
UC San Diego J. Connelly

ECE 45 Homework 2 Solutions

Problem 2.1

Are the following systems linear? Are they time invariant?

(a) x(t) −→ [ System (a) ] −→ 2x(t− 3)

(b) x(t) −→ [ System (b) ] −→ x(t) + t

(c) x(t) −→ [ System (b) ] −→ (x(t) + 1)2

(d) x(t) −→ [ System (d) ] −→ cos(x(t))

(e) x(t) −→ [ System (e) ] −→

∫ t

−∞

x(τ) dτ

(f) x(t) −→ [ System (f) ] −→ t.

i.e. the term on the right is the output when the input is x(t). Plot the output, in each case, when

x(t) =

{

1 if 0 ≤ t ≤ 1

0 otherwise.

Solution:

(a) For any functions x1(t), x2(t) and real numbers a, b, t1, t2, we have

ax1(t− t1) + bx2(t− t2) −→ [ System (a) ] −→ a2x1(t− t1 − 3) + b2x2(t− t2 − 3)

Thus the system is both linear and time invariant.

When x(t) =

{

1 if 0 ≤ t ≤ 1

0 otherwise
, the output is

{

2 if 3 ≤ t ≤ 4

0 otherwise

... ...

2

3 4

y1(t)

Please report any typos/errors to j2connelly@ucsd.edu



(b) For any function x(t) and any real number a, we have

ax(t) −→ [ System (b) ] −→ (ax(t) + t) 6= a (x(t) + t)

so the system is not linear.

For any real number t0, we have

x(t − t0) −→ [ System (b) ] −→ (x(t − t0) + t) 6= (x(t − t0) + t − t0)

so the system is not time invariant.

When x(t) =

{

1 if 0 ≤ t ≤ 1

0 otherwise
, the output is

{

t+ 1 if 0 ≤ t ≤ 1

t otherwise

1

1

...

...

y2(t)

(c) For any function x(t), we have

x(t)− x(t) = 0 −→ [ System (c) ] −→ 1 6= 0

so the system is not linear.

For any real number t0, we have

x(t− t0) −→ [ System (c) ] −→ x(t− t0) + 1

so the system is time invariant.

When x(t) =

{

1 if 0 ≤ t ≤ 1

0 otherwise
, the output is

{

4 if 0 ≤ t ≤ 1

1 otherwise



1... ...

1

4

y3(t)

(d) For any functions x(t), we have

x(t)− x(t) = 0 −→ [ System (d) ] −→ cos(0) = 1 6= 0

so the system is not linear.

For any real number t0, we have

x(t− t0) −→ [ System (d) ] −→ cos(x(t− t0))

so the system is time invariant.

When x(t) =

{

1 if 0 ≤ t ≤ 1

0 otherwise
, the output is

{

cos(1) if 0 ≤ t ≤ 1

1 otherwise

... ...

y4(t)

1

1

cos(1)

(e) Note that for any function x(t) and any real number c, by letting z = τ − c, we have
∫ t

−∞

x(τ − c) dτ =

∫ t−c

−∞

x(z) dz

For any functions x1(t), x2(t) and real numbers a, b, t1, t2, we have

ax1(t− t1) + bx2(t− t2) −→ [ System (e) ] −→ a

∫ t

−∞

x1(τ − t1) dτ + b

∫ t

−∞

x2(τ − t1) dτ

= a

∫ t−t1

−∞

x1(z) dz + b

∫ t−t2

−∞

x2(z) dz.



Thus the system is both linear and time invariant.

When x(t) =

{

1 if 0 ≤ t ≤ 1

0 otherwise
, the output is











0 if t < 0

t if 0 ≤ t ≤ 1

1 if t > 1

...

...

1

1

y5(t)

(f) For any functions x(t), we have

x(t)− x(t) = 0 −→ [ System (f) ] −→ t 6= 0

so the system is not linear.

For any real number t0, we have

x(t− t0) −→ [ System (f) ] −→ t 6= t− t0

so the system is not time invariant.

When x(t) =

{

1 if 0 ≤ t ≤ 1

0 otherwise
, the output is t

...

...

1

1

y6(t)



Problem 2.2

Find the Bode plot (magnitude and phase) and label all critical points of the transfer function

H(ω) =
225 (ω2 − 2500jω − 106) (1 + 10−6jω)

9
(

ω2

9
− 20000jω

3
− 108

)

(25 + 5jω)
.

MATLAB: Include MATLAB plots of the magnitude and angle of this function on the same scale.

How does the Bode plot approximation compare to the actual function?

Tips: ‘logspace(a,b,n)’ generates n points between decades 10a and 10b.

‘semilogx(x,y)’ plots y versus x with a log scale on the x axis.

‘log10(x)’ returns log10(x), whereas ‘log(x)’ returns the natural log.

Solution:

We first write H(ω) in standard form:

H(ω) =

(

1 + jω
2000

) (

1 + jω
500

) (

1 + jω
106

)

100
(

1 + jω
30000

)2 (
1 + jω

5

)
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Critical Points:

A) 20 log(|H(5)|) = −40

B) 20 log(|H(500)|) = −80

C) 20 log(|H(2000)|) = −80

D) 20 log(|H(30000)|) = −80 + 20 log(15)

E) 20 log(|H(106)|) = −120 + 20 log(45)

F) ∠H(1/5) = 0

G) ∠H(50) = −π/2

H) ∠H(200) = (log(2)− 1)π/2

I) ∠H(3000) = log(3)π/2

J) ∠H(5000) = log(3)π/2

K) ∠H(20000) = (log(3)− log(2))π/2

L) ∠H(100000) = (log(3)− 1)π/2

M) ∠H(200000) = (2 log(3)− log(2)− 2)π/4

N) ∠H(107) = 0.



Problem 2.3

Are the following functions periodic? If so, find the period and fundamental frequency.

(a) f1(t) = cos2(10t)

(b) f2(t) =
∞
∑

n=−∞

x(t− n), where x(t) = t for 0 ≤ t < 1 and x(t) = 0 otherwise.

(c) f3(t) = tan(t)

(d) f4(t) = cos(t) + cos(πt)

Solution:

(a) f1(t) =
1+cos(20t)

2
, so ω0 = 20 and T = π/10.

(b) Note that for any t we have

f2(t− 1) =

∞
∑

n=−∞

x(t− n− 1) =

∞
∑

k=−∞

x(t− k) = f2(t)

so f2(t) is periodic, its period is 1, and ω0 = 2π.

(c) For all t we have

f3(t− π) =
sin(t− π)

cos(t− π)
=

− sin(t)

− cos(t)
= tan(t) = f3(t)

so f3(t) is periodic and T = π, so ω0 = 2.

(d) Note that cos(t) starts/ends a cycle at ..., 6, 4, 2, 0, 2π, 4π, 6π, ..., i.e. its period is 2π.

cos(πt) starts/ends a cycle at ...,−6,−2, 0, 2, 4, 6, ..., i.e. its period is 2.

There is no value of t where both cos(t) and cos(πt) start/end a cycle, since 2nπ is never an
integer! Although this function appears to repeats itself, it has no period, so it is not periodic.



Problem 2.4

Suppose H(ω) in the Bode Plot given below is the transfer function of an LTI system. Determine H(ω),
assuming the plot uses the linear approximation techniques from class, and use the approximations from

the Bode plot to determine the output of the system when the input is
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(a) x1(t) = cos(0.1t)

(b) x2(t) = cos(8t)

(c) x3(t) = cos(30t)

(d) x4(t) = sin(2000t)

(e) x5(t) = cos(50000t)

Solution:

We have

H(ω) =
(jω)(1 + jω)

(

1 + jω
105

)2

103
(

1 + jω
10

) (

1 + jω
104

) (

1 + jω
106

)2

(a) 20 log(|H(0.1)|) = −80 and ∠H(0.1) = π/2, so y1(t) = 10−4 cos(0.1t+ π/2).

(b) 20 log(|H(8)|) = −60 + 40 log(8) and ∠H(8) = 3π/4, so y2(t) =
8

125
cos(8t + 3π/4).

(c) 20 log(|H(30)|) = −20 + 20 log(3) and ∠H(30) = 3π
4
− π

4
log(3),

so y3(t) = − 3
10
cos(30t+ 3π

4
− π

4
log(3)).

(d) 20 log(|H(2000)|) = −20 + 20 log(200) and ∠H(2000) = π
2
− π

4
log(2),

so y4(t) = 20 cos(2000t− π
4
log(2)).

(e) 20 log(|H(50000)|) = 40 and ∠H(50000) = π
4
+ π

4
log 5,

so y5(t) = 100 cos(50000t+ π
4
+ π

4
log 5).



Problem 2.5

Suppose f(t) is a periodic function with period T = 2 and Fourier series components

Fn =
1

2n2
for all integers n 6= 0 and F0 = 1.

f(t) is the input to an LTI system with transfer function

H(ω) = cos(ω) + j sin(ω).

Find the output, y(t), of the system in terms of only real numbers (all imaginary components should
cancel).

Solution:

Since f(t) is periodic with period T = 2 and fundamental frequency ω0 = 2π/T = π, y(t) is also
periodic with period T = 2, and the Fourier series components of y(t) are given by

Yn = FnH(ω0n) =
cos(πn) + j sin(πn)

2n2
=

(−1)n

2n2

for all n 6= 0, and Y0 = F0H(0) = 1. Thus we have

y(t) =
∞
∑

n=−∞

Yne
jω0nt = 1 +

∞
∑

n=−∞
n 6=0

(−1)n

2n2
ejπnt

= 1 +

∞
∑

n=1

(−1)−n

2(−n)2
e−jπnt +

(−1)n

2n2
ejπnt

= 1 +

∞
∑

n=1

(−1)n

2n2

(

ejπnt + e−jπnt
)

= 1 +
∞
∑

n=1

(−1)n
cos(πnt)

n2
= 1− cos(πt) +

1

4
cos(2πt)−

1

9
cos(3πt) +

1

16
cos(4πt) + · · ·

Problem 2.6

Find the Fourier series components Fn of f(t) = sin4(t).

Solution:

We could use the standard method of integrating f(t)e−jω0nt in a period to find Fn; however, using
Euler’s formula, we have

sin4(t) =

(

ejt − e−jt

2j

)4

=
1

16

(

(

ejt − e−jt
)2
)2

=
1

16

(

e2jt + e−2jt − 2
)2

=
1

16

(

e4jt + e−4jt − 4e2jt − 4e−2jt + 6
)

.

Thus ω0 = 2 and

Fn =















1/16 n = ±2
−1/4 n = ±1
3/8 n = 0
0 otherwise



Problem 2.7

Determine the Fourier series coefficients Fn and find the average power in a period of the function:

∞
∑

n=−∞

x(t− 4n) where x(t) =

{

1 0 ≤ t < 2
2 2 ≤ t < 4

Solution:

Note that for all t, we have f(t) = f(t−4), so f(t) is periodic with period T = 4, so ω0 = 2π/T = π/2.
The average power in a period is:

1

4

∫ 4

0

f(t)2 dt =
1

4

(
∫ 2

0

1 dt+

∫ 4

2

4 dt

)

=
9

4

To calculate Fn:

Fn =
1

T

∫

T

f(t)e−jω0nt

=
1

4

(
∫ 2

0

e−jπnt/2 dt+

∫ 4

2

2e−jπnt/2 dt

)

=
1

4

(

e−jπn − 1

−jπn/2
+

2e−j2πn − 2e−jπn

−jπn/2

)

(Assume n 6= 0)

=
j

2πn

(

e−jπn − 1 + 2− 2e−jπn
)

(ej2πn = 1 for all integers n)

=
j

2πn

(

1− e−jπn
)

=

{

j/πn n odd

0 n even and n 6= 0
(ejπn = (−1)n)

When n = 0, we divide by 0 in the third line, so we need to calculate F0 separately

F0 =
1

4

∫ 4

0

f(t) =
3

2
.

Problem 2.8

Find the Fourier series components of f(t) and g(t) and write f(t) and g(t) as purely real sums of sine
and/or cosine functions, where

......
......

f(t) g(t)1

1
−1/2 1/2 −4

4

Hint: After calculating the components of f(t), use the properties to find the components of g(t).

Solution:



We have T = 1, so ω0 = 2π, and in a period from −1/2 to 1/2, f(t) = 1 − |2t|. So for all n 6= 0, we
have

Fn =
1

T

∫ 1/2

−1/2

f(t)e−jnω0t dt

=

∫ 0

−1/2

(2t+ 1) e−j2πnt dt +

∫ 1/2

0

(1− 2t) e−j2πnt dt

=

∫ 0

−1/2

2t e−j2πnt dt−

∫ 1/2

0

2t e−j2πnt dt+

∫ 1/2

−1/2

e−j2πnt dt

=
2jπnt+ 1

2(πn)2
e−j2πnt

∣

∣

∣

∣

0

−1/2

−
2jπnt+ 1

2(πn)2
e−j2πnt

∣

∣

∣

∣

1/2

0

+
e−j2πnt

−j2πn

∣

∣

∣

∣

1/2

−1/2

=
(1− (1− jπn) ejπn)− ((jπn+ 1)e−jπn − 1)

2π2n2
+

e−jπn − ejπn

−j2πn

=
2− (1− jπn)(−1)n − (1 + jπn)(−1)n

2π2n2

=
1− (−1)n

π2n2

=

{

2/(πn)2 n is odd

0 n is even and n 6= 0

When n = 0, we divide by 0 in the fourth line, so we need to calculate F0 separately

F0 =
1

T

∫

T

f(t) dt

=

∫ 0

−1/2

(2t+ 1) dt+

∫ 1/2

0

(1− 2t) dt =
1

2

Thus

f(t) =
1

2
+
∑

n odd

2ej2πnt

π2n2

=
1

2
+

2

π2

∞
∑

n=1
n odd

ej2πnt + e−j2πnt

n2

=
1

2
+

4

π2

∞
∑

n=1
n odd

cos(2πnt)

n2

We have g(t) = 8(f(t − 1/4)− 1/2) = 8f(t − 1/4)− 4, so by the Amplitude scaling and time-shift
properties of the Fourier series:

Gn = 8Fne
−jπn/2

for all n 6= 0 and
G0 = 8F0 − 4 = 0

and so

Gn =

{

0 n is even

16(−j)n/(π2n2) n is odd



Also

g(t) = 8f(t− 1/4)− 4

=
32

π2

∞
∑

n=1
n odd

cos(2πnt− πn/2)

n2

Problem 2.9

Find the Fourier series components of f(t). Using the properties of the Fourier series, find the Fourier
series coefficients of g(t), where

f(t) = 2 +
∞
∑

n=−∞

x(t− 4n) and g(t) =
∞
∑

n=−∞

y(t− 4n)

x(t) =

{

t− 2 when 0 ≤ t < 4
0 otherwise

and y(t) =

{

t2/4 when −2 ≤ t < 2
0 otherwise

Hint: write x(t) in terms of y(t) and write f(t) in terms of g(t).

Solution:

In the period [0, 4], f(t) = t, so for all n 6= 0, we have

Fn =
1

T

∫ T

0

te−jω0nt dt

=
jω0nt− 1

Tω2
0n

2
e−jω0nt

∣

∣

∣

∣

T

0

=
jω0nT − 1

Tω2
0n

2
e−jω0nT +

1

Tω2
0n

2

=
j2πn− 1

2πω0n2
e−j2πn +

1

2πω0n2

=
j

ω0n
=

2

jπn

and

F0 =
1

4

∫ 4

0

t dt = 1.

Note that x(t) = 2 d
dt
y(t− 2), so we have f(t) = 2 + 2 d

dt
g(t− 2), and both f(t) and g(t) are periodic

with period 4. Then by the amplitude-scaling, time-derivative, and time-shift properties,

we have Fn = 2 jω0nGn e
−j2ω0n, for all n 6= 0. Thus

Gn = Fn
(−1)n

jπn
=

2

π2n2
(−1)n+1

and F0 = 2G0 + 2, so

G0 =
F0 − 2

2
= −

1

2



Problem 2.10

Suppose f(t) is the input to an LTI system with transfer function H(ω), where

f(t) = | sin(πt)| and H(ω) = 1− 4
( ω

2π

)2

Find the output y(t) and write it as a purely real sum of sines and/or cosines.

Solution:

| sin(πt)| repeats itself twice as often as sin(πt), since | sin(πt)| is always positive. Thus the period of
| sin(πt)| is 1 and ω0 = 2π.

In the period [0, 1], | sin(πt)| = sin(πt), so we can calculate the Fourier series components of f(t) by

Fn =
1

T

∫

T

| sin(πt) |e−jω0nt dt

=

∫ 1

0

sin(πt) e−j2πnt dt

=
1

2j

∫ 1

0

(ejπt − e−jπt) e−j2πnt dt

=
1

2j

∫ 1

0

ejπt(1−2n) − e−jπt(1+2n) dt

=
1

2j

(

ejπ(1−2n) − 1

jπ(1− 2n)
−

e−jπ(1+2n) − 1

−jπ(1 + 2n)

)

=
−1

2π

(

−2

1− 2n
+

−2

1 + 2n

)

=
1

π

(

(1 + 2n) + (1− 2n)

(1− 2n)(1 + 2n)

)

=
2

π(1− 4n2)

Since f(t) is a sinusoidal function with period 1, y(t) is also a sinusoidal function with period 1, where
the Fourier series components given by

Yn = FnH(ω0n) =
2

π(1− 4n2)
(1− 4n2) =

2

π

Thus we have

y(t) =
∞
∑

n=−∞

Yne
jω0nt

=
2

π

∞
∑

n=−∞

ej2πnt

=
2

π

(

1 +

∞
∑

n=1

e−j2πnt + ej2πnt

)

=
2

π
+

4

π

∞
∑

n=1

cos(2πnt)



MATLAB Problem 3

In this problem, I am providing you with four noisy vectors of length N = 11613. Embedded in one
of these vectors is a famous quote from a former politician. Your goal will be to determine which of

these four vectors contains the audio signal (and determine which three are purely noise) and decode
the audio signal.

• Place the files ‘one.mat’, ..., ‘four.mat’ in your MATLAB directory.

• Run the commands ‘load one.mat;’, ... ‘load four.mat;’ to load the vectors.

• Declare variables ‘Fs = 11025; and ‘t = (0 : N − 1)/Fs;’

(Fs is the frequency the audio message was sampled at, and t is an array of time (in seconds)
you can use to plot. The sampling frequency essentially tells us that all frequencies present in the
signal are at most Fs

2
. We will learn more about this later)

• Try plotting ‘one’, ‘two’, ‘three’, and ‘four’ and running ‘sound(one, Fs);’,..., ‘sound(four, Fs);’

(warning the sound will be unpleasant).

You will likely be unable to determine which signal contains the message by examining these
signals in the time domain.

• Fortunately for us, the noise I used only has frequencies outside of the range of frequencies in
the audio clip. So while the signals are garbled in the time domain, we may be able to decipher
some information in the frequency domain.

• Try plotting the magnitude of each signal in the frequency domain.

To do this, run the following commands:

‘f = (−Fs/2 : Fs/(N − 1) : Fs/2);’

(this creates a length-N array whose entries range from −Fs

2
to Fs

2
and increment by Fs

N−1
)

‘One = fft(one);’

(this creates an array of length N that represents one in the frequency domain)

‘plot(f, abs(fftshift(One)));’

If they still all look similar to you, try plotting the logarithm of the absolute value of the magni-
tude of the signal in the frequency domain.

‘plot(f, log(abs(fftshift(One))));’

By doing this with all four signals, you should notice that one of the signals contains frequency
components that the other three do not.

• Once you have identified the signal with the audio embedded in it, you will need to filter out the
noise. To do this, we can use an ideal high, low, or band-pass filter, and we can work entirely in
the frequency domain.

Let ‘X’ denote the frequency domain array (i.e. X = fft(x)) of the signal with the audio embed-

ded in it. I have provided you with a function for an ideal band-pass filter (HW2 Filter.m), which
you can use for filtering by doing something like:

‘Z = X .∗ HW2 Filter(f, A,B);’

You will need to experiment with the values of A and B.

Alternatively, you can figure out another way to filter out the noise, if you’d like.



• Finally, once you have filtered out the noise in the frequency domain, you need to convert Z back
into the time domain. You can do this by taking:

‘z = real(ifft(Z));’

‘sound(z, Fs);’

If you implemented the filtering correctly, you should hear the audio.

Submit the following:

• which signal has the audio embedded in it

• the contents of audio message

• a plot of the magnitude frequency domain representation of the unfiltered signal (with proper
labeling, of course), and a plot of the magnitude of the frequency domain representation of the
filtered audio message.

Solutions

See ‘ECE45 MATLAB2.m’ for implementation details.

The message is “I’ll be back” spoken by former California governator Arnold Schwarzenegger in the

1984 movie ‘The Terminator.’ The message was embedded in signal 3. Plots in the time and frequency
domain are given below.
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It can be seen that each signal has noise present in the frequencies in the range 3600 to Fs/2, but only

signal 3 has a significant amount of frequency components in the range 0 to 3600. After applying a
low-pass filter with cut-off frequency 3600 Hz, we obtain the following:
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