
UC San Diego J. Connelly

ECE 45 Homework 4 Solutions

Problem 4.1

Simplify the following expressions as much as possible:

(a) a(t) = (1 + t2) (δ(t)− 2δ(t− 2))

(b) b(t) = cos(2πt)
(

du(t)
dt

+ δ(t + 1/4)
)

(c) c(t) = sin(2πt) δ(1/2− 2t)

(d) d(t) =
∫

∞

−6
(τ 2 + 6) δ(τ − 2) dτ

(e) e(t) =
∫

∞

6
(τ 2 + 6) δ(τ − 2) dτ

(f) f(t) =
∫ t

−∞
δ(τ − 2) dτ

(g) g(t) = u(t) ∗ (δ(t+ 2)− δ(t− 2))

Solutions

We use the following properties of the impulse function:

x(t) δ(t− t0) = x(t0) δ(t− t0)

δ(at) =
1

|a|
δ(t)

∫ b

a

δ(τ) dτ =

{

1 if a < 0 < b

0 otherwise.

d

dt
u(t) = δ(t)

x(t) ∗ δ(t− t0) = x(t− t0).

(a) a(t) = δ(t)− 2δ(t− 2) + t2δ(t)− 2t2δ(t− 2) = δ(t)− 10δ(t− 2)

(b) b(t) = cos(2πt) δ(t) + cos(2πt)δ(t+ 1/4) = δ(t)

(c) c(t) = sin(2πt) δ(−2(t− 1/4)) = 1
2
sin(2πt) δ(t− 1/4) = 1

2
δ(t− 1/4)

(d) d(t) = 10
∫

∞

−6
δ(τ − 2) dτ = 10

(e) e(t) = 10
∫

∞

6
δ(τ − 2) dτ = 0

(f) f(t) =
∫ t

−∞
δ(τ − 2) dτ =

{

1 if t ≥ 2

0 otherwise
= u(t− 2)

Please report any typos/errors to j2connelly@ucsd.edu



(g) g(t) = u(t) ∗ δ(t+ 2)− u(t) ∗ δ(t− 2) = u(t+ 2)− u(t− 2) =

{

1 if − 2 ≤ t < 2

0 otherwise.

Problem 4.2

Let f(t) =

{

2− |t| if |t| ≤ 2

0 otherwise.

(a) Determine the function y(t) = f(t) ∗ u(t).

(b) Determine the function z(t) = df(t)
dt
∗ u(t).

(c) Determine the function w(t) = f(t) ∗ du(t)
dt

.

Solutions

We first note that

f(t) =











2 + t if − 2 ≤ t < 0

2− t if 0 ≤ t ≤ 2

0 otherwise.

= 2∆

(

t

4

)

(a) We have u(t− τ) = 1 if τ ≤ t and u(t− τ) = 0 if τ > t, so

y(t) =

∫

∞

−∞

u(t− τ) f(τ) dτ =

∫ t

−∞

f(τ) dτ =



















































0 if t < −2
∫ t

−2

(2 + τ) dτ if − 2 ≤ t < 0

∫ 0

−2

(2 + τ) dτ +

∫ t

0

(2− τ) dτ if 0 ≤ t < 2

∫ 0

−2

(2 + τ) dτ +

∫ 2

0

(2− τ) dτ if t ≥ 2

=











































0 if t < −2

(t+ 2)2

2
if − 2 ≤ t < 0

4 + 4t− t2

2
if 0 ≤ t < 2

4 if t ≥ 2.

(b) We have
df(t)
dt

=











1 if − 2 ≤ t < 0

−1 if 0 ≤ t ≤ 2

0 otherwise.



z(t) =

∫

∞

−∞

u(t− τ)
df(τ)

dτ
dτ =

∫ t

−∞

df(τ)

dτ
dτ =















































0 if t < −2
∫ t

−2

1 dτ if − 2 ≤ t < 0

∫ 0

−2

1 dτ +

∫ t

0

(−1) dτ if 0 ≤ t < 2

∫ 0

−2

1 dτ +

∫ 2

0

(−1) dτ if t ≥ 2

=



















0 if t < −2

2 + t if − 2 ≤ t < 0

2− t if 0 ≤ t < 2

0 if t ≥ 2

= f(t).

(c) We have
du(t)
dt

= δ(t), so

w(t) =
du(t)

dt
∗ f(t) = δ(t) ∗ f(t) = f(t).

Problem 4.3

Let f(t) and g(t) be given as follows:

g(t)f(t)

−1

1

1

1

1

2 3 4 5

(a) Sketch the function: x(t) = f(t) ∗ f(t)

(b) Show that in general (hint: take the Fourier Transform of both sides):
if a(t) = b(t) ∗ c(t), then b(t − t0) ∗ c(t) = a(t − t0).

(c) Show that in general (hint: use the convolution integral formula):
if a(t) = b(t) ∗ c(t), then (Mb(t)) ∗ c(t) = Ma(t), for any real number M .

(d) Show that in general:

a(t) ∗ (b(t) + c(t)) = a(t) ∗ b(t) + a(t) ∗ c(t)
(i.e. convolution is distributive with respect to addition)

(e) Write g(t) in terms of f(t) and use the three previous properties to solve  y(t) = f(t) ∗ g(t) in 
terms of x(t) from part a.

(f) Solve and then sketch the function z(t) = g(t + 2) ∗ g(t) (hint: use shifted versions of x(t) from 
part a).



Solutions

(a) We have

x(t) = f(t) ∗ f(t) =

∫

∞

−∞

f(τ)f(t− τ) dτ =











∫ t

0
1 dτ if 0 ≤ t < 1

∫ 1

t−1
1 dτ if 1 ≤ t < 2

0 otherwise.

=











t if 0 ≤ t < 1

2− t if 1 ≤ t < 2

0 otherwise.

= 2∆

(

t− 1

2

)

(b) Assume a(t) = b(t) ∗ c(t). Let t0 ≥ 0. Then A(ω) = B(ω)C(ω), and

F(b(t− t0) ∗ c(t)) = F(b(t− t0))F(c(t)) = e−jωt0 B(ω)C(ω) = e−jωt0 A(ω) = F(a(t− t0)).

Hence b(t− t0) ∗ c(t) = a(t− t0).

(c) Assume a(t) = b(t) ∗ c(t). Let M be a real number. Then

(Mb(t)) ∗ c(t) =

∫

∞

−∞

(Mb(t − τ)) c(τ) dτ = M

∫

∞

−∞

b(t− τ) c(τ) dτ = Ma(t).

(d) We have

a(t) ∗ (b(t) + c(t)) =

∫

∞

−∞

a(t− τ) (b(τ) + c(τ)) dτ

=

∫

∞

−∞

a(t− τ) b(τ) dτ +

∫

∞

−∞

a(t− τ) c(τ) dτ = a(t) ∗ b(t) + a(t) ∗ c(t).

(e) We have g(t) = f(t)− f(t− 2) + f(t− 4), so

f(t) ∗ g(t) = f(t) ∗ f(t)− f(t) ∗ f(t− 2) + f(t) ∗ f(t− 4) = x(t)− x(t− 2) + x(t− 4).

(f) We have g(t) = f(t)− f(t− 2) + f(t− 4) and g(t+ 2) = f(t+ 2)− f(t) + f(t− 2), so

g(t) ∗ g(t+ 2) = f(t) ∗ f(t+ 2)− f(t) ∗ f(t) + f(t) ∗ f(t− 2)

− f(t− 2) ∗ f(t+ 2) + f(t− 2) ∗ f(t)− f(t− 2) ∗ f(t− 2)

+ f(t− 4) ∗ f(t+ 2)− f(t− 4) ∗ f(t) + f(t− 4) ∗ f(t− 2)

= x(t + 2)− x(t) + x(t− 2)

− x(t) + x(t− 2)− x(t− 4)

+ x(t− 2)− x(t− 4) + x(t− 6)

= x(t− 6)− 2x(t− 4) + 3x(t− 3)− 2x(t) + x(t + 2)



Problem 4.4

When the input to an LTI system is the unit step function u(t), the output is r(t) =











0 if t < 0

t if 0 ≤ t ≤ 1

1 if t > 1.

(a) Let ǫ > 0. Sketch the output yǫ(t) when the input to the system is xǫ(t) =

{

1/ǫ if 0 < t < ǫ

0 otherwise

Hint: Write xǫ(t) in terms of u(t), and use the fact the system is linear and time-invariant.

(b) Evaluate lim
ǫ→0

yǫ(t).

(c) Evaluate lim
ǫ→0

xǫ(t). Why is the impulse response h(t) equal to lim
ǫ→0

yǫ(t)?

(d) Using the properties of the Fourier transform, prove:

if z(t) = f(t) ∗ g(t), then
df(t)
dt
∗ g(t) = dz(t)

dt
.

(e) In general, if s(t) is the output of an LTI system when u(t) is the input, what is the impulse
response h(t)? (s(t) is also known as the unit step response)

Solution:

(a) We have

xǫ(t) =
1

ǫ
(u(t)− u(t− ǫ)).

By the linearity and time-invariance of the system, we have

xǫ(t) =
1

ǫ
(u(t)− u(t− ǫ)) −→ System −→

1

ǫ
(r(t)− r(t− ǫ)) = yǫ(t).

Hence

yǫ(t) =

















0 if t < 0

t/ǫ if 0 ≤ t ≤ 1

1/ǫ if t > 1






−

















0 if t < ǫ

(t− ǫ)/ǫ if ǫ ≤ t ≤ 1 + ǫ

1/ǫ if t > 1 + ǫ







=































0 if t < 0

t/ǫ if 0 ≤ t < ǫ

1 if ǫ ≤ t < 1

(1 + ǫ− t)/ǫ if 1 ≤ t < 1 + ǫ

0 if t ≥ 1.

(b) We have

lim
ǫ→0

yǫ(t) =











0 if t < 0

1 if 0 < t < 1

0 if t > 1.



(c) We have

δ(t) =
d

dt
u(t) = lim

ǫ→0

u(t)− u(t− ǫ)

ǫ
= lim

ǫ→0
xǫ(t)

so
δ(t) = lim

ǫ→0
xǫ(t) −→ System −→ lim

ǫ→0
yǫ(t) = h(t).

(d) Suppose z(t) = f(t) ∗ g(t). Then we have Z(ω) = F (ω)G(ω). Now consider the Fourier

transform of the convolution

F

(

df(t)

dt
∗ g(t)

)

= F

(

df(t)

dt

)

F (g(t)) = jω F (ω)G(ω) = jω Z(ω) = F

(

dz(t)

dt

)

.

Hence when z(t) = f(t) ∗ g(t), we have
df(t)
dt
∗ g(t) = dz(t)

dt
.

(e) Now since
s(t) = h(t) ∗ u(t)

we have

h(t) = h(t) ∗ δ(t) = h(t) ∗
du(t)

dt
=

ds(t)

dt
.

Thus the impulse response is the derivative of the unit-step response.

Problem 4.5

Calculate y(t) = x(t) ∗ h(t) when

(a) x(t) = e−tu(t) and h(t) = u(t)

(b) x(t) = e−tu(t) and h(t) =

{

1 if |t| < 1

0 otherwise.

Solutions

(a) We have

y1(t) = e−tu(t) ∗ u(t) =

∫

∞

−∞

e−τu(τ)u(t− τ) dτ

=

∫ t

−∞

e−τ u(τ) dτ =

{

∫ t

0
e−τ dτ if t ≥ 0

0 if t < 0

= u(t)

∫ t

0

e−τ dτ = u(t) (1− e−t)

(b) We have h(t) = u(t+ 1)− u(t− 1) in this case, so by the distributive and time-shift properties
of convolution

y2(t) = e−tu(t) ∗ u(t+ 1)− e−tu(t) ∗ u(t− 1) = y1(t+ 1)− y1(t− 1)

= u(t+ 1) (1− e−t−1)− u(t− 1) (1− e−t+1) =











0 if t < −1

1− e−t−1 if − 1 ≤ t < 1

e−t(e− 1/e) if t ≥ 1



Problem 4.6

The output of an LTI system is y(t) =

{

1 if 3 ≤ t ≤ 5

0 otherwise.

Determine the impulse response h(t) when the input f(t) is

(a) f(t) =

{

1 if 0 ≤ t ≤ 2

0 otherwise

(b) f(t) = 2u(t)

(c) f(t) =

{

1 if 0 ≤ t ≤ 1

0 otherwise

Solutions

(a) We have
f(t) ∗ h(t) = y(t) = f(t− 3) = f(t) ∗ δ(t− 3)

so h(t) = δ(t− 3).

(b) We have

f(t) ∗ h(t) = y(t) = u(t− 3)− u(t− 5) =
f(t− 3)− f(t− 5)

2
= f(t) ∗

1

2
(δ(t− 3)− δ(t− 5))

so h(t) = 1
2
(δ(t− 3)− δ(t− 5)).

(c) We have

f(t) ∗ h(t) = y(t) = f(t− 3) + f(t− 4) = f(t) ∗ (δ(t− 3) + δ(t− 4))

so h(t) = δ(t− 3) + δ(t− 4).

Problem 4.7

Determine the Nyquist rate of the following signals:

(a) a(t) =
sin(20t)

t

(b) b(t) = cos2(30t)
sin(20t)

t

(c) c(t) = cos(10t)
sin(20t)

t

(d) d(t) =

(

sin(20t)

t

)2

(e) e(t) =

(

sin(20t)

t

)2

∗
sin(2t)

πt



Solutions

The Nyquist rate is twice the maximum frequency present in the signal. Specifically, let ωm be the
smallest frequency such that X(ω) = 0 for all |ω| > ωm. Then the Nyquist rate is 2ωm.

(a)

a(t) =
sin(20t)

t
←→ A(ω) =

{

π if |ω| < 20

0 otherwise.

We have A(ω) = 0 for all |ω| > 20, so the Nyquist rate is 40.

(b) We have

b(t) = cos2(30t)
sin(20t)

t
=

e−j60t

4

sin(20t)

t
+

ej60t

4

sin(20t)

t
+

1

2

sin(20t)

t

so by the frequency shifting property of the Fourier transform

B(ω) =

({

π/4 if |ω − 60| < 20

0 otherwise.

)

+

({

π/4 if |ω + 60| < 20

0 otherwise.

)

+

({

π/2 if |ω| < 20

0 otherwise.

)

=











π/4 if 40 < |ω| < 80

π/2 if |ω| < 20

0 otherwise.

So the Nyquist rate is 160.

(c) We have

c(t) = cos(10t)
sin(20t)

t
=

ej10t

2

sin(20t)

t
+

e−j10t

2

sin(20t)

t

so by the frequency shifting property of the Fourier transform

C(ω) =

({

π/2 if |ω − 10| < 20

0 otherwise.

)

+

({

π/2 if |ω + 10| < 20

0 otherwise.

)

=











π if |ω| < 10

π/2 if 10 < |ω| < 30

0 otherwise.

So the Nyquist rate is 60.

(d) Define z(ω) as follows:

z(ω) = u(ω) ∗ u(ω) =

∫

∞

−∞

u(ω − θ) u(θ) dθ =

∫ ω

−∞

u(θ) dθ =

{

ω if ω ≥ 0

0 otherwise.
= ω u(ω).



Then

D(ω) =
1

2π

({

π if |ω| < 20

0 otherwise.

)

∗

({

π if |ω| < 20

0 otherwise.

)

=
π

2
(u(ω − 20)− u(ω + 20)) ∗ (u(ω − 20)− u(ω + 20))

=
π

2
(u(ω − 20) ∗ u(ω − 20)− 2u(ω − 20) ∗ u(ω + 20) + u(ω + 20) ∗ u(ω + 20))

=
π

2
(Z(ω − 40)− 2Z(ω) + Z(ω + 40))

=
π

2











40 + ω if − 40 ≤ ω ≤ 0

40− ω if 0 ≤ ω < 40

0 otherwise

= 20π∆
( ω

80

)

so the Nyquist rate is 80.

(e)

e(t) = d(t) ∗
sin(2t)

πt
so

E(ω) = D(ω)F

(

sin(2t)

πt

)

= D(ω)

{

1 if |ω| < 2

0 otherwise

=











40 + ω if − 2 ≤ ω ≤ 0

40− ω if 0 ≤ ω < 2

0 otherwise

so the Nyquist rate is 4.

Problem 4.8

Let r(t) =
∞
∑

k=−∞

δ(t− kT )

(a) Show that r(t) is periodic with period T .

(b) Calculate the Fourier series components Rn of r(t) and write r(t) as its exponential Fourier
series.

(c) Show the Fourier transform R(ω) of r(t) can be written as a sum of complex exponentials or as
a sum of impulse functions.

Recall that F(ejω0t) = 2πδ(ω − ω0).

(d) Let x(t) be an arbitrary signal, and let s(t) = x(t)r(t). Why is s(t) a reasonable way to mathe-
matically model a sampled signal?



(e) Write the Fourier transform S(ω) of s(t) in terms of the Fourier transform X(ω) of x(t).

Solutions

(a) We have

r(t− T ) =

∞
∑

k=−∞

δ(t− T − kT ) =

∞
∑

k=−∞

δ(t− (k + 1)T ) =

∞
∑

k=−∞

δ(t− kT ) = r(t).

(b) In the period [−T/2, T/2), r(t) = δ(t), so

Rn =
1

T

∫

T

r(t)e−jω0nt dt =
1

T

∫ T/2

−T/2

δ(t)e−jω0nt dt =
1

T

∫ T/2

−T/2

δ(t) dt =
1

T
.

Hence, another way to write r(t) is as its exponential Fourier series

r(t) =
1

T

∞
∑

n=−∞

ej
2π

T
nt

(c) In general, if f(t) is periodic with period T and Fourier series components Fn, then the Fourier
transform of f(t) is

F (ω) = F

(

∞
∑

n=−∞

Fne
jω0nt

)

=

∞
∑

n=−∞

FnF(e
jω0nt) = 2π

∞
∑

n=−∞

Fn δ(ω − ω0n).

Hence

R(ω) =
2π

T

∞
∑

n=−∞

δ

(

ω −
2π

T

)

.

Alternatively, if we use the fact F(δ(t− t0)) = e−jωt0 , then

F (ω) = F

(

∞
∑

k=−∞

δ(t− kT )

)

=
∞
∑

k=−∞

F (δ(t− kT )) =
∞
∑

k=−∞

e−jωkT .

(d) We have

s(t) = x(t)r(t) = x(t)

∞
∑

k=−∞

δ(t− kT ) =

∞
∑

k=−∞

x(t)δ(t− kT ) =

∞
∑

k=−∞

x(kT )δ(t− kT )

so s(t) “picks out” the values of x(t) at integer multiples of the sampling period and is equal to 0
everywhere else. This is exactly what happens when we sample a signal. We pick out the values
at certain times and “throw away” the rest of the signal.

(e) Since s(t) = x(t)r(t), we have

S(ω) =
1

2π
X(ω) ∗R(ω) =

1

T

∞
∑

n=−∞

X(ω) ∗ δ

(

ω −
2π

T

)

=
1

T

∞
∑

n=−∞

X

(

ω −
2π

T

)



Problem 4.9

Suppose a signal

x(t) =
sin(πt)

πt

is sampled with period T to form a new continuous-time signal s(t) by taking

s(t) =
∞
∑

n=−∞

x(nT ) δ(t− nT )

and the signal y(t) is formed by taking

y(t) = T s(t) ∗
sin(πt)

πt
.

Sketch S(ω) = F(s(t)) and determine y(t) in the following cases:

(a) T = 1/2

(b) T = 2

(c) T = 4/3

What is the Nyquist rate for x(t)? How does this explain the resulting y(t)’s in (a), (b), and (c)?

Solutions

We have

X(ω) =

{

1 if |ω| < π

0 otherwise.

and

S(ω) =
1

T

∞
∑

k=−∞

X(ω +
2πk

T
)

and

Y (ω) = H(ω)S(ω) =

({

1 if |ω| < π

0 otherwise.

)

∞
∑

k=−∞

X(ω +
2π

T
)

(a) When T = 1/2, we have

X(ω + 4πk) =

{

1 if π(4k − 1) < ω < π(4k + 1)

0 otherwise

and the periods of X(ω + 4πk) do not interfere with each other, since

π(1 + 4k) < π(4(k + 1)− 1)

for all k.

Thus
Y (ω) = X(ω)

so y(t) =
sin(πt)

πt
.



(b) When T = 2, we have

X(ω + πk) =

{

1 if π(k − 1) < ω < π(k + 1)

0 otherwise

so the periods of X(ω + πk) do interfere with each other. In particular, we have

S(ω) = 1

for all ω, and

Y (ω) =

{

2 if |ω| < π

0 otherwise.
= 2X(ω)

which implies y(t) = 2
sin(πt)

πt
.

(c) When T = 3/4, we have

X(ω + 3πk/2) =

{

1 if π(3k/2− 1) < ω < π(3k/2 + 1)

0 otherwise

so the periods of X(ω + 3πk/2) do interfere with each other. In particular, we have (plot S(ω))

so

Y (ω) =











1 if |ω| < π/2

2 if π/2 < |ω| < π

0 otherwise.

There are numerous ways of writing y(t), but one such way is

y(t) = 2
sin(πt)

πt
−

sin(πt/2)

πt

The maximum frequency in x(t) is π, so the Nyquist rate is 2π. The sampling theorem implies that
when we sample a rate above 2π, we can perfectly reconstruct x(t) from its samples, but if the sampling
rate is below 2π, there will be aliasing. In (a), we sample at rate 2π/T = 4π, and we reconstruct the
signal. In (b), we sample at rate 2π/T = π, so there is aliasing. In (c), we sample at rate 2π/T = 3π/2,
so there is aliasing.




