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Impulse Function

The impulse function is an unusual function we use in linear system analysis because of its numerous
useful properties. We cannot create a true impulse in real life (since it would require infinite magnitude
at an infinitely precise point in time), but we can approximate it well enough to be able to apply its
mathematical model to analyze real-life systems.

The impulse function is defined in the follow way:

δ(t) =
du(t)

dt
=

{

“∞” for t = 0
0 else

and

∫ b

a

δ(t) dt =

{

1 for a < 0 < b
0 else

i.e. its height at time t = 0 is infinite but is zero elsewhere, and the area under the curve is 1.

Note that by evaluating the second equation when a = −∞ and b = t, we have

u(t) =

∫ t

−∞

δ(τ) dτ

which makes sense, since

δ(t) =
d

dt
u(t).

i.e. the slot of u(t) is zero everywhere, except at 0, where it is infinite.

It may seem that multiplication is not well-defined for the delta function, since its height is infinite, but
multiplying the delta function by a constant will change its area (i.e. the value of its integral).

That is:

∫ b

a

C δ(t) dt = C

∫ b

a

δ(t) dt =

{

C for a < 0 < b
0 else

This area-scaling property gives us the following relationship:

∫ b

a

x(t) δ(t− t0) dt =

∫ b

a

x(t0) δ(t− t0) dt =

{

x(t0) for a < t0 < b
0 else

The delta function is non-zero at a single point in time t0, so the product x(t) δ(t − t0) = 0 for all
t 6= t0. At the instant t = t0, the value of x(t) is x(t0), so it acts as a scalar multiplier for the area. This
implies

F(δ(t)) =

∫

∞

−∞

δ(t)e−jωt dt = e0
∫

∞

−∞

δ(t) dt = 1

and similarly

F−1(δ(ω)) =
1

2π

∫

∞

−∞

δ(ω)ejωt =
1

2π

Please report any typos/errors to j2connelly@ucsd.edu



Impulse Response

We have always dealt with LTI systems in terms of their transfer function H(ω). Another way to
determine the transfer function of an LTI system is to input an impulse function to the system.

δ(t) −→ H(ω) −→ h(t)

h(t) = F−1(H(ω))F(δ(t)) ) = F−1(H(ω))

One way to determine the transfer function of a circuit/system is to send in a very brief, very high
amplitude voltage/current/etc. “spike” into the circuit/system. This will produce some output h(t). We
could then take the Fourier transform of h(t) to find H(ω). With very complicated circuits, this can be
easier than calculating H(ω) analytically.

Example 1

What is δ(t) sin(t) and
∫

∞

−∞
δ(t− π/4) cos(t) dt?

Solutions

δ(t) = 0 for all t 6= 0 and sin(0) = 0, so δ(t) sin(t) =

{

(0) sin(t) for t 6= 0
δ(0) (0) for t = 0

Thus δ(t) sin(t) = 0.

δ(t− π/4) = 0 for all t 6= π/4 and cos(π/4) = 1/
√
2, so

∫

∞

−∞

δ(t− π/4) cos(t) dt =
1√
2

∫

∞

−∞

δ(t− π/4) dt =
1√
2
.

Example 2

If the impulse response of a system is h(t) = δ(t− 4)− 2 δ(t) + δ(t+ 4)

(a) Determine H(ω) as a purely real function.

(b) Write the output y(t) in terms of x(t) for arbitrary x(t).

(c) Let x(t) = rect(t/8). Write y(t) as a piece-wise function and as a sum of unit step functions.

Solutions

(a)

H(ω) = F(h(t) = F(δ(t− 4))− 2F(δ(t)) + F(δ(t+ 4)) (by linearity property)

= F(δ(t)) e−jω4 − 2F(δ(t)) + F(δ(t)) ejω4 (by time-shifting property)

= −2 + e−jω4 + ejω4 = −2 + 2 cos(4ω)

(b) x(t) −→ H(ω) −→ y(t) so

Y (ω) = X(ω)H(ω)

= X(ω) (−2 + e−jω4 + ejω4)

= −2X(ω) + e−jω4X(ω) + ejω4X(ω)

y(t) = F−1(Y (ω))

= −2F−1(X(ω)) + F−1(e−jω4X(ω)) + F−1(ejω4X(ω)) (by linearity property)

= −2 x(t) + x(t− 4) + x(t+ 4) (by time-shifting property)



(c) Recall: rect (t) =

{

1 for −1/2 ≤ t ≤ 1/2
0 else

So x(t + 4) is a rectangle of height 1, width 8, centered at −4.

−2 x(t) is a rectangle of height −2, width 8, centered at 0.

x(t− 4) is a rectangle of height 1, width 8, centered at t = 4. Thus,

y(t) = rect

(

t+ 4

8

)

− 2 rect

(

t

8

)

+ rect

(

t− 4

8

)

=







−1 for |t| ≤ 4
1 for 4 < |t| ≤ 8
0 for |t| > 8

= u(t+ 8)− 2u(t+ 4) + 2u(t− 4)− u(t− 8).

Example 3

If the input to an LTI system is x(t) =
d

dt
∆(t/5), determine the output, y(t), where the impulse response

of the system is h(t) = u(t).

Solutions

Recall ∆(t) =

{

1− 2|t| for −1/2 ≤ t ≤ 1/2
0 else

Let f(t) = ∆(t/5). Then by derivative property, X(ω) = jω F (ω).

Since x(t) → H(ω) → y(t), we have

Y (ω) = H(ω)X(ω) = H(ω) (jωF (ω)) = (jωH(ω))F (ω).

By derivative property, F−1 (jω H(ω)) =
d

dt
u(t) = δ(t), so jωH(ω) = 1.

Thus Y (ω) = F (ω) and y(t) = f(t) = ∆(t/5).

Alternatively, we could have calculated X(ω) and used it to calculate Y (ω), but instead we used the
properties of the Fourier transform to save ourselves some work. Directly calculating Y (ω) and y(t) is
a good exercise.

Example 4:

Let a be a real number. Suppose (t− a)u(t− a) is the input to an LTI system with frequency response

H(ω) = jω. Find the output of such a system.

Solutions

If x(t) is the input to H(ω), then the Fourier transform of the output is given by X(ω)H(ω), where
X(ω) is the Fourier transform of x(t). Thus Y (ω) = jωX(ω), so by the time-derivative property,
y(t) = d

dt
x(t).

Thus the output when tu(t) is the input is:

d

dt
(tu(t)) = 1u(t) + tδ(t) = u(t).

Then by the time invariance of the system, when (t− a)u(t− a) is the input, u(t− a) is the output.


