University of California, San Diego ECE 45 Spring 2014 Midterm Exam 2

Massimo Franceschetti

Print your name:	 	
·		
Student ID Number:		

• No Books, No Notes, No calculators allowed

Question	Score
1	/25
2	/40
3	/20
4	/15
Total:	/100

 TABLE 4.1
 PROPERTIES OF THE FOURIER TRANSFORM

	Aperiodic signal	Fourier transform
	x(t)	$X(j\omega)$
	y(t)	$Y(j\omega)$
Linearity	ax(t) + by(t)	$aX(j\omega) + bY(j\omega)$
•	* * * * * * * * * * * * * * * * * * * *	$e^{-j\omega t_0}X(j\omega)$
9	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	$X(j(\omega-\omega_0))$
	• •	$X^*(-j\omega)$
	• •	$X(-j\omega)$
Time and Frequency	x(at)	$\frac{1}{ a }X\left(\frac{j\omega}{a}\right)$
Convolution	x(t) * y(t)	$X(j\omega)Y(j\omega)$
Multiplication	x(t)y(t)	$\frac{1}{2\pi} \int_{-\infty}^{+\infty} X(j\theta) Y(j(\omega-\theta)) d\theta$
Differentiation in Time	$\frac{d}{dt}x(t)$	$j\omega X(j\omega)$
Integration	$\int_{-\infty}^{t} x(t)dt$	$rac{1}{j\omega}X(j\omega) + \pi X(0)\delta(\omega) \ jrac{d}{d\omega}X(j\omega)$
Differentiation in Frequency	tx(t)	$j\frac{d}{d\omega}X(j\omega)$
		$\begin{cases} X(j\omega) = X^*(-j\omega) \\ \Re\{X(j\omega)\} = \Re\{X(-j\omega)\} \end{cases}$
Conjugate Symmetry	x(t) real	$\left\langle \mathfrak{Gm}\{X(j\omega)\}\right\rangle = -\mathfrak{Gm}\{X(-j\omega)\}$
		$ X(j\omega) = X(-j\omega) $
0	(S. 1. 1.	
Even Signals	x(t) real and even	$X(j\omega)$ real and even
Symmetry for Real and Odd Signals	x(t) real and odd	$X(j\omega)$ purely imaginary and of
Even Odd Decembe	$x_e(t) = \mathcal{E}v\{x(t)\}$ [x(t) real]	$\Re\{X(j\omega)\}$
sition for Real Sig-	$x_o(t) = Od\{x(t)\}$ [x(t) real]	$j\mathfrak{I}m\{X(j\omega)\}$
	Scaling Convolution Multiplication Differentiation in Time Integration Differentiation in Frequency Conjugate Symmetry for Real Signals Symmetry for Real and Even Signals Symmetry for Real and Odd Signals Even-Odd Decompo-	Linearity $ax(t) + by(t)$ Time Shifting $x(t - t_0)$ Frequency Shifting $e^{j\omega_0 t}x(t)$ Conjugation $x^*(t)$ Time Reversal $x(-t)$ Time and Frequency $x(at)$ Scaling Convolution $x(t) * y(t)$ Multiplication $x(t)y(t)$ Differentiation in Time $\frac{d}{dt}x(t)$ Integration $\int_{-\infty}^{t} x(t)dt$ Differentiation in $tx(t)$ Frequency Conjugate Symmetry $tx(t)$ Frequency $tx(t)$ $tx(t)$ Frequenc

TABLE 4.2 BASIC FOURIER TRANSFORM PAIRS

Signal Fourier transform		Fourier series coefficients (if periodic)	
$\sum_{k=-\infty}^{+\infty} a_k e^{jk\omega_0 t}$	$2\pi\sum_{k=-\infty}^{+\infty}a_k\delta(\omega-k\omega_0)$	a_k	
$e^{j\omega_0 t}$	$2\pi\delta(\omega-\omega_0)$	$a_1 = 1$ $a_k = 0$, otherwise	
$\cos \omega_0 t$	$\pi[\delta(\omega-\omega_0)+\delta(\omega+\omega_0)]$	$a_1 = a_{-1} = \frac{1}{2}$ $a_k = 0, \text{otherwise}$	
$\sin \omega_0 t$	$\frac{\pi}{j}[\delta(\omega-\omega_0)-\delta(\omega+\omega_0)]$	$a_1 = -a_{-1} = \frac{1}{2j}$ $a_k = 0, \text{otherwise}$	
x(t) = 1	$2\pi\delta(\omega)$	$a_0 = 1$, $a_k = 0$, $k \neq 0$ (this is the Fourier series representation for any choice of $T > 0$	
Periodic square wave $x(t) = \begin{cases} 1, & t < T_1 \\ 0, & T_1 < t \le \frac{T}{2} \end{cases}$ and $x(t+T) = x(t)$	$\sum_{k=-\infty}^{+\infty} \frac{2\sin k\omega_0 T_1}{k} \delta(\omega - k\omega_0)$	$\frac{\omega_0 T_1}{\pi} \operatorname{sinc}\left(\frac{k\omega_0 T_1}{\pi}\right) = \frac{\sin k\omega_0 T_1}{k\pi}$	
$\sum_{n=-\infty}^{+\infty} \delta(t-nT)$	$\frac{2\pi}{T}\sum_{k=-\infty}^{+\infty}\delta\left(\omega-\frac{2\pi k}{T}\right)$	$a_k = \frac{1}{T}$ for all k	
$x(t) \begin{cases} 1, & t < T_1 \\ 0, & t > T_1 \end{cases}$	$\frac{2\sin\omega T_1}{\omega}$		
$\frac{\sin Wt}{\pi t}$	$X(j\omega) = \begin{cases} 1, & \omega < W \\ 0, & \omega > W \end{cases}$		
$\delta(t)$	1	_ ^	
u(t)	$\frac{1}{j\omega} + \pi \delta(\omega)$		
$\delta(t-t_0)$	$e^{-j\omega t_0}$	-	
$e^{-at}u(t)$, $\Re e\{a\}>0$	$\frac{1}{a+j\omega}$		
$te^{-at}u(t)$, $\Re e\{a\}>0$	$\frac{1}{(a+j\omega)^2}$		
$\frac{\frac{t^{n-1}}{(n-1)!}e^{-at}u(t),}{\Re e\{a\}>0}$	$\frac{1}{(a+j\omega)^n}$		

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\omega) e^{j\omega t} d\omega$$

$$X(j\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t}dt$$

$$e^{j\theta} = \cos(\theta) + j\sin(\theta)$$

$$u(t) = \begin{cases} 0, & t < 0 \\ 1, & t \ge 0 \end{cases}$$

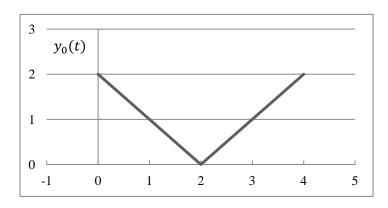
$$\delta(t) = \begin{cases} 0, & t \neq 0 \\ +\infty, & t = 0 \end{cases}$$

Problem 1) [25 pts]

a. [20 pts] Determine and plot the magnitude and the phase of the Fourier Transform of the function:

$$h(t) = \delta(t) - \left(\cos\left(t\,\frac{\pi}{2}\right) - j\sin\left(t\,\frac{\pi}{2}\right)\right) \,\frac{\sin\left(t\,\frac{\pi}{4}\right)}{t\,\pi}$$

b. [5 pts] Assume h(t) is the impulse response to an LTI system. Determine the output for the following inputs:


i.
$$x_1(t) = 2\cos\left(t\,\frac{2\pi}{3}\right)$$

ii.
$$x_2(t) = \sin(4t) + 1$$

Problem 2) [40 pts]

a. [20 pts] When the signal x(t) is sent into the LTI system with transfer function $H_0(\omega)$, the output is $y_0(t)$. Determine the transfer function $H_0(\omega)$

$$x(t) = u(t+2) - 2u(t) + u(t-2)$$

b. [5 pts] Evaluate

$$\left(\int_{-\infty}^{\infty} |X(j\omega)|^2 d\omega\right)^2$$

c. [15 pts] x(t) is sent into a new system with impulse response $h_1(t) = \delta(t-1) + \delta(t+1)$

Determine and plot the output $y_1(t)$

Problem 3) [20 pts]

a. [10 pts] If
$$F(j\omega) = B(j\omega)C(j\omega)$$
 and $G(j\omega) = \frac{e^{j\omega}}{2}B\left(\frac{j\omega}{3}\right)C\left(\frac{j\omega}{3}\right)$

Write g(t) in terms of f(t)

b. [10 pts] Give an example of an input x(t), a system $H(\omega)$, and an output $y_1(t)$ such that:

$$x(t) \to H(\omega) \to y_1(t)$$
 and $x(2t) \to H(\omega) \to y_2(t) \neq y_1(2t)$

(i.e. show that it is not generally true that the input x(2t) has the output $y_1(2t)$)

Problem 4) [15 pts]

Suppose the signal g(t) is sent into a system $H(\omega) = (2 + j\omega)$

Unfortunately, we don't know what g(t), but we do know that

$$G(j\omega) = j\frac{d}{d\omega}F(-j\omega)$$
 where $F(j\omega) = \frac{1}{2-j\omega}$

Determine the output, y(t), of the system (Hint: You can do this without performing calculus)

Bonus: [5 pts] Determine the Fourier transform of

$$x(t) = \frac{1}{2 - jt}$$