University of California, San Diego ECE 45 Spring 2019 MIDTERM EXAM 2

Massimo Franceschetti

Print your name:

Student ID Number:

Note: No books, calculators, or other electronic devices allowed.

Question	Score
Problem 1	/15
Problem 2	/10
Problem 3	/15
Total	/40

Signal	Fourier Transform
x(t)	$X(j\omega)$
y(t)	$Y(j\omega)$
ax(t) + by(t)	$aX(j\omega) + bY(j\omega)$
$x(t-t_0)$	$e^{-j\omega t_0}X(j\omega)$
$e^{j\omega_0 t}x(t)$	$X(j(\omega-\omega_0))$
$x^*(t)$	$X^*(-j\omega)$
x(-t)	$X(-j\omega)$
x(at)	$\frac{1}{ a }X\left(rac{j\omega}{a} ight)$
x(t) * y(t)	$X(j\omega)Y(j\omega)$
x(t)y(t)	$\frac{1}{2\pi}X(j\omega)*Y(j\omega)$
$rac{d}{dt}x(t)$	$j\omega X(j\omega)$
tx(t)	$jrac{d}{d\omega}X(j\omega)$
X(t)	$2\pi x(-j\omega)$
1	$2\pi\delta(\omega)$
$\delta(t)$	1
u(t)	$\frac{1}{j\omega} + \pi \delta(\omega)$
$\cos \omega_0 t$	$\pi[\delta(\omega-\omega_0)+\delta(\omega+\omega_0)]$
$\sin \omega_0 t$	$\left \frac{\pi}{j} [\delta(\omega - \omega_0) - \delta(\omega + \omega_0)] \right $
$e^{-at}u(t), \operatorname{Re}\left\{a ight\} > 0$	$\frac{1}{a+j\omega}$
$\int 1, \ t \le T$	$2\sin\omega T$
$\left \begin{array}{c} 0, \ t > T \end{array} ight $	ω
$\sin W t$	$\int 1, \ \omega \le W$
πt	$\left \begin{array}{c}0, \ \omega > W\end{array}\right $

Some Useful Formulas:

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\omega) e^{j\omega t} d\omega$$
$$X(j\omega) = \int_{-\infty}^{\infty} x(t) e^{-j\omega t} dt$$
$$(1, t \ge 0)$$

$$u(t) = \begin{cases} 1, & t \ge 0\\ 0, & t < 0 \end{cases}$$
$$\delta(t) = \frac{d}{dt}u(t)$$

$$\begin{split} e^{j\theta} &= \cos\theta + j\sin\theta\\ \cos\theta &= \frac{e^{j\theta} + e^{-j\theta}}{2}\\ \sin\theta &= \frac{e^{j\theta} - e^{-j\theta}}{2j} \end{split}$$

$$\int_{-\infty}^{\infty} |x(t)|^2 dt$$

= $\frac{1}{2\pi} \int_{-\infty}^{\infty} |X(j\omega)|^2 d\omega$

$$e^{j\omega_0 t} \to H(\omega) \to H(\omega_0) e^{j\omega_0 t}$$

1) Your ECE friend did not study very hard at UCSD and designed a strange bandpass filter with the transfer function H(w) is described below:

$$H(w) = G_{1}(w) + G_{1}(-w)$$

where $G_1(w) = u(w - (w_1 - 5)) - 0.5 * u(w - w_1) - 0.5 * u(w - (w_1 + 5))$

Assume $w_1 = 9$ for all parts.

a) Please graph H(w).

(5 Points)

b) Which of the following signals will be "Completely Filtered out", "Distorted" or "Pass through undistorted" ? Please justify your choice. (2.5 Points each)

i)
$$x_1(t) = sinc(w_1 t)$$

ii)
$$x_2(t) = cos(8t) + sin(8t)$$

- iii) $x_3(t) = j$
- iv) $x_4(t) = \delta(t)$

2) Find the frequency response, H(w), for the following expression:

(10 points)

$$b \cdot y(t) - c \cdot \frac{d(y(t))}{dt} - \frac{d^2(y(t))}{dt^2} = x(t) + \frac{d(x(t))}{dt}$$

where b=4, c=3.

3) You have a system $x(t) \rightarrow H(w) \rightarrow y(t)$. Your input x(t) is composed of two functions multiplied by cosines as seen below:

$$x(t) = \cos(at) * f(t) + \cos(bt) * g(t)$$

The fourier transforms of $f(t) \rightarrow F(w)$ and $g(t) \rightarrow G(w)$ are defined below:

$$G(w) = \begin{cases} 1 - |w| & -1 \le w \le 1 \\ 0 & e/se \end{cases} \qquad F(w) = \begin{cases} 1 & -1 \le w \le 1 \\ 0 & e/se \end{cases}$$

H(w) is given below:

Assume $w_1 = 5$, a = 3, b = 7 for all parts

- a) Draw X(w) in the frequency domain.
- b) Find Y(w).
- c) Find y(t).

(4 Points)

- (6 Points) (5 Points)
- (51 01113)