University of California, San Diego ECE 45 Midterm Exam 2

Massimo Franceschetti

• No Books, No Notes, No calculators allowed

Question	Score
1	
2	
3	
4	
5	
0	

Section	Property	Aperiodic signal	Fourier transform
		x(t)	$X(j\omega)$
		<i>y</i> (<i>t</i>)	$Y(j\omega)$
4.3.1	Linearity	ax(t) + by(t)	$aX(j\omega) + bY(j\omega)$
4.3.2	Time Shifting	$x(t-t_0)$	$e^{-j\omega t_0}X(j\omega)$
4.3.6	Frequency Shifting	$e^{j\omega_0 t}x(t)$	$X(j(\omega - \omega_0))$
4.3.3	Conjugation	$x^*(t)$	$X^*(-j\omega)$
4.3.5 4.3.5	Time Reversal Time and Frequency	x(-t) x(at)	$\frac{X(-j\omega)}{ a } X\left(\frac{j\omega}{a}\right)$
	Scaling		$ a \langle a \rangle$
4.4	Convolution	x(t) * y(t)	$X(j\omega)Y(j\omega)$
4.5	Multiplication	x(t)y(t)	$\frac{1}{2\pi} \int_{-\infty}^{+\infty} X(j\theta) Y(j(\omega-\theta)) d\theta$
4.3.4	Differentiation in Time	$\frac{d}{dt}x(t)$	$j\omega X(j\omega)$
4.3.4	Integration	$\int_{-\infty}^{t} x(t) dt$	$\frac{1}{j\omega}X(j\omega) + \pi X(0)\delta(\omega)$
4.3.6	Differentiation in	tx(t)	$j\frac{d}{d\omega}X(j\omega)$
	Frequency		$\int X(i\omega) = X^*(-i\omega)$
			$\begin{cases} X(j\omega) = X^*(-j\omega) \\ \Re e\{X(j\omega)\} = \Re e\{X(-j\omega)\} \\ \Im m\{X(j\omega)\} = -\Im m\{X(-j\omega)\} \\ X(j\omega) = X(-j\omega) \end{cases}$
10100100			$O(e_{X}(f\omega)) = O(e_{X}(-f\omega))$
4.3.3	Conjugate Symmetry	x(t) real	$\{9m\{X(j\omega)\} = -9m\{X(-j\omega)\}\$
	for Real Signals		$ X(j\omega) = X(-j\omega) $
			$\sphericalangle X(j\omega) = - \sphericalangle X(-j\omega)$
4.3.3	Symmetry for Real and	x(t) real and even	$X(j\omega)$ real and even
422	Even Signals	u(t) real and odd	$X(j\omega)$ purely imaginary and odd
4.3.3	Symmetry for Real and	x(t) real and odd	X(Jw) purely imaginary and out
	Odd Signals	$x_e(t) = \mathcal{E}v\{x(t)\}$ [x(t) real]	$\Re e\{X(j\omega)\}$
4.3.3	Even-Odd Decompo-		
	sition for Real Sig- nals	$x_o(t) = \mathbb{O}d\{x(t)\}$ [x(t) real]	$j \mathcal{I}m\{X(j\omega)\}$
4.3.7	Parseval's Relati	on for Aperiodic Signals	
	$\int_{0}^{+\infty} x(t) ^2 dt =$	$= \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(j\omega) ^2 d\omega$	

TABLE 4.1	PROPERTIES	OF THE	FOURIER	TRANSFORM
-----------	------------	--------	---------	-----------

TABLE	4.2	BASIC	FOURIER	TRANSFORM	PAIRS
			A Comparison of the state of the		

		Fourier series coefficients		
Signal	Fourier transform	(if periodic)		
$\sum_{k=-\infty}^{+\infty} a_k e^{jk\omega_0 t}$	$2\pi\sum_{k=-\infty}^{+\infty}a_k\delta(\omega-k\omega_0)$	a_k		
$e^{j\omega_0 t}$	$2\pi\delta(\omega-\omega_0)$	$a_1 = 1$ $a_k = 0$, otherwise		
$\cos \omega_0 t$	$\pi[\delta(\omega-\omega_0)+\delta(\omega+\omega_0)]$	$a_1 = a_{-1} = \frac{1}{2}$ $a_k = 0$, otherwise		
$\sin \omega_0 t \qquad \qquad \frac{\pi}{j} [\delta(\omega - \omega_0) - \delta(\omega + \omega_0)]$		$a_1 = -a_{-1} = \frac{1}{2j}$ $a_k = 0, \text{otherwise}$		
x(t) = 1	$2\pi\delta(\omega)$	$a_0 = 1, a_k = 0, \ k \neq 0$ (this is the Fourier series representation for any choice of $T > 0$		
Periodic square wave $x(t) = \begin{cases} 1, & t < T_1 \\ 0, & T_1 < t \le \frac{T}{2} \end{cases}$ and x(t+T) = x(t)	$\sum_{k=-\infty}^{+\infty} \frac{2\sin k\omega_0 T_1}{k} \delta(\omega - k\omega_0)$	$\frac{\omega_0 T_1}{\pi} \operatorname{sinc} \left(\frac{k \omega_0 T_1}{\pi} \right) = \frac{\sin k \omega_0 T_1}{k \pi}$		
$\sum_{n=-\infty}^{+\infty} \delta(t-nT)$	$rac{2\pi}{T}\sum_{k=-\infty}^{+\infty}\deltaigg(\omega-rac{2\pi k}{T}igg)$	$a_k = \frac{1}{T}$ for all k		
$x(t) \begin{cases} 1, & t < T_1 \\ 0, & t > T_1 \end{cases}$	$\frac{2\sin\omega T_1}{\omega}$	n e par a proclama e al comune 1955 : sua realiza en 201		
$\frac{\sin Wt}{\pi t}$	$X(j\omega) = egin{cases} 1, & \omega < W \ 0, & \omega > W \end{cases}$			
$\overline{\delta(t)}$	1	_		
<i>u</i> (<i>t</i>)	$rac{1}{j\omega}+\pi\delta(\omega)$			
$\overline{\delta(t-t_0)}$	$e^{-j\omega t_0}$	o m onean as own of line		
$e^{-at}u(t), \Re e\{a\} > 0$	$\frac{1}{a+j\omega}$	and the break of highly an in the Re		
$te^{-at}u(t), \Re e\{a\} > 0$	$\frac{1}{(a+j\omega)^2}$			
$\frac{t^{n-1}}{(n-1)!}e^{-at}u(t),$	see and set to prove them	From the line marks por		

A few more equations:

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\omega) e^{j\omega t} d\omega \qquad \qquad X(j\omega) = \int_{-\infty}^{\infty} x(t) e^{-j\omega t} dt$$
$$x(t) * h(t) = \int_{-\infty}^{\infty} x(\tau) h(t-\tau) d\tau$$

1. Evaluate the convolution

$$y(t) = f(t) * f(t)$$

Where

$$f(t) = t \cdot u(t)$$

2. Given the relationships

And

$$g(t) = x(5t) \ast h(5t)$$

y(t) = x(t) * h(t)

And that x(t) and h(t) have Fourier transforms of X(ω) and H(ω), show that g(t) has the form

$$g(t) = Ay(Bt)$$

And determine the values of A and B.

3. Determine and sketch the Fourier transform of

$$x(t) = \frac{\sin(t)\sin(t/2)}{\pi t^2}$$

Hints:

- (1) Multiplication in time corresponds to ______ in frequency.
- (2) The Fourier transform pair of a sinc function is ______.

4. (a). Given that

$$x(t) \stackrel{\mathcal{F}}{\leftrightarrow} X(j\omega)$$

Express the Fourier transform of y(t) in terms of $X(j\omega)$, where y(t) is defined as

$$y(t) = \frac{\partial^2}{\partial t^2} x(t-1)$$

(b). For

$$P(j\omega) = \cos(2\omega)\sin(w/2)$$

Is the corresponding time-domain signal p(t)

- (i) Real, imaginary, or neither?
- (ii) Even, odd, or neither?

Explain your answers / show your work!