University of California, San Diego ECE 45 Spring 2014 Final Examination

Massimo Franceschetti

Print your name:	
•	
Student ID Number:	

• No Books, No Notes, No calculators allowed

Question	Score
1	/35
2	/40
3	/50
4	/30
5	/45
Total:	/200

Problem 1) [35 pts]

Determine the minimum sampling frequency f_s in Hz needed to sample the following signals without aliasing:

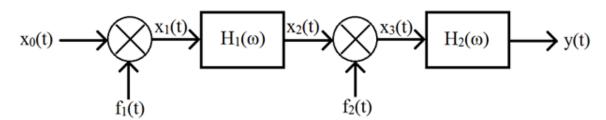
a. **[5 pts]**
$$f(t) = \cos(6000 \pi t) + 2$$

b. [10 pts]
$$h(t) = f(t) \left(\frac{\sin(1000 \pi t)}{\pi t} \right)$$

c. [10 pts]
$$x(t) = \left(\frac{\sin(1000 \pi t)}{\pi t}\right) * \left(\frac{\sin(1000 \pi t)}{\pi t}\right)$$

d. [10 pts] Determine the energy of the signal h(t) i.e. $\int_{-\infty}^{\infty} |h(t)|^2 dt$

Problem 2) [40 pts] Suppose you are trying to play your favorite song for your friend who lives very far away. Unfortunately, your friend does not have a computer, so we are forced to send the analog, continuous time signal of the song, $x_0(t)$. We are able to model the connection to your friend as the LTI system $H_1(\omega)$. In order for your friend to be able to correctly hear your song, we must have $y(t) = x_0(t)$ for the system below.


$$x_0(t) \longrightarrow H_1(\omega) \longrightarrow y(t)$$

where $FT(x_0(t)) = X_0(j\omega) \neq 0$ when $|\omega| < 2\pi \ 10^4$ and $X_0(j\omega) = 0$ when $|\omega| > 2\pi \ 10^4$

and
$$H_1(\omega) = \begin{cases} 1 & 4 \pi \ 10^4 \le \omega \le \pi \ 10^5 \\ 0 & else \end{cases}$$

a. [10 pts] Show that with this set up, your friend will not correctly hear your song.

b. [30 pts] Luckily, you have taken ECE45 and propose that, with some modifications to our system, your friend can hear your song. You claim that we can select $f_1(t)$, $f_2(t)$, and $H_2(\omega)$ such that $y(t) = x_0(t)$. What should these functions be? Show that your friend can correctly hear your song. (Hint: consider using modulation/frequency shifting)

Note: $x_1(t) = x_0(t) f_1(t)$ and $x_3(t) = x_2(t) f_2(t)$

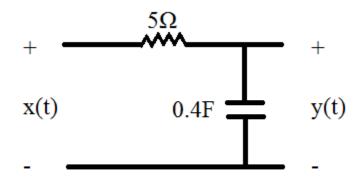
Problem 3) [50 pts]

a. [35 pts] Compute and sketch x(t) = f(t) * g(t) where

$$g(t) = \begin{cases} t & -1 \le t \le 1 \\ 0 & else \end{cases} \quad \text{and} \quad f(t) = \begin{cases} 1 & 0 \le t < 2 \\ 0 & else \end{cases}$$

b. [15 pts] Determine y(t) = f(t) * h(t) where

$$h(t) = \begin{cases} t - 1 & 0 \le t \le 2\\ 3 - t & 2 < t \le 4\\ 0 & else \end{cases}$$


(Hint: this can be done without any additional computation. Try to write h(t) in terms of g(t) and use the result from part a.)

Problem 4) [30 pts]

a. **[20 pts]** Write y(t) in its simplest form, where y(t) = x(t) * (u(t+1) - u(t-1)) and $FT(x(t)) = X(j\omega) = \pi \left[\delta(\omega - 2\pi) + \delta(\omega - 1) + \delta(\omega + 1)\right]$

- b. [5 pts] Is x(t) periodic? If so, what is its period?
- c. [5 pts] Is y(t) periodic? If so, what is its period?

Problem 5) [45 pts]

- a. [10 pts] Determine the impulse response h(t) of the above circuit
- b. [15 pts] What is y(t) when the input to is $x(t) = e^{-2t} u(t)$
- c. [20 pts] If the output of a (different) system is $y(t) = e^{-2(t-1)}u(t-1)$ when the input is x(t) = u(t), find the transfer function $H(\omega)$

TABLE 4.1 PROPERTIES OF THE FOURIER TRANSFORM

Property	Aperiodic signal	Fourier transform
	x(t) $y(t)$	$X(j\omega)$ $Y(j\omega)$
Linearity	ax(t) + by(t)	$aX(j\omega) + bY(j\omega)$
Time Shifting	$x(t-t_0)$	$e^{-j\omega t_0}X(j\omega)$
Frequency Shifting	$e^{j\omega_0 t}x(t)$	$X(j(\omega-\omega_0))$
Conjugation	$x^*(t)$	$X^*(-j\omega)$
Time Reversal	x(-t)	$X(-j\omega)$
Time and Frequency Scaling	x(at)	$\frac{1}{ a }X\left(\frac{j\omega}{a}\right)$
Convolution	x(t) * y(t)	$X(j\omega)Y(j\omega)$
Multiplication	x(t)y(t)	$\frac{1}{2\pi} \int_{-\infty}^{+\infty} X(j\theta)Y(j(\omega-\theta))d\theta$
Differentiation in Time	$\frac{d}{dt}x(t)$	$j\omega X(j\omega)$
Integration	$\int_{-\infty}^{t} x(t)dt$	$\frac{1}{j\omega}X(j\omega) + \pi X(0)\delta(\omega)$ $j\frac{d}{d\omega}X(j\omega)$
Differentiation in Frequency	tx(t)	$j\frac{d}{d\omega}X(j\omega)$
		$\begin{cases} X(j\omega) = X^*(-j\omega) \\ \Re\{X(j\omega)\} = \Re\{X(-j\omega)\} \end{cases}$
Conjugate Symmetry for Real Signals	x(t) real	$\begin{cases} \mathfrak{I}m\{X(j\omega)\} = -\mathfrak{I}m\{X(-j\omega)\} \\ X(j\omega) = X(-j\omega) \\ \not \leq X(j\omega) = -\not \leq X(-j\omega) \end{cases}$
Symmetry for Real and	x(t) real and even	$X(j\omega) = -\sqrt{X(-j\omega)}$ $X(j\omega)$ real and even
Even Signals Symmetry for Real and	x(t) real and even $x(t)$ real and odd	
Even Signals		$\hat{X}(j\omega)$ real and even $X(j\omega)$ purely imaginary and odd
	Time Shifting Frequency Shifting Conjugation Time Reversal Time and Frequency Scaling Convolution Multiplication Differentiation in Time Integration Differentiation in Frequency Conjugate Symmetry	Linearity $ax(t) + by(t)$ Time Shifting $x(t - t_0)$ Frequency Shifting $e^{j\omega_0 t}x(t)$ Conjugation $x^*(t)$ Time Reversal $x(-t)$ Time and Frequency $x(at)$ Scaling Convolution $x(t) * y(t)$ Multiplication $x(t)y(t)$ Differentiation in Time $\frac{d}{dt}x(t)$ Integration $\int_{-\infty}^{t} x(t)dt$ Differentiation in Frequency Conjugate Symmetry $x(t)$ real

TABLE 4.2 BASIC FOURIER TRANSFORM PAIRS

Signal	Fourier transform	Fourier series coefficients (if periodic)
$\sum_{k=-\infty}^{+\infty} a_k e^{jk\omega_0 t}$	$2\pi\sum_{k=-\infty}^{+\infty}a_k\delta(\omega-k\omega_0)$	$\neg a_k$
$e^{j\omega_0 t}$	$2\pi\delta(\omega-\omega_0)$	$a_1 = 1$ $a_k = 0$, otherwise
$\cos \omega_0 t$	$\pi[\delta(\omega-\omega_0)+\delta(\omega+\omega_0)]$	$a_1 = a_{-1} = \frac{1}{2}$ $a_k = 0$, otherwise
$\sin \omega_0 t$	$\frac{\pi}{j}[\delta(\omega-\omega_0)-\delta(\omega+\omega_0)]$	$a_1 = -a_{-1} = \frac{1}{2j}$ $a_k = 0, \text{otherwise}$
x(t) = 1	$2\pi\delta(\omega)$	$a_0 = 1$, $a_k = 0$, $k \neq 0$ (this is the Fourier series representation for any choice of $T > 0$
Periodic square wave $x(t) = \begin{cases} 1, & t < T_1 \\ 0, & T_1 < t \le \frac{T}{2} \end{cases}$ and $x(t+T) = x(t)$	$\sum_{k=-\infty}^{+\infty} \frac{2\sin k\omega_0 T_1}{k} \delta(\omega - k\omega_0)$	$\frac{\omega_0 T_1}{\pi} \operatorname{sinc}\left(\frac{k\omega_0 T_1}{\pi}\right) = \frac{\sin k\omega_0 T_1}{k\pi}$
$\sum_{n=-\infty}^{+\infty} \delta(t-nT)$	$\frac{2\pi}{T}\sum_{k=-\infty}^{+\infty}\delta\left(\omega-\frac{2\pi k}{T}\right)$	$a_k = \frac{1}{T}$ for all k
$x(t) \begin{cases} 1, & t < T_1 \\ 0, & t > T_1 \end{cases}$	$\frac{2\sin\omega T_1}{\omega}$	
$\frac{\sin Wt}{\pi t}$	$X(j\omega) = \begin{cases} 1, & \omega < W \\ 0, & \omega > W \end{cases}$	
$\delta(t)$	1	
u(t)	$\frac{1}{j\omega} + \pi \delta(\omega)$	_
$\delta(t-t_0)$	$e^{-j\omega t_0}$	
$e^{-at}u(t)$, $\Re e\{a\} > 0$	$\frac{1}{a+j\omega}$	
$te^{-at}u(t)$, $\Re e\{a\}>0$	$\frac{1}{(a+j\omega)^2}$	
$\frac{t^{n-1}}{(n-1)!}e^{-at}u(t),$ $\Re e\{a\} > 0$	$\frac{1}{(a+j\omega)^n}$	د.

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\omega) e^{j\omega t} d\omega \quad \leftrightarrow \quad X(j\omega) = \int_{-\infty}^{\infty} x(t) e^{-j\omega t} dt$$
$$f(t) * g(t) = \int_{-\infty}^{\infty} f(\tau) g(t - \tau) d\tau$$

$$e^{j\theta} = \cos(\theta) + j\sin(\theta)$$
$$\cos(\theta) = \frac{e^{j\theta} + e^{-j\theta}}{2}$$
$$\sin(\theta) = \frac{e^{j\theta} - e^{-j\theta}}{2j}$$

$$u(t) = \begin{cases} 0, & t < 0 \\ 1, & t \ge 0 \end{cases}$$

$$\delta(t) = \begin{cases} 0, & t \ne 0 \\ +\infty, & t = 0 \end{cases}$$

$$\omega_0 = 2\pi f_0 = \frac{2\pi}{T_0}$$