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LTI Systems

A system has a time-domain input and a time-domain output.

x(t) −→ [System] −→ y(t)

A system is linear if it satisfies the following:

If
x1(t) −→ [Linear System] −→ y1(t)

x2(t) −→ [Linear System] −→ y2(t)

then for all complex numbers a and b

a x1(t) + b x2(t) −→ [Linear System] −→ a y1(t) + b y2(t)

i.e. if the input is a linear combination of functions, the the output is the same linear combination of
the outputs corresponding to those functions.

A system is time-invariant if it satisfies the following:

If
x(t) −→ [Time-Invariant System] −→ y(t)

then
x(t− t0) −→ [Time-Invariant System] −→ y(t− t0).

i.e. if the input is delayed by some amount, the output is delayed by the same amount.

A system LTI if it is both linear and time-invariant. An LTI system is defined by its frequency response
H(ω), i.e. how a system scales the magnitude and time-shifts a sinusoid of frequency ω. In particular,
complex exponentials are eigenfunctions of LTI systems. That is:

ejω0t → H(ω) → H(ω0) e
jω0t = |H(ω0)| e

j(ω0t+∠H(ω0))

If we send a sum of scaled exponentials into an LTI system, since the system is linear, we have:

∑

k

Ak e
jωkt → H(ω) →

∑

k

H(ωk)Ak e
jωkt

Note that in general, y(t) 6= H(ω)x(t). This is a common mistake. y(t) = H(ω0)x(t), when x(t) is a
complex exponential, but this is a special case.

If we could represent an arbitrary input as a sum of complex exponentials, then the output would be
the sum of the outputs of the individual exponentials.

The Fourier Series allows us to do exactly that for periodic functions.

Please report any typos/errors to j2connelly@ucsd.edu



Periodic Functions

A periodic function is one which repeats itself every fixed amount of time. The period T is the min-
imum amount of time in which the function repeats itself. Every periodic function has a fundamental

frequency, ω0 = 2π/T . Formally, a function is periodic if there exists τ > 0 such that f(t) = f(t+ τ)
for all t, and the period T is the minimum such τ .

Fourier Series

In order to represent a periodic function we need to know two things:

1) The fundamental frequency of the function,

2) How that function behaves over one period.

With these two pieces of information, we can decompose the function into a sum of complex exponen-
tials, where the frequency of each exponential is a multiple of the fundamental frequency.

For a periodic function, f(t), its Fourier Series representation is:

f(t) =
∞
∑

n=−∞

Fn e
jnω0t

where Fn =
1

T

∫ t0+T

t0

f(t) e−jnω0t dt

Note: ω0 = 2π/T , and t0 is ANY time. Usually it is convenient to pick t0 = 0 (depends on function).

It is helpful to think of the integral as “filtering out” any portion of the signal except the contribution of
the sinusoidal function at frequency nω0. Fn is how much the sinusoidal frequency at ω0 n contributes
to the signal. Thus summing over all n will yield the signal itself.



Example 1

We will say a system is time-scaling invariant if it satisfies the following: If

x(t) −→ [time-scaling invariant system] −→ y(t)

then for any real number a,

x(at) −→ [time-scaling invariant system] −→ y(at)

Are LTI systems necessarily time-scaling invariant?

Solutions

Consider a system where the output is the derivative of the input. We can verify that this is a linear and
time-invariant system. Let x1(t) and x2(t) be arbitrary functions and, for each k = 1, 2, suppose yk(t)
is the output of our system when xk(t) is the input. Then for any real numbers a, b, c, d, suppose the
input to the system is ax1(t− b) + cx2(t− d). Then the output of the system is

d

dt
(ax1(t− b) + cx2(t− d)) = a

d

dt
x1(t− b) + c

d

dt
x2(t− d) = ay1(t− b) + cy2(t− d).

Thus this system is both linear and time-invariant. In fact, the frequency response of such a system is
H(ω) = jω. We will now show this LTI system is not time-scaling invariant.

For an arbitrary function x(t), suppose y(t) = d
dt
x(t) is the output when x(t) is the input. Now if the

input to this system is x(2t), then by the chain rule of derivatives, the output of the system is

2
d

dt
x(2t).

However, this is not equal to y(2t) = d
dt
x(2t), so we have demonstrated an LTI system which is not

time-scaling invariant.

Alternatively, consider an LTI system (an ideal LPF) with frequency response

H(ω) =

{

1 |ω| < 1
0 else

Then cos(t/2) is the output when cos(t/2) is input, and 0 is the output when cos(t) is the input. Clearly
0 6= cos(t), so this system is also not time-scaling invariant.



Example 2

Are the following systems linear? Are they time invariant?

(a) x(t) −→ [ System (a) ] −→ 5x(t− 10)

(b) x(t) −→ [ System (b) ] −→ (x(t) + t)2

(c) x(t) −→ [ System (c) ] −→ x(t) + 1

(d) x(t) −→ [ System (d) ] −→ cos(x(t))

(e) x(t) −→ [ System (e) ] −→

∫ t

−∞

x(τ) dτ

i.e. the term on the right is the output when the input is x(t).

Solutions

(a) For any functions x1(t), x2(t) and real numbers a, b, t1, t2, we have

ax1(t− t1) + bx2(t− t2) −→ [ System (a) ] −→ a5x1(t− t1 − 10) + b5x2(t− t2 − 10)

Thus the system is both linear and time invariant.

(b) For any function x(t) and any real number a, we have

ax(t) −→ [ System (b) ] −→ (ax(t) + t)2 6= a (x(t) + t)2

so the system is not linear.

For any real number t0, we have

x(t− t0) −→ [ System (b) ] −→ (x(t− t0) + t)2 6= (x(t− t0) + t− t0)
2

so the system is not time invariant.

(c) For any function x(t), we have

x(t)− x(t) = 0 −→ [ System (c) ] −→ 1 6= 0

so the system is not linear.

For any real number t0, we have

x(t− t0) −→ [ System (c) ] −→ x(t− t0) + 1

so the system is time invariant.

(d) For any functions x(t), we have

x(t)− x(t) = 0 −→ [ System (d) ] −→ cos(0) = 1 6= 0

so the system is not linear.

For any real number t0, we have

x(t− t0) −→ [ System (d) ] −→ cos(x(t− t0))

so the system is time invariant.



(e) Note that for any function x(t) and any real number c, by letting z = τ − c, we have

∫ t

−∞

x(τ − c) dτ =

∫ t−c

−∞

x(z) dz

For any functions x1(t), x2(t) and real numbers a, b, t1, t2, we have

ax1(t− t1) + bx2(t− t2) −→ [ System (e) ] −→ a

∫ t

−∞

x1(τ − t1) dτ + b

∫ t

−∞

x2(τ − t1) dτ

= a

∫ t−t1

−∞

x1(z) dz + b

∫ t−t2

−∞

x2(z) dz.

Thus the system is both linear and time invariant.

Example 3

Find the fundamental frequency ω0 and the period T of the following functions:

(a) f1(t) = sin(2t) + 2 cos(3t + π/4)− cos(t/2)

(b) f2(t) =

∞
∑

n=−∞

x(t− 3n) where x(t) =







0 t < 0 or t > 3
t 0 < t < 1
1 1 < t < 3

Solutions

(a) We need to find a minimal time interval in which each term in fa(t) starts/ends a cycle.

The period of sin(2t) is π. So it starts/ends a cycle at 0, π, 2π, 3π, 4π, . . .

The period of 2 cos(3t+ π/4) is 2π/3. So it starts/ends a cycle at 0, 2π/3, 4π/3, 2π, 8π/3, . . .

The period of cos(t/2) is 4π. So it starts/ends a cycle at 0, 4π, 8π, . . .

Each term starts a cycle at t = 0 and ends a cycle at t = 4π.

Thus f1(t) is periodic with period T = 4π, so ω0 = 1/2.

To verify this is correct, note that

f1(t− 4π) = sin(2t− 8π) + 2 cos(3t+ π/4− 12π)− cos(t/2− 2π)

= sin(2t) + 2 cos(3t+ π/4)− cos(t/2) = f1(t).

(b) f2(t) is a way of writing a periodic function with period T = 3, so ω0 = 2π/3.

To verify this is correct, note that

f2(t− 3) =

∞
∑

n=−∞

x(t− 3n− 3) =

∞
∑

n=−∞

x(t− 3(n+ 1)) =

∞
∑

k=−∞

x(t− 3k) = f2(t).



Example 4

Find the Fourier series components Fn of f(t) = sin4(t).

Solutions

We could use the standard method of integrating f(t)e−jω0nt in a period to find Fn; however, using
Euler’s formula, we have

sin4(t) =

(

ejt − e−jt

2j

)4

=
1

16

(

(

ejt − e−jt
)2
)2

=
1

16

(

e2jt + e−2jt − 2
)2

=
1

16

(

e4jt + e−4jt − 4e2jt − 4e−2jt + 6
)

.

Thus ω0 = 2 and

Fn =















1/16 n = ±2
−1/4 n = ±1
3/8 n = 0
0 otherwise

and in fact

f(t) =
1

8
(cos(4t)− 4 cos(2t) + 3)



Example 5

Find the Fourier Series components Fn of the periodic function f(t), where A,B,C > 0.

... ...

A−A

B

C

f(t)

Solutions

In order to represent f(t) as a Fourier series, we need its period and a mathematical expression for its
behavior in a period.

T = 2A+ C → ω0 =
2π

2A+ C

since f(t+ (2A+ C)) = f(t) for all t

Over a period [−A,A + C] :

f(t) =

{

B −A ≤ t < A
0 A ≤ t < A + C

So we can select the period we integrate to be [−A,A+ C], so we have

Fn =
1

T

∫ A+C

−A

f(t) e−jnω0t dt

=
1

T

∫ A

−A

B e−jnω0t dt+
1

T

∫ A+C

A

0 e−jnω0tdt

=
B

T

e−jnω0t

−jnω0

∣

∣

∣

∣

A

t=−A

=
B

−jnω0T

(

e−jnω0A − ejnω0A
)

=
B

jn2π

(

ejnω0A − e−jnω0A
)

=
B

nπ
sin (nω0A) =

B

nπ
sin

(

2πnA

2A+ C

)

.

We have one problem. F0 is not well-defined, since in the expression for Fn, we divide by 0 when
n = 0, so we have to calculate F0 separately:

F0 =
1

T

∫ t0+T

t0

f(t) dt =
1

T

∫ A

−A

B dt =
2AB

2A+ C



Example 6

For the function f(t) in the previous problem, suppose that C = 2A = 2 and that f(t) is the input to

an LTI system with frequency response

H(ω) =

{

2ejnπ/2 |ω| < π
0 else

Find the output y(t) as a sum of sines and/or cosines.

Solutions

If C = 2A = 2, then f(t) is a square wave with some DC offset, the fundamental frequency is ω0 =
π
2

and for n 6= 0, we have:

Fn =
B

nπ
sin

(πn

2

)

and F0 =
B

2

We are sending a sum of scaled exponentials into an LTI system, so we have

f(t) =
∞
∑

n=−∞

Fne
jπnt/2 → H(ω) → y(t) =

∞
∑

n=−∞

FnH(πn/2)ejπnt/2.

Thus y(t) is also a sum of scaled exponentials, and

FnH(πn/2) =

{

2Fne
jnπ/2 |πn/2| < π
0 else

∣

∣

nπ
2

∣

∣ < π if and only if n = −1, 0, 1, i.e. the only terms that “survive” the filter are those indexed by

n = ±1, 0. In particular,

F0 =
B

2
, F1 =

B

π
sin(π/2) =

B

π
, F

−1 =
B

−π
sin(−π/2) =

B

π
.

and so

Fn H(ω0n) =















B n = 0
2jB/π n = 1
−2jB/π n = −1

0 else

where we use the fact ejπ/2 = j. Thus

y(t) = F
−1H(−π/2) e−jπt/2 + F0H(0) + F1H(π/2) ejπt/2

= B +
2jB

π

(

ejπt/2 − e−jπt/2
)

= B −
4B

π

(

ejπt/2 − e−jπt/2

2j

)

= B −
4B

π
sin(πt/2)


