ECE 45 Homework 4

Problem 4.1

Simplify the following expressions as much as possible:

(a)
$$a(t) = (1 + t^2) (\delta(t) - 2\delta(t - 2))$$

(b) $b(t) = \cos(2\pi t) \left(\frac{du(t)}{dt} + \delta(t + 1/4)\right)$
(c) $c(t) = \sin(2\pi t) \,\delta(1/2 - 2t)$
(d) $d(t) = \int_{-6}^{\infty} (\tau^2 + 6) \,\delta(\tau - 2) \,d\tau$
(e) $e(t) = \int_{6}^{\infty} (\tau^2 + 6) \,\delta(\tau - 2) \,d\tau$
(f) $f(t) = \int_{-\infty}^{t} \delta(\tau - 2) \,d\tau$

(g) $g(t) = u(t) * (\delta(t+2) - \delta(t-2))$

(g)
$$g(t) = u(t) * \delta(t+2) - u(t) * \delta(t-2) = u(t+2) - u(t-2) = \begin{cases} 1 & \text{if } -2 \le t < 2\\ 0 & \text{otherwise.} \end{cases}$$

Let $f(t) = \begin{cases} 2 - |t| & \text{if } |t| \le 2\\ 0 & \text{otherwise.} \end{cases}$

- (a) Determine the function y(t) = f(t) * u(t).
- (b) Determine the function $z(t) = \frac{df(t)}{dt} * u(t)$.
- (c) Determine the function $w(t) = f(t) * \frac{du(t)}{dt}$.

Let f(t) and g(t) be given as follows:

- (a) Sketch the function: x(t) = f(t) * f(t)
- (b) Show that in general (hint: take the Fourier Transform of both sides): if a(t) = b(t) * c(t), then $b(t - t_0) * c(t) = a(t - t_0)$.
- (c) Show that in general (hint: use the convolution integral formula): if a(t) = b(t) * c(t), then (Mb(t)) * c(t) = Ma(t), for any real number M.
- (d) Show that in general:

a(t) * (b(t) + c(t)) = a(t) * b(t) + a(t) * c(t)

(i.e. convolution is *distributive* with respect to addition)

- (e) Write g(t) in terms of f(t) and use the three previous properties to solve y(t) = f(t) * g(t) in terms of x(t) from part a.
- (f) Solve and then sketch the function z(t) = g(t + 2) * g(t) (hint: use shifted versions of x(t) from part a).

Problem 4.4 When the input to an LTI system is the *unit step function* u(t), the output is $r(t) = \begin{cases} 0 & \text{if } t < 0 \\ t & \text{if } 0 \le t \le 1 \\ 1 & \text{if } t > 1. \end{cases}$

(a) Let $\epsilon > 0$. Sketch the output $y_{\epsilon}(t)$ when the input to the system is $x_{\epsilon}(t) = \begin{cases} 1/\epsilon & \text{if } 0 < t < \epsilon \\ 0 & \text{otherwise} \end{cases}$

Hint: Write $x_{\epsilon}(t)$ in terms of u(t), and use the fact the system is linear and time-invariant.

- (b) Evaluate $\lim_{\epsilon \to 0} y_{\epsilon}(t)$.
- (c) Evaluate $\lim_{\epsilon \to 0} x_{\epsilon}(t)$. Why is the impulse response h(t) equal to $\lim_{\epsilon \to 0} y_{\epsilon}(t)$?
- (d) Using the properties of the Fourier transform, prove: if z(t) = f(t) * g(t), then $\frac{df(t)}{dt} * g(t) = \frac{dz(t)}{dt}$.
- (e) In general, if s(t) is the output of an LTI system when u(t) is the input, what is the impulse response h(t)? (s(t) is also known as the *unit step response*)

Calculate y(t) = x(t) * h(t) when

(a)
$$x(t) = e^{-t}u(t)$$
 and $h(t) = u(t)$
(b) $x(t) = e^{-t}u(t)$ and $h(t) = \begin{cases} 1 & \text{if } |t| < 1 \\ 0 & \text{otherwise.} \end{cases}$

The output of an LTI system is $y(t) = \begin{cases} 1 & \text{if } 3 \le t \le 5 \\ 0 & \text{otherwise.} \end{cases}$

Determine the impulse response h(t) when the input f(t) is

(a)
$$f(t) = \begin{cases} 1 & \text{if } 0 \le t \le 2\\ 0 & \text{otherwise} \end{cases}$$

(b)
$$f(t) = 2u(t)$$

(c)
$$f(t) = \begin{cases} 1 & \text{if } 0 \le t \le 1\\ 0 & \text{otherwise} \end{cases}$$

Problem 4.7

Determine the Nyquist rate of the following signals:

(a)
$$a(t) = \frac{\sin(20t)}{t}$$

(b) $b(t) = \cos^2(30t) \frac{\sin(20t)}{t}$
(c) $c(t) = \cos(10t) \frac{\sin(20t)}{t}$
(d) $d(t) = \left(\frac{\sin(20t)}{t}\right)^2$
(e) $e(t) = \left(\frac{\sin(20t)}{t}\right)^2 * \frac{\sin(2t)}{\pi t}$

Let
$$r(t) = \sum_{k=-\infty}^{\infty} \delta(t - kT)$$

- (a) Show that r(t) is periodic with period T.
- (b) Calculate the Fourier series components R_n of r(t) and write r(t) as its exponential Fourier series.
- (c) Show the Fourier transform $R(\omega)$ of r(t) can be written as a sum of complex exponentials or as a sum of impulse functions.

Recall that $\mathcal{F}(e^{j\omega_0 t}) = 2\pi\delta(\omega - \omega_0).$

(d) Let x(t) be an arbitrary signal, and let s(t) = x(t)r(t). Why is s(t) a reasonable way to mathematically model a sampled signal?

(e) Write the Fourier transform $S(\omega)$ of s(t) in terms of the Fourier transform $X(\omega)$ of x(t).

Suppose a signal

$$x(t) = \frac{\sin(\pi t)}{\pi t}$$

is sampled with period T to form a new continuous-time signal s(t) by taking

$$s(t) = \sum_{n=-\infty}^{\infty} x(nT) \,\delta(t - nT)$$

and the signal y(t) is formed by taking

$$y(t) = T s(t) * \frac{\sin(\pi t)}{\pi t}.$$

Sketch $S(\omega) = \mathcal{F}(s(t))$ and determine y(t) in the following cases:

- (a) T = 1/2
- (b) T = 2
- (c) T = 4/3

What is the Nyquist rate for x(t)? How does this explain the resulting y(t)'s in (a), (b), and (c)?