UC San Diego J. Connelly

ECE 45 Homework 4 Solutions

Problem 4.1

Simplify the following expressions as much as possible:
(@) a(t) = (1+%) (d(t) — 26(t — 2))
(b) b(t) = cos(2t) ( )4 5(t+ 1/4))
(©) c(t) = sin(2mt) 5(1/2 — 2t)
(d) d(t) = [T(r2+6) (T —2)dr
@) e(t) = [Z(r2+6) (1 — 2) dr
® f(t)= [ 8(r—2)dr
(®) g(t) =u(t) * (5(t+2) - o(t - 2))

Solutions

We use the following properties of the impulse function:

0  otherwise.

b 1 if b
/6(7)(17:{ ifa <0<

(@) a(t) =0(t) —20(t —2) +t25(t) — 2t*5(t — 2) = 6(t) — 106(t — 2)

(b) b(t) = cos(2mt) d(t) + cos(2mt)5(t + 1/4) = 6(t)

(©) c(t) = sin(2mt) §(—2(t — 1/4)) = L sin(2mt) 6(t — 1/4) = Lo(t — 1/4)
) d(t) =10 [ 6(T —2)dr =10

(e) e(t) =10 [;°6(r —2)dr =0

(O f(1)= J* . 5(r —2)dr = {; DR —u-2)

Please report any typos/errors to j2connelly @ucsd.edu



ift < =2

1 if —2<t<?2
(@) g(t) =u(t) «6(t+2) —u(t) *x0(t —2) =u(t+2) —u(t —2) = { -
0 otherwise.
Problem 4.2
2— |t if [¢] <2
Let f(1) = ¢ 11 1Tl =
0 otherwise.

(a) Determine the function y(t) = f(t) * u(t).

(b) Determine the function z(t) = dfd—(f) s« u(t).

(c) Determine the function w(t) = f(t) * dzgt).
Solutions
We first note that

24+t if —2<t<0 y
f)y={2—t ifo<t<? :2A<Z)
0 otherwise.
(@) Wehaveu(t — 7) = 1lif 7 <tandu(t —7) =0if 7 > ¢, so
(0
t
/ (24 7)dr
—2

/_Z(2+7)d7+/0t(2—7)d7
\/_(;(2+7)d7+/02(2—7)d7

0 it < —2
@zmz if—2<t<0

RS TRe
4 ift>2.

1 if —2<t<0
(b) Wehave Z8 — £ 1 jfo<t <2
0 otherwise.

if —2<t<0

if0<t <2

ift > 2



0 ift < -2
t
/ld’T if —2<t<0

Z@%=/jﬂ&-T)%gdm*:/;g%QdT: /flmuhAY_Udr if0<t<2

0 2
/ 1d7‘+/(—1)d7‘ ift > 2
\J—2 0

0 ift < -2
24t if —2<t<0
= . = f(b).
2—t f0<t<2
0 ift > 2
(c) We have 249 — §(¢), so
du(t
w(t)y = P 0y = 500y 1) = 100
Problem 4.3
Let f(t) and g(t) be given as follows:
f(t) g(t)
1 1
1 1 2 3 4 5
—1

(a) Sketch the function: x(t) = f(t) * f(t)
(b) Show that in general (hint: take the Fourier Transform of both sides):
ifa(t) =b(t) % c(t), then b(t — to) * c(t) = a(t — to).
(c) Show that in general (hint: use the convolution integral formula):
if a(t) = b(t) * c(t), then (Mb(t)) * c(t) = Ma(t), for any real number M.
(d) Show that in general:

a(t) = (b(t) + c(t)) = a(t) = b(t) + a(t) x c(t)
(i.e. convolution is distributive with respect to addition)

(e) Write g(¢) in terms of f(¢) and use the three previous properties to solve y(t) = f(¢) * g(¢) in
terms of x(t) from part a.

(f) Solve and then sketch the function z(t) = g(t + 2) * g(¢) (hint: use shifted versions of x(t) from
part a).



Solutions

(a) We have

Jyldr if0o<t<1

/f ft—r)d {ftllldT if1<t<2

0 otherwise.
t ifo0<t<1
=4q2—-t if1<t<?2
0 otherwise.
t—1
24 ( : )

(b) Assume a(t) = b(t) * c(t). Let tg > 0. Then A(w) = B(w)C(w), and

F(b(t —to) * c(t)) = F(b(t — tg)) Flc(t)) = e B(w)C(w) = e A(w) = F(a(t —ty)).

Hence b(t — to) * c(t) = a(t — to).
(c) Assume a(t) = b(t) * c(t). Let M be a real number. Then

(Mb(t))*c(t):/_ (Mb(t —T1))c dT—M/ b(t — 1) c(r)dr = Ma(t).

(d) We have

a(t) = (b(t) + c(t)) /_OO a(t —7) (b(1) + ¢(7)) dr
(rar+ [ al

/_Za(t—f)bT)dT—l—

a(t — 1) c(r)dr = a(t) * b(t) + a(t) * c(t).

(e) We have g(t) = f(t) — f(t —2) + f(t — 4), so
F@)xg(t) = &) = f(£) = f(£) % f(t—=2)+ f(t) = f(t —4) = x(t) — 2(t — 2) + x(t — 4).
(f) Wehave g(t) = f(t) — f(t —2)+ f(t —4)and g(t + 2) = f(t +2) — f(t) + f(t —2), 50

9(t) * g(t+2) = F(0) % F(L+2) — (1) = F(1) + F(t) % f(t —2)
F(E—2) % fE42) 4 F(E—2) % F() = F(E—2) 5 f(E—2)
=)« f(E+2) = f(E=4) = f(t) + [t —4)* f(t = 2)
=x(t+2)—a(t) +z(t —2)
—z(t) +x(t —2) —x(t —4)
+ax(t—2)—xz(t—4)+z(t —6)
=x(t —6) — 2x(t —4) + 3z(t — 3) — 2x(t) + z(t + 2)



Problem 4.4

0 ift<0
When the input to an LTI system is the unit step function u(t), the outputis r(t) =<t if0 <t <1
1 ift > 1.

/e if0<t<e

(a) Lete > 0. Sketch the output y.(¢) when the input to the system is z.(t) = _
0 otherwise

Hint: Write z.(¢) in terms of u(¢), and use the fact the system is linear and time-invariant.
(b) Evaluate lim y.(t).
e—0
(c) Evaluate lin% z(t). Why is the impulse response h(t) equal to lin% ye(t)?
€~ €—
(d) Using the properties of the Fourier transform, prove:

if 2(t) = f(t) * g(t), then L x g(¢) = L0

(e) In general, if s(t) is the output of an LTI system when w(¢) is the input, what is the impulse
response h(t)? (s(t) is also known as the unit step response)

Solution:

(a) We have .
z(t) = - (u(t) — u(t —¢)).

By the linearity and time-invariance of the system, we have

2(t) = 2 (u(t) —ult— €) —> System —> ~(r(t) — r(t — &) = u(t).

€ €
Hence
0 ift <0 0 ift <e
ye(t) = tle f0<t<1]|— (t—e€)/e fe<t<l+e
/e ift>1 1/e ift>1+¢€
(0 ift <0
t/e if0<t<e
=<1 fe<t<l1
(I1+e—t))e fl<t<l+e
0 it > 1.
(b) We have
0 ift<O

limy(t) =4q1 if0<t<l1
e—0
0 ift>1.



(c) We have

d Cou(t) —u(t—e€)
a'V =T e

6(t) = limz(t) — | System | — lim y.(t) = A(t).

(d) Suppose z(t) = f(t) * g(t). Then we have Z(w) = F(w)G(w). Now consider the Fourier
transform of the convolution

(L o) = 7 (L) 7o) = o r) 60 = o 260) = 7 (1),

5(t) =

SO

Hence when z(t) = f(t)  g(t), we have LW x g(t) = &0

(e) Now since

we have
h(t) = h(t) + (1) = h(t) * di;f) _ d‘;(f).

Thus the impulse response is the derivative of the unit-step response.

Problem 4.5
Calculate y(t) = x(t) * h(t) when

(@) z(t) = e ‘u(t) and h(t) = u(t)

if |t] <1
(b) x(t) = e "u(t) and h(t :{ if 7 .
otherwise.
Solutions
(a) We have

yi(t) = e u(t) * u(t) = /_OO e Tu(t)u(t —7)dr

(e o]

t t .
T >
:/ e—Tu(T)dT:{foe dr =0

oo 0 ift <0
= u(t) /0 e Tdr =u(t) (1 —e™)

(b) We have h(t) = u(t + 1) — u(t — 1) in this case, so by the distributive and time-shift properties
of convolution
yo(t) = e ut) xult+1) —eult) xu(t — 1) =y (t +1) —ys(t — 1)
0 ift < -1
=ut+1)(1—e" ) —ut-1)1—-e""={1—e"" if —1<t<1
ete—1/e) ift>1



Problem 4.6
1 if3<t<5h

The output of an LTI system is y(t) = .
0 otherwise.

Determine the impulse response A(t) when the input f(¢) is

1 if0<t<L2

0  otherwise

@ f(t) :{

(b) f(t) = 2u(t)

1 ifo<t<1
<c>f(t>={ N

0 otherwise
Solutions

(a) We have
F(t)  h(t) = y(t) = F(t —3) = F(t)  5(t — 3)
so h(t) = d(t — 3).

(b) We have

F() ¥ h(t) = y(t) = u(t —3) — u(t - 5)

so h(t) = L(5(t —3) — 6(t — 5)).
(c) We have
@)« h(t) =y(t) = f(t =3)+ f(t —4) = f(t) = (0(t = 3) + (¢t — 4))
so h(t) = 6(t — 3) + 6(t — 4).

Problem 4.7

Determine the Nyquist rate of the following signals:

@ a(t) = sin(t20t)

2 sin(20t)
(b) b(t) = cos?(30t)
© ) = sty 2220
() d(t) = (@)

sin(20t) ) ? , sin(2t)
t Tt

(e) e(t) = <

I
|
=
)
~
~—
*
I
~—
>,
~~
~
I
w
N~—
I
>
~~
~
I
ot
~—
N~—r



Solutions

The Nyquist rate is twice the maximum frequency present in the signal. Specifically, let w,, be the
smallest frequency such that X (w) = 0 for all |w| > w,,. Then the Nyquist rate is 2w,,.

(a)

in(2 if 2
aft) sin(20t) s Alw) = m if w| < 0
0  otherwise.

We have A(w) = 0 for all |w| > 20, so the Nyquist rate is 40.
(b) We have

sin(20t) e sin(20t) €750 sin(20¢) 1 sin(20¢)
b(t) = cos®(30t = -
(t) = cos™(301) — 7 2t

so by the frequency shifting property of the Fourier transform
Blw) = /4 if|w —'60| < 20 n w/4  if |w +'60\ < 20 n /2 if |w] < 20
0 otherwise. 0 otherwise. 0 otherwise.

(7/4  if 40 < |w| < 80
=q7/2 if jw| <20

\ 0 otherwise.

So the Nyquist rate is 160.

(c) We have

in (20t 710t 3 20t —§10t o 20t
c(t) = cos(10t) Sln(t 0t) _ 62 sm(t 0t) G ' sm(t 0t)

so by the frequency shifting property of the Fourier transform

w/2 if jw —10] < 20 w/2 if jw+ 10| < 20
C(w) = _ + :
0 otherwise. 0 otherwise.

p

T if lw| < 10
=< 7/2 if10 < |w| < 30
0 otherwise.

\
So the Nyquist rate is 60.
(d) Define z(w) as follows:

0  otherwise.

z(w):u(w)*u(w):/_oo u(w—@)u(@)dﬁz/w w(0) df — {“’ fw=0" _ uw).



1 m  if|w] <20 m  if |w] <20
D(w) = — , * .
2 0  otherwise. 0  otherwise.

_ g (u(w — 20) — u(w + 20)) * (u(w — 20) — u(w + 20))
— g (u(w — 20) * u(w — 20) — 2u(w — 20) * u(w + 20) + u(w + 20) * u(w + 20))
= 5 (Z(w = 40) = 2Z(w) + Z(w + 40))
MVD4+w if —40<w<0
=—<40—w if0<w<40
0 otherwise
w
— 207 A <%>
so the Nyquist rate is 80.
(e) 2
sin
e(t) = d(t) x ”
SO
B sin(2t)
E(w) = D(w) ( p )

) {1 if w| < 2

0  otherwise

40—w fO0<w<?2

D
04+w if —2<w<0
0 otherwise

so the Nyquist rate is 4.
Problem 4.8

Let r(t) = f: 5(t — kT)

k=—o00
(a) Show that r(¢) is periodic with period 7.

(b) Calculate the Fourier series components R,, of r(t) and write r(¢) as its exponential Fourier
series.

(c) Show the Fourier transform R(w) of r(¢) can be written as a sum of complex exponentials or as
a sum of impulse functions.

Recall that F (/") = 276 (w — wp).

(d) Let z(t) be an arbitrary signal, and let s(t) = x(t)r(t). Why is s(t) a reasonable way to mathe-
matically model a sampled signal?



(e) Write the Fourier transform S(w) of s(t) in terms of the Fourier transform X (w) of x(¢).
Solutions

(a) We have

r(t—T) = i §(t—T — kT) = i 3(t— (k+1)T) = i 5(t — kT) = r(t).

k=—00 k=—00 k=—o00

(b) In the period [—1'/2,T/2), r(t) = §(t), so
1 ) 1 T/2 ) 1 T/2 1
an—/rte—mmdtz—/ 5te‘ﬂ“°"tdt=—/ o(t)dt = —.
TT() T_T/Q() T_T/2() T

Hence, another way to write () is as its exponential Fourier series

oo

1 2
)=7 Y, o7

n=—oo

(¢) In general, if f(t) is periodic with period 7" and Fourier series components F,,, then the Fourier
transform of f(¢) is

F(w) = ]—"( > Fnej“’om> = > EF(E") =21 Y F,w— wn).

Hence _ _ - _
Alternatively, if we use the fact F(3(t — t,)) = e~7*™, then
Flw)=F ( i 5(t—kT)> - i F(5(t— kT)) = f: o IwhT
— a —
(d) We have
s(t) = 2(t)r(t) = 2(t) i 5(t — kT) = i 2(£)3(t — kT) = i 2(kT)5(t — kT)
Ml Ml Pl

so s(t) “picks out” the values of x(t) at integer multiples of the sampling period and is equal to 0
everywhere else. This is exactly what happens when we sample a signal. We pick out the values
at certain times and “throw away” the rest of the signal.

(e) Since s(t) = x(t)r(t), we have

o0

S(W):%X(w)*R(w):% 3 X(w)*(;(w_?%):% 3 X<w_2%)

n=-—oo



Problem 4.9

Suppose a signal
sin(7t)

x(t) =

is sampled with period 7" to form a new continuous-time signal s(t) by taking

7t

o0

s(t)= Y a(nT)d(t—nT)

n=—oo

and the signal y(t) is formed by taking

y(t) =T s(t) = sin;:t)‘

Sketch S(w) = F(s(t)) and determine y(¢) in the following cases:

@) T =1/2
(b) T =2
© T =4/3

What is the Nyquist rate for z(¢)? How does this explain the resulting y(¢)’s in (a), (b), and (c)?

Solutions
We have
1 if
Xw)=q1 BT
0 otherwise.
and
1 & o2k
S = — X —
(w) Tk;oo (w+ =)
and

Y(w) = Hw)S(w) = <{1 if"”'”) S Xw+ )

0  otherwise.
k=—o00

(a) When 7" = 1/2, we have

1 ifm(dk—-1) <w< w4k +1
N(wtank) = { L T =) <w < w4 1)
0  otherwise
and the periods of X (w + 47k) do not interfere with each other, since
m(1+4k) <m(4(k+1)—1)

for all k.
Thus

sin(7t) .

Tt



(b) When T' = 2, we have

1 ifnk—1) <w< 7(k+1)
0  otherwise

X(w+ k) :{

so the periods of X (w + 7k) do interfere with each other. In particular, we have
Sw)=1

for all w, and

2 if
v =42 TS v
0 otherwise.

which implies y(t) = 2
(c) When T' = 3/4, we have

1 ifn(3k/2—-1) <w < 7(3k/2+1)
0  otherwise

X(w+371k/2) = {

so the periods of X (w + 37k /2) do interfere with each other. In particular, we have (plot S(w))

SO
1 if |lw| < 7/2

Y(w)=42 ifr/2<]|w|<m
0 otherwise.
There are numerous ways of writing y(t), but one such way is

sin(wt)  sin(7wt/2)
mt mt

y(t) =2

The maximum frequency in x(t) is 7, so the Nyquist rate is 27. The sampling theorem implies that
when we sample a rate above 27, we can perfectly reconstruct z(¢) from its samples, but if the sampling
rate is below 27, there will be aliasing. In (a), we sample at rate 27 /7T = 4, and we reconstruct the
signal. In (b), we sample at rate 27 /T = 7, so there is aliasing. In (c), we sample at rate 27 /T = 37/2,
so there is aliasing.





