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Fourier Series Properties

We can represent a periodic function as a sum of sinusoidal components with different coefficients, i.e.
a Fourier Series. However, the calculations of the coefficients is often tedious and time-consuming. We
can use the properties of the Fourier series to simplify calculations of similar signals. Proving each of
these properties is a good exercise.

Fourier Series as an Input to an LTI System

A Fourier series is a sum of sinusoidal components. We know how to analyze LTI systems for sinusoidal
inputs, so by linearity, we can determine the output when we have a periodic input. Let x(t) be periodic
with fundamental frequency ω0, then

x(t) =

∞
∑

n=−∞

Xn e
jω0nt −→ H(ω) −→ y(t) =

∞
∑

n=−∞

H(nω0)Xn e
jω0nt

Notice that y(t) is also a periodic function with fundamental frequency ω0. We can represent y(t) using
a Fourier series with coefficients:

Yn = XnH(nω0)

Linearity and Scaling

If we have two periodic functions f(t) and g(t) with fundamental frequency ω0 and coefficients Fn and
Gn respectively.

Let h(t) = a f(t) + b g(t)

h(t) will also be periodic with fundamental frequency ω0 and coefficients:

Hn = aFn + bGn

Time Reversal

If we have two periodic functions f(t) and g(t) such that g(t) = f(−t), then Gn = F−n.

Time Shifting

If we have two periodic functions f(t) and g(t) such that g(t) = f(t− t0), then Gn = Fn e
−jω0nt0 .

Time Scaling

If we have two periodic functions f(t) and g(t) such that g(t) = f(at) and the fundamental frequency

of f(t) is ω0, then Gn = Fn, but the fundamental frequency of g(t) is aω0.
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Time Derivative

If we have two periodic functions f(t) and g(t) such that g(t) =
df(t)

dt
, then Gn = jω0nFn.

Time Multiplication

If we have three periodic functions f(t), g(t), and h(t) such that h(t) = f(t) g(t), the coefficients for
h(t) can be determined from the coefficients for f(t) and g(t)

Hn =

∞
∑

k=−∞

Fk Gn−k

Parseval’s Theorem

The average power in a period of a periodic function can be calculated two ways:

Pavg =
1

T

∫

T

|f(t)|2 dt =
∞
∑

n=−∞

|Fn|
2

Sometimes the calculations for one method are much simpler than the other.

Real Functions

If f(t) is a real function, then Fn = F ∗
−n. The Fourier series of a real function can be simplified to a

sum of sines and cosines.

This follows from the fact that for a real function f(t) = f ∗(t).

Imaginary Functions

If f(t) is an imaginary function, then Fn = −F ∗
−n

This follows from the fact that for an imaginary function f(t) = −f ∗(t).

Even Functions

If f(t) is an even function, then Fn = F−n. The Fourier series of an even function can be simplified to
a sum of cosines.

This follows from the fact that for an even function f(t) = f(−t).

Odd Functions

If f(t) is an odd function, then Fn = −F−n. The Fourier series of an odd function can be simplified to

a sum of sines.

This follows from the fact that for an odd function f(t) = −f(−t).



Example 1

Write f(t) as a sum of sines and cosines and find the average power in a period, where

... ...

A

−A

1−1

f(t)

Solutions

We note that f(t) has period 2 and in the period [−1, 1), f(t) = At. So for all n 6= 0, we have

Fn =
1

T

∫

T

f(t)e−jω0nt dt =
A

2

∫ 1

−1

te−jπnt dt

=
A

−j2πn

(

te−jπnt
∣

∣

1

−1
−

∫ 1

−1

e−jπnt dt

)

=
−A

j2πn

(

e−jπn + ejπn +
1

jπnt

(

e−jπn − ejπn
)

)

=
−A

jπn
(−1)n.

In the second line, we divide by 0 when n = 0, so

F0 =
A

2

∫ 1

−1

t e0 dt = 0.

Thus we have

f(t) =
∞
∑

n=−∞

Fne
jω0nt =

∞
∑

n=1

−A

jπn
(−1)nejπnt −

−A

jπn
(−1)−ne−jπnt

= −A

∞
∑

n=1

(−1)n
(

ejπnt − e−jπnt

jπn

)

= −2A

∞
∑

n=1

(−1)n

πn
sin(πnt)

The average power in a period is a straight-forward calculation in the time domain:

1

2

∫ 1

−1

f(t)2 dt =
A2

2

∫ 1

−1

t2 dt =
A2

3
.

By Parseval’s Theorem:

A2

3
=

∞
∑

n=−∞

|Fn|
2 =

∞
∑

n=−∞
n 6=0

∣

∣

∣

∣

−A

jπn
(−1)n

∣

∣

∣

∣

2

=
∞
∑

n=−∞
n 6=0

A2

π2n2
=

∞
∑

n=1

2A2

π2n2

Thus we have
π2

6
=

∞
∑

n=1

1

n2

which is a beautiful bit of mathematics :)



Example 2

Write g(t) as a sum of sines and cosines and find the Fourier series components Gn, where

... ...

1

g(t)

1−A

A + 1

Solutions

Note that we have g(t) = −f(2t− 1) + 1, so

g(t) = 1 + 2A

∞
∑

n=1

(−1)n

πn
sin(πn(2t− 1)).

In order to find Gn in terms of Fn, let’s use some intermediate steps:

Let x(t) = −f(t− 1), then x(t) is periodic with period 2 and Xn = −Fne
−jπn.

Let y(t) = x(2t), then y(t) is periodic with period 1 and Yn = Xn.

Then g(t) = y(t) + 1, so for n 6= 0,

Gn = −Fn(−1)n =
A

jπn

and G0 = F0 + 1 = 1.

Example 3

Suppose g(t) is the input to an LTI system with frequency response H(ω) = 1, when |ω| > π and is 0
otherwise. Plot the output w(t).

Solutions

Since g(t) is periodic with period 1, w(t) is also periodic with period 1 and the Fourier series coeffi-
cients of w(t) are given by

Wn = H(ω0n)Gn = H(2πn)Gn =

{

Gn if |2πn| > π
0 otherwise

So we have Wn = Gn for all n 6= 0 and W0 = 0, which implies w(t) = g(t)−G0 = g(t)− 1.

... ...

A

−A

1

w(t)



Example 4

Calculate the Fourier series components Xn of x(t). Simplify the expression for Xn to be purely real.

...

...

x(t) cos t

7π/2

Solutions

x(t) is a periodic function with period T = 4π and fundamental frequency ω0 = 1/2, and

x(t) =

{

cos t |t| ≤ π/2
0 π/2 < t < 7π/2

So for all n 6= ±2, we have

TXn =

∫

T

x(t)e−jω0nt =

∫ π/2

−π/2

cos(t)e−jnt/2 dt

=
1

2

∫ π/2

−π/2

ejt(1−n/2) + e−jt(1+n/2) dt

=
1

2

(

ejt(1−n/2)

j(1− n/2)
+

e−jt(1+n/2)

−j(1 + n/2)

)
∣

∣

∣

∣

π/2

−π/2

=
1

2j

(

ejπ/2e−jπn/4 − e−jπ/2ejπn/4

1− n/2
−

e−jπ/2e−jπn/4 − ejπ/2ejπ/4

1 + n/2

)

=
1

2j

(

je−jπn/4 + jejπn/4

1− n/2
+

je−jπn/4 + jejπ/4

1 + n/2

)

= cos(πn/4)

(

1

1− n/2
+

1

1 + n/2

)

= cos(πn/4)
2

4− n2

Since we divide by zero when n = ±2, we must calculate X2 and X−2 separately, but since x(t) is
even, so Xn is also even, so X2 = X−2.

TX2 =
1

2

∫ π/2

−π/2

1 + e−2jt

=
π

2
+

e−2jt

−2j

∣

∣

∣

∣

π/2

−π/2

=
π

2
+

ejπ − e−jπ

−2j
= π/2.

Thus for all integers n, we have

Xn =















1/8 n = ±2

cos(πn/4)

2π(4− n2)
n 6= ±2



Example 5

Express the Fourier series components of z(t) in terms of the Fourier series components of x(t).
...

... z(t)

sin t

3π

Solutions

z(t) is a periodic function with period 4π. Note that

z(t) = 1− x(t + π/2).

Hence for all n 6= 0, we have

Zn = −ejnπ/4Xn

and Z0 = 1−X0.

Example 6

Express the Fourier series components of r(t) in terms of the Fourier series components of x(t). What

is the DC component of r(t)? (i.e. R0)

...

...

r(t)

sin t

π/2 3π/2−3π

Solutions

r(t) is a periodic function with period 4π. Note that taking the derivative of x(t) yields

...

...

d
dt
x(t)

− sin t
7π/2

Then multiplying by −1 and shifting this function to the left by π gives us r(t). Hence

r(t) = −
d

dt
x(t− π).

Thus by the linearity, time-shifting, and time derivative properties, for all integers n, we have

Rn = −
(

j
n

4

)

e−jnπ/4Xn



By plugging n = 0 into the expression for Rn, we get R0 = 0. Alternatively, recall that

R0 =
1

T

∫

T

r(t) dt

which is the average value of r(t) in a period T . The average value of r(t) is clearly 0.


