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ECE 45 Discussion 1 Notes

Phasor Representation of Sinusoidal Functions

• Phasors are used to represent sinusoidal functions and allow for easier representation of linear
(resistor, capacitor, and inductor) circuits with sinusoidal voltages and currents.

• Represent A cos(ωt+ φ) as Aejφ.

• We do not include the frequency ω in the representation, but it is implicit.

• Differentiation and Integration:

f(t) = A cos(ω t+ φ)←→ Aejφ = F

df(t)

dt
←→ jω F

∫ t

−∞

f(τ) dτ ←→ 1

jω
F

Note: We can only use phasor representation when our function (input to circuit) is sinusoidal!

Impedance

When the inputs to our circuit are sinusoidal, we can represent resistors, capacitors, and inductors as
generalized components called impedances. This allow for linear Voltage/Current relationships in the
phasor domain.

vR(t) = iR(t)R ←→ VR = IR R

vC(t) =
1

C

∫ t

−∞

iC(τ)dτ ←→ VC =
IC
jωC

vL(t) = L
diL(t)

dt
←→ VL = jω L IL

We can lump together the terms to end up with a general expression: V = I Z so

ZR = R, ZC =
1

jωC
, ZL = jωL.

Please report any typos/errors to j2connelly@ucsd.edu



Steady State Analysis

Because the impedance equation (V = I Z) has the same structure as Ohm’s Law (v = i R), we can
use circuit analysis techniques from DC circuit analysis such as:

• Parallel/Series Combinations

• KCL and KVL Analysis

• Source Transformations

• Voltage/Current Dividers

• Thevenin and Norton Equivalence

Example 1

Represent the following sinusoidal function as phasors as a single complex number in rectangular

form:

2 cos(4π t + π/4)− 3 sin(4π t− π/3).

Solutions

Both terms have ω = 4π so we can write the function in phasor form:

2 ejπ/4 − 3 e−j5π/6 = 2

(

1√
2
+

j√
2

)

− 3

(

−
√
3

2
− j

2

)

=
1

2

(

2
√
2 + 3

√
3 + j

[

2
√
2 + 3

])

Example 2

Assume ω = 2π and represent the following phasor in sinusoidal form: X =
1

1 + j
e−jπ/6.

Solutions

X =

1√
2

1√
2
+ j 1√

2

e−jπ/6 =
1√
2

e−jπ/6

ejπ/4
=

√
2

2
e−j5π/12 ←→ x(t) =

√
2

2
cos(2πt− 5π/12)

Example 3

For what frequencies is the circuit component below purely resistive? (i.e. Zeff = X + j 0 = X) What

is the effective resistance at each frequency?

R1

R2
L

C

ZC

ZL

ZR1

ZR2

Where R1 =
√
8Ω, R2 =

√
2Ω, C = 1/4F , L = 1H



Solutions

Zeff(ω) = ZC//ZR1
+ ZR2

+ ZL = ... =

(

R2 +
R1

(R1Cω)2 + 1

)

+ j

(

ωL− R2
1Cω

(R1Cω)2 + 1

)

The impedance is purely resistive if the imaginary portion of Zeff(ω) equals 0:

0 = ωL− R2
1Cω

(R1Cω)2 + 1
= ω3R2

1LC
2 + ω(L−R2

1C) = ω

(

1

2
ω2 − 1

)

∴ ω0 = 0, ω1 =
√
2, ω2 = −

√
2

and so the effective resistance at each frequency is:

Zeff(0) = R2 +R1 = 3
√
2Ω

Zeff(±
√
2) = R2 +

R1

2R2
1C

2 + 1
= 2
√
2Ω

Example 4

In the circuit below, find io(t) as a sine function.

iin(t) io(t) vin(t)
R1

R2

L

C vin(t) = cos(2t) V

iin(t) = sin(2t)A

R1 = 2Ω

C = 1/2F

L = 1/2H

R2 = 1Ω

Solutions

Since the current and voltage sources are both of the same frequency, we can represent the voltages and

currents as phasors and the resistors, capacitor, and inductor as impedances:

Vin

VA

Iin Io
I2

ZC

ZL

ZR1

ZR2
Vin = 1

Iin = −j
ZR1

= 2

ZC = −j
ZL = j

ZR2
= 1

By Ohm’s Law, we have:

Io =
VA

ZR1
+ ZL

, I2 =
V − VA

ZR2
+ ZC



and by KCL we have: Iin + I2 = Io. By substituting in Io and I2 expressions, we have

Iin +
Vin − VA

ZR2
+ ZC

=
VA

ZR1
+ ZL

Solving for VA gives us:

VA = (ZR2
+ ZC) (ZR1

+ ZL)
Iin +

Vin

ZR2
+ZC

ZR2
+ ZC + ZL + ZR1

.

We can substitute this value of VA into our expression for I1 from Ohm’s Law:

Io =
(ZR2

+ ZC) Iin + Vin

ZR2
+ ZC + ZL + ZR1

=
−j (1− j) + 1

1− j + j + 2
=
−j
3

=
1

3
e−jπ/2

converting back to the time domain gives us:

io(t) =
1

3
cos(2t− π/2) =

1

3
sin(2t).

Example 5

Let v(t) = 2 cos(3t+ π/6) V , i(t) = cos(3t− π/6)A, R = 2Ω, C = 1/6F , and L = 1H .

Determine an equivalent circuit as a voltage source in series with a resistor and an inductor.

v(t) vth(t)vo(t) vo(t)

R RthL Lth

C

Solutions

Since the voltage and current sources are both sinusoidal of the same frequency, we can represent the
circuit using phasors and impedances:

IVin Vo

ZR

ZC

ZL Vin = 2 ejπ/6

I = e−jπ/6

ZR = 2

ZC = −2j
ZL = 3j

To solve for Zth, set voltage sources to 0V (short) and current sources to 0A (open).



ZR

ZC

ZL

Zth

Zth = ZR//ZC + ZL = ZL +
ZRZC

ZR + ZC
= 3j +

−4j
2− 2j

= 3j − 2j

1− j

(

1 + j

1 + j

)

= 3j − −2 + 2j

2

= 1 + 2j

To solve for Vth, leave the output open and solve for Vth:

V I Vth
IC

IR IL

ZR

ZC

ZL
V = 2 ejπ/6

I = e−jπ/6

ZR = 2

ZC = −2j
ZL = 3j

By Ohm’s Law: By KCL:

IR = (Vth − V )/ZR IR + IC + I + IL = 0
IC = Vth/ZC

IL = 0

Substituting the expressions for IR, IC , and IL into the KCL equation yields:

Vth − V

ZR

+
Vth

ZC

+ I = 0

Solving for Vth gives us:

Vth =
V
ZR
− I

1

ZR

+ 1

ZC

=

(

V

ZR
− I

)

(ZC//ZR) = (ejπ/6 − e−jπ/6)
−4j
2− 2j

=

(√
3

2
+

j

2
−
(√

3

2
− j

2

))

(1− j) = j (1− j) = 1 + j =
√
2 ejπ/4

We could have instead solved for the short-circuit current Isc by connecting the terminals (shorting) at
the output as follows:



V I
Isc

ZR

ZC

ZL

In general, we only need to calculate two

out of the three of Vth, Zth, and Isc. The

third quantity follows from the equation

Vth = IscZth. In our case:

Isc =
Vth

Zth

=
1 + j

1 + 2j
=

(1 + j)(1− 2j)

5
=

3− j

5

We know Vth =
√
2 ejπ/4 and Zth = 1 + 2j = Rth + jωLth, so converting to the time domain we have

Rth = Re {Zth} = 1Ω

Lth =
Im{Zth}

ω
= 2/3H

vth(t) =
√
2 cos(3t + π/4)

Alternatively, we could a series of use source transformations and series and parallel combinations to
solve for Zth and Vth,

V I

Vo

Vo

Vth

ZR

ZC

ZL

Zth

Zth = ZL + ZR//ZC = · · · = 1 + 2j

Vth = (V/ZR − I) (ZR//ZC) = · · · =
√
2ejπ/4


