} + \mathbf{W}^{2}. \end{split}$$
(12)

Accordingly

$$\sigma_{\rm m}^2 = \langle \underline{\rm m}^2 \rangle - \langle \underline{\rm m} \rangle^2 = W$$
 (13)

is the variance of the Poisson distribution.

ECE 278 Math for MS Exam- Winter 2019 Lecture 12

Autocovariance

Magnitude/Pha Representation

Marginal Phase Distribution

Poisson Count Process

Probability Mass Function Mean and Variance

Sum of Two Poissons Waiting Time

- Expression (13) shows that the variance $\sigma_{\rm m}^2$ is equal to the mean.
- A random variable described by the Poisson probability distribution is called a *Poisson random variable*.
- The sum of two independent Poisson random variables \underline{m}_1 and \underline{m}_2 is a Poisson random variable \underline{m}_3 .
- Let $p_1(m)$ and $p_2(m)$ be two Poisson probability distributions with mean values W_1 and W_2 respectively. Then the probability distribution $p_3(m)$ for \underline{m}_3 is the convolution $p_3(m) = p_1(m) \circledast p_2(m)$.

Autocovariance

Magnitude/Ph: Representation

Marginal Phase Distribution

Poisson Count Process

Probability Mass Function Mean and Variance

Sum of Two Poissons

Waiting Time

• The convolution property of a Fourier transform states that the two characteristic functions satisfy

$$C_3(\omega) = C_1(\omega)C_2(\omega),$$

where $C_i(\omega)$ is the characteristic function of $p_i(m)$.

• Substitute $C_1(\omega) = e^{W_1(e^{i!}-1)}$ and $C_2(\omega) = e^{W_2(e^{i\omega}-1)}$ on the right (cf. (11)) and take the inverse Fourier transform to give

٩

$$p_3(\mathsf{m}) = \frac{(\mathsf{W}_1 + \mathsf{W}_2)^{\mathsf{m}}}{\mathsf{m}!} e^{-(\mathsf{W}_1 + \mathsf{W}_2)}$$
 for $\mathsf{m} = 0, 1, 2, \dots$ (14)

• Accordingly, the sum of two independent Poisson random variables with means W_1 and W_2 respectively, is a Poisson random variable with a mean $W_1+W_2.$

Autocovariance

Magnitude/Pha Representation

Marginal Phase Distribution

Poisson Count Process

> Probability Mass Function Mean and Variance

Sum of Two Poissons

Waiting Time

- The probability density function for the waiting time t_1 to observe one event of a Poisson process from any starting time is denoted $f(t_1)$.
- For a Poisson stream, this probability density function does not depend on the starting time.
- For a constant arrival rate μ , the cumulative probability density function of the random arrival time \underline{t}_1 is equal to $1 p_0$ where p_0 is the probability that no counts are generated over the interval t_1 .

Probability Density Function for the Poisson Waiting Time-2

Complex Circularly-Symmetric Gaussians

Autocovariance

Magnitude/Pha Representation

Marginal Phase Distribution

Poisson Count Process

Probability Mass Function Mean and Variance

Sum of Two Poissons

Waiting Time

- The probability p_0 is determined using the Poisson probability distribution defined in (10) with W = μt_1 and m = 0. This yields $p_0 = e^{-\mu t_1}$.
- The cumulative probability density function is

$$F(t_1) = 1 - e^{-\mu t_1}$$
 for $t_1 \ge 0$.

• The corresponding probability density function is determined using (see Lecture 11)

$$f(t_1) = \frac{\mathrm{d}}{\mathrm{d}t} F(t_1)$$

= $\mu e^{-\mu t_1}$ for $t_1 \ge 0,$ (15)

which is an exponential probability density function with mean μ^{-1} and variance $\mu^{-2}.$

Autocovariance

Magnitude/Pha Representation

Marginal Phase Distribution

Poisson Count Process

Probability Mass Function Mean and Variance

Sum of Two Poissons

Waiting Time

- Given that the count events are independent, the waiting time for the second photoelectron event, and each subsequent event, is an independent exponential probability density function.
- The probability density function of the waiting time to generate k photoelectrons is the sum of k independent, exponentially distributed random variables—one random variable for each photoelectron arrival, and each with the same expected value μ^{-1} .
- This is a *gamma probability density function* with parameters (μ, k) .