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Fourier Transform

Prior to now, our analysis of linear systems (circuits) has been limited to periodic functions. How can
we analyze outputs of LTI systems when the inputs are not periodic? If we could represent an aperiodic
function as a sum of sinusoids (as we did with periodic functions using the Fourier series), then we
could analyze LTI systems with aperiodic inputs.

We can do exactly this using the Fourier transform to represent a function as a continuous sum (i.e.
an integral) of sinusoidal components. We can think of an integral as a summation where the distance
between the terms approaches zero, so the Fourier transform can be thought of as a Fourier series with
infinite period (thus ω0 → 0).

For a function f(t), we can write the Fourier transform of f(t), denoted F (ω), as:

F (ω) = F(f(t)) =

∫ ∞

−∞

f(t)e−jωtdt

We can write f(t) in terms of its Fourier transform by:

f(t) = F−1(F (ω)) =
1

2π

∫ ∞

−∞

F (ω)ejωtdω

For periodic functions, the components of the Fourier series, Fn, each represent the contribution from
the sinusoid with frequency nω0. The components of the Fourier transform are represented as a contin-
uous function, rather than discrete points, i.e. rather than only having contributions from sinusoids at
frequencies at multiples of the fundamental frequency, non-periodic functions can have contributions
from sinusoids at ALL frequencies. This is akin to having ω0 → 0.

Fourier Transform as an Input to an LTI System:

The Fourier transform is an integral (similar to a sum with infinitesimally small intervals) of sinusoidal
components. We can use this property and the fact the system is linear to give us an input output
relationship. For any input x(t).

x(t) =
1

2π

∫ ∞

−∞

X(ω) ejωt dω −→ H(ω) −→ y(t) =
1

2π

∫ ∞

−∞

H(ω)X(ω) ejωt dω

We can represent y(t) as its Fourier Transform:

Y (ω) = X(ω)H(ω)

Note: y(t) 6= x(t) h(t) 6= x(t)H(ω), etc. H(ω) is the Fourier transform of the impulse response h(t).

The Fourier transform is a one-to-one mapping, so if we know either the time function or the frequency
function, we know the other as well. It is often convenient or useful to go back and forth between the
time and frequency representations of functions.

Please report any typos/errors to j2connelly@ucsd.edu



Other applications

Our main use of the FT right now is for LTI system analysis, but this extends to many different appli-
cations. If we are transmitting or broadcasting data, we may care about the bandwidth that we use. By

taking the Fourier transform of a signal, we can see what range of frequencies contribute to our signal.

Different materials respond differently to different frequency signals (i.e. water essentially acts as a
LPF, blocking high frequencies and allowing low). By knowing what frequencies our signal spans, we
can determine if our signal will deteriorate.

Example 1

For real numbers t0 ≥ 0 and a > 0, determine the Fourier transforms (Frequency domain representa-

tion) of f(t) and g(t), where

f(t) =

{

0 for t < t0
e−a (t−t0) for t ≥ t0

and g(t) =

{

0 for t > t0
ea (t−t0) for t ≤ t0

Solutions

Both are fairly straight-forward calculations from the definition of the Fourier transform:

F (ω) =

∫ ∞

−∞

f(t)e−jωtdt =

∫ ∞

t0

e−a (t−t0) e−jωtdt

= ea t0

∫ ∞

t0

e−t(a+jω)dt = ea t0
e−t(a+jω)

−(a + jω)

∣

∣

∣

∣

∞

t=t0

= ea t0
e−t0(a+jω) − 0

(a+ jω)
=

e−jωt0

a + jω

G(ω) =

∫ ∞

−∞

g(t)e−jωtdt =

∫ t0

−∞

ea (t−t0) e−jωtdt

= e−a t0

∫ t0

−∞

et(a−jω)dt = e−a t0
et(a−jω)

(a− jω)

∣

∣

∣

∣

t0

t=−∞

= e−a t0
et0(a−jω) − 0

(a− jω)
=

e−jωt0

a− jω

Note that if t0 = 0, then f(t) = g(−t) and F (ω) = G(−ω). We will generalize this property later on.



Example 2

Determine the output to an LTI system H(ω) when the input is x(t) =

{

0 for t < 0
e−a t for t ≥ 0

and the

impulse response of H(ω) is h(t) =

{

0 for t > 0
ea t for t ≤ 0

.

Solutions

From the previous problem x(t) is f(t) with t0 = 0 and h(t) is g(t) with t0 = 0, so we have:

X(ω) =
1

a+ jω
and H(ω) =

1

a− jω
.

x(t) → H(ω) → y(t)

⇒ Y (ω) = X(ω)H(ω) =
1

a+ jω

1

a− jω

We could try to compute the inverse Fourier transform of Y (ω) at this point, but the integral will be
messy... instead let’s try to get Y (ω) in a form we know the inverse Fourier transform of. Using partial
fractions, we have:

Y (ω) =
A

a+ jω
+

B

a− jω

=
A (a− jω) + (B (a+ jω)

(a+ jω) (a− jω)

⇒ 1 = A (a− jω) +B (a+ jω)

⇒ 1/a = (A+B) and 0 = B − A ⇒ A = B =
1

2a

and so we have

Y (ω) =
1

2a

(

1

a + jω
+

1

a− jω

)

=
1

2a
(X(ω) +H(ω))

Taking the Fourier transform is a linear operation so:

y(t) =
1

2a
(x(t) + h(t)) =

1

2a

{

ea t for t ≤ 0
e−a t for t ≥ 0

=
1

2a
e−a|t|



Example 3

If x(t) = e−2|t| cos(2t) is the input to an LTI system and y(t) = 0.5 e−2|t−1| cos(2t− 2) is the output,

what is the frequency response H(ω) of the system?

Solutions

Recall Y (ω) = X(ω)H(ω), so if we can calculate Y (ω) and X(ω), we can find H(ω). However, this
is a potentially messy calculation, so if we can write Y (ω) in terms of X(ω), we may be able to find
H(ω) without much calculation.

Notice y(t) = 0.5 x(t− 1). We can write y(t) in terms of its Fourier transform and do some manipula-
tion to find Y (ω) in terms of X(ω).

1

2π

∫ ∞

−∞

Y (ω)ejωtdω = y(t) = 0.5 x(t− 1) = 0.5

(

1

2π

∫ ∞

−∞

X(ω)ejω(t−1)dω

)

=
1

2π

∫ ∞

−∞

(

0.5X(ω)e−jω
)

ejωtdω

Since the Fourier transform is a one-to-one mapping, this implies Y (ω) = 0.5X(ω) e−jω, and so

H(ω) =
Y (ω)

X(ω)
= 0.5 e−jω

Example 4

Determine the Fourier transform of the function g(t) = f(t) x(t) where

f(t) =

{

0 for t < 0
e−a t for t ≥ 0

and x(t) = t

Solutions

G(ω) =

∫ ∞

−∞

g(t) e−jωt dt =

∫ ∞

0

t e−a t e−jωt dt =

∫ ∞

0

t e−t(a+jω) dt

Need to use integration by parts, so let

u(t) = t →
du(t)

dt
= 1

dv(t)

dt
= e−t(a+jω) → v(t) =

e−t(a+jω)

−(a+ jω)

G(ω) =

∫ ∞

0

t e−t(a+jω) dt =

∫

u(t)
dv(t)

dt
dt = u(t) v(t)

∣

∣

∣

∣

∞

0

−

∫ ∞

0

v(t)
du(t)

dt
dt

= t
e−t(a+jω)

−(a + jω)

∣

∣

∣

∣

∞

0

+
1

a+ jω

∫ ∞

0

e−t(a+jω) dt =
e−t(a+jω)

(a + jω)2

∣

∣

∣

∣

∞

0

=
1

(a+ jω)2
.



Note: lim
t→∞

t e−t (a+jω) = t e−t a e−t jω =
(

lim
t→∞

te−a t
) (

lim
t→∞

e−t jω
)

= 0
(

lim
t→∞

e−t jω
)

= 0.


