University of California, San Diego ECE 45 Spring 2016 Midterm Exam II

Massimo Franceschetti

Print your name: _______SOLUTIONS

Student ID Number:

Note: No books, notes, calculators, or other electronic devices allowed.

Question	Score
1	<mark>10</mark> / 10
2	<mark>10</mark> / 10
3	10 / 10
Total	30 / 30

Signal	Fourier Transform
x(t)	$X(j\omega)$
y(t)	$Y(j\omega)$
ax(t) + by(t)	$aX(j\omega) + bY(j\omega)$
$x(t-t_0)$	$e^{-j\omega t_0}X(j\omega)$
$e^{j\omega_0 t}x(t)$	$X(j(\omega - \omega_0))$
$x^*(t)$	$X^*(-j\omega)$
x(-t)	$X(-j\omega)$
x(at)	$\frac{1}{ a }X\left(\frac{j\omega}{a}\right)$
x(t) * y(t)	$X(j\omega)Y(j\omega)$
x(t)y(t)	$\frac{1}{2\pi}X(j\omega) * Y(j\omega)$
$\frac{d}{dt}x(t)$	$j\omega X(j\omega)$
tx(t)	$j \frac{d}{d\omega} X(j\omega)$
X(t)	$2\pi x(-j\omega)$
1	$2\pi\delta(\omega)$
$\delta(t)$	1
u(t)	$\frac{1}{j\omega} + \pi\delta(\omega)$
$\cos \omega_0 t$	$\pi[\delta(\omega-\omega_0)+\delta(\omega+\omega_0)]$
$\sin \omega_0 t$	$\left \frac{\pi}{j} [\delta(\omega - \omega_0) - \delta(\omega + \omega_0)] \right $
$e^{-at}u(t), \operatorname{Re}\{a\} > 0$	$\frac{1}{a+j\omega}$
$\begin{cases} 1, t \le T \\ 0, t > T \end{cases}$	$\frac{2\sin\omega T}{\omega}$
$\left \begin{array}{c} 0, & t > T \end{array}\right $	ω
$\frac{\sin Wt}{2}$	$\begin{cases} 1, & \omega \le W \\ 0, & \omega > W \end{cases}$
πt	$\left \begin{array}{c}0, \ \omega > W\end{array}\right $

Some Useful Formulas:

$$\begin{aligned} x(t) &= \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\omega) e^{j\omega t} d\omega \\ X(j\omega) &= \int_{-\infty}^{\infty} x(t) e^{-j\omega t} dt \\ u(t) &= \begin{cases} 1, t \ge 0 \\ 0, t < 0 \\ \delta(t) &= \frac{d}{dt} u(t) \end{cases} \\ e^{j\theta} &= \cos \theta + j \sin \theta \\ \cos \theta &= \frac{e^{j\theta} + e^{-j\theta}}{2} \\ \sin \theta &= \frac{e^{j\theta} - e^{-j\theta}}{2j} \\ \int_{-\infty}^{\infty} |x(t)|^2 dt \end{aligned}$$

$$\int_{-\infty}^{\infty} |w(t)|^{-\alpha t} dt$$
$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} |X(j\omega)|^2 d\omega$$

$$e^{j\omega_0 t} \to H(\omega) \to H(\omega_0) e^{j\omega_0 t}$$

Problem 1: [10 points]

Suppose an LTI system has impulse response

$$h(t) = \frac{\sin(mt - ma\pi^2)}{t - a\pi^2}$$

Determine the output of the system y(t), when the input to the system is

$$x(t) = \cos\left(\frac{nt}{\pi}\right) + \sin\left(\frac{2nt}{\pi}\right).$$

Version 1: m = 2, n = 6, a = 7Version 2: m = 3, n = 9, a = 8

Solution:

From the table we have,

$$\mathcal{F}\left(\frac{\sin(mt)}{t}\right) = \pi \mathcal{F}\left(\frac{\sin(mt)}{\pi t}\right) = \begin{cases} \pi & \text{if } |\omega| < m \\ 0 & \text{otherwise} \end{cases}$$

So by the time-shift property,

$$H(\omega) = \begin{cases} \pi e^{-j\omega a\pi^2} & \text{if } |\omega| < m \\ 0 & \text{otherwise} \end{cases} = \begin{cases} \pi e^{-j\pi^2\omega a} & \text{if } |\omega| < m \\ 0 & \text{otherwise.} \end{cases}$$

In general,

$$\cos(\omega_0 t) \longrightarrow H(\omega) \longrightarrow |H(\omega_0)| \cos(\omega_0 t + \angle H(\omega_0))$$

We have $n/\pi < m$ and $2n/\pi > m$, so

$$\cos\left(\frac{n}{\pi}t\right) \longrightarrow H(\omega) \longrightarrow n\cos\left(\frac{n}{\pi}t + \pi/2 - na\pi\right)$$

and

$$\sin\left(\frac{2n}{\pi}t\right) \longrightarrow H(\omega) \longrightarrow 0$$

Thus by the linearity of the system,

$$y(t) = \pi \cos\left(\frac{n}{\pi}t - na\pi\right)$$

but in both cases na is even, so

$$y(t) = \pi \cos\left(\frac{n}{\pi}t\right)$$

Problem 2: [10 points]

Recall the energy of a signal x(t) is given by $\int_{-\infty}^{\infty} |x(t)|^2 dt$. Find the energy of $x(t) = \frac{\sin(m\pi t)}{\pi t} \cos(n\pi t)$

Hint: Use Parseval's Theorem and the frequency shifting property. Version 1: m = 6, n = 7Version 2: m = 4, n = 5

Solution:

By Parseval's Theorem, we have

$$\int_{-\infty}^{\infty} |x(t)|^2 dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} |X(\omega)|^2 d\omega$$

Let $z(t) = \frac{\sin m\pi t}{\pi t}$. Then $x(t) = z(t)\cos(n\pi t) = \frac{e^{jn\pi t}z(t) + e^{-jn\pi t}z(t)}{2}$

so by the frequency shifting property

$$X(\omega) = \frac{Z(\omega - n\pi) + Z(\omega + n\pi)}{2}$$

and by the table,

$$Z(\omega) = \begin{cases} 1 & \text{if } |\omega| < m\pi \\ 0 & \text{otherwise} \end{cases}$$

which implies

$$X(\omega) = \begin{cases} 1 & \text{if } (n-m)\pi < \omega < (n+m)\pi \\ & \text{or } (-n-m)\pi < \omega < (-n+m)\pi \\ 0 & \text{otherwise} \end{cases}$$

$$\begin{aligned} & \text{Then } |X(\omega)|^2 = \left(\frac{Z(\omega-n\pi)+Z(\omega+n\pi)}{2}\right)^2 = \frac{Z(\omega-n\pi)+Z(\omega+n\pi)}{4} = \frac{1}{2}X(\omega), \end{aligned}$$
 so

$$\int_{-\infty}^{\infty} |x(t)|^2 dt = \frac{1}{2\pi} \left(\int_{(n-m)\pi}^{(n+m)\pi} \frac{1}{4} d\omega + \int_{(-n-m)\pi}^{(-n+m)\pi} \frac{1}{4} d\omega \right) = \frac{4m\pi}{8\pi} = \frac{m}{2}$$

Problem 3: [10 points]

Suppose we are trying to transmit a signal through an LTI channel that behaves as an ideal low-pass filter with cut-off frequency m. That is, the frequency response of the channel $H(\omega)$ is equal to 1 for $\omega \in [-m, m]$ and is equal to 0 otherwise.

Which of the following signals will pass through the channel without any distortion? (i.e. the output is exactly equal to the input) Justify your answers.

[2 pts]
$$x_1(t) = e^{j2mt}$$

[2 pts] $x_2(t) = \pi$
[2 pts] $x_3(t) = \text{sinc} (mt/2)$
[4 pts] $x_4(t) = (u(t) - u(t - b)) e^{-at}$

Version 1: m = 6, a = 7, b = 10Version 2: m = 4, a = 5, b = 11

Solution:

The described channel has frequency response

$$H(\omega) = \begin{cases} 1 & \text{if } |\omega| \le m \\ 0 & \text{otherwise.} \end{cases}$$

- (1) $x_1(t) = e^{j2mt}$ is a sinusoid with frequency 2m, so the output is 0 in this case.
- (2) $x_2(t) = \pi$ is a DC signal, so it passes through the LPF without distortion.
- (3) By the table, the Fourier transform of $x_3(t) = \frac{2\pi}{m} \frac{\sin(mt/2)}{\pi t}$ is

$$X_3(\omega) = \begin{cases} 2\pi/m & \text{if } |\omega_0| \le m/2\\ 0 & \text{if } |\omega_0| > m/2. \end{cases}$$

Hence $X_3(\omega)H(\omega) = X_3(\omega)$, so there is no distortion.

(4) The Fourier transform of $x_4(t)$ is

$$X_4(\omega) = \int_{-\infty}^{\infty} x_4(t) e^{-j\omega t} dt = \int_0^b e^{-t(a+j\omega)} dt = \frac{1 - e^{-b(a+j\omega)}}{a+j\omega}$$

Hence $X_4(\omega)H(\omega) \neq X_4(\omega)$, so the received signal is distorted.