
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Large wireless networks : fundamental limits and design issues

Permalink
https://escholarship.org/uc/item/6722937q

Author
Minero, Paolo

Publication Date
2010
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6722937q
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA, SAN DIEGO

Large wireless networks: fundamental limits and design issues

A dissertation submitted in partial satisfaction of the

requirements for the degree

Doctor of Philosophy

in

Electrical Engineering (Communication Theory and Systems)

by

Paolo Minero

Committee in charge:

Professor Massimo Franceschetti, Chair
Professor Young-Han Kim, Co-Chair
Professor Jorge Cortes
Professor Bruce Driver
Professor Ramesh Rao
Professor Jack Wolf

2010



Copyright

Paolo Minero, 2010

All rights reserved.



The dissertation of Paolo Minero is approved, and it is

acceptable in quality and form for publication on micro-

film and electronically:

Co-Chair

Chair

University of California, San Diego

2010

iii



DEDICATION

To my mother Mariella and the memory of my father Giorgio

iv



EPIGRAPH
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ABSTRACT OF THE DISSERTATION

Large wireless networks: fundamental limits and design issues

by

Paolo Minero

Doctor of Philosophy in Electrical Engineering (Communication Theory and
Systems)

University of California, San Diego, 2010

Professor Massimo Franceschetti, Chair
Professor Young-Han Kim, Co-Chair

As information networks grow in magnitude and complexity, new models

and frameworks are necessary to understand the nature of information transmis-

sion. In this thesis we demonstrate how fundamental questions arising in the design

of large wireless networks can be addressed by applying methods from information

theory, physics, networking and control. We focus on three examples of emerging

systems architecture. First, we investigate the maximum achievable throughput

in a wireless ad-hoc network. By combining Maxwell’s physics of wave propaga-

tion and Shannon’s theory of information, and departing from idealistic stochastic

channel models for signal propagation, we derive an upper bound to the law that

determines the scaling of throughput with the population size of the network, and

conclude that the scaling achieved by multi-hop communication is optimal in any

constant density wireless network. Second, we study how to aggregate information

from uncoordinated nodes by considering a random-access system with multiple

nodes transmitting information to a common receiver. We characterize the maxi-

xii



mum achievable throughput of channels of practical interest and demonstrate how

the performance of current systems can be improved by allowing encoding rate

adaptation at the transmitters and joint decoding at the receiver. Finally, we ex-

plore the fundamental limits of control over wireless channels and demonstrate the

relationship between the degree of instability of a system and the time varying rate

of communication in the feedback link.
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Chapter 1

Introduction

As hardware technology advancements lead to dramatically decreasing di-

mension and cost of embedded sensor devices, deployment of large scale distributed

and wireless sensing systems are fast becoming a reality in the near future. Such

networks will encompass monitoring and control of all global distributed infrastruc-

tures, such as transportation systems, power grids, pipelines, water distribution

networks, and the internet. With the growth of information networks’ magnitude

and complexity, the realization of this vision of pervasive networking requires us

to revolutionize the way we design and manage large networks, and to solve a

wide spectrum of engineering and mathematical challenges. How to efficiently and

reliably transmit information in an ad-hoc network, collect information from a mul-

titude of sensors, and control dynamical systems over wireless channels are some

of these common challenges faced by the scientific community and object of study

of this dissertation.

New models and frameworks are necessary to tackle these new engineering

challenges. Traditionally, different disciplines have focused on specific aspects of

large networks independently and in isolation. The structural properties of net-

works have been the territory of physics, that has developed an arsenal of tools

to study the macroscopic behavior of a system derived from the microscopic prop-

erties of its constituents. Communication theory has focused on designing coding

schemes for reliable information transmission in point-to-point, many-to-one, and

one-to-many systems. Control theory has dealt with behavior of dynamical sys-

1
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tems in presence of feedback. What is needed for the design and deployment of

emerging large distributed networks of tomorrow is a unified theory, based on a

cross disciplinary blending of ideas from the aforementioned fields. In this thesis

we demonstrate how fundamental questions arising in the design of large wireless

networks can be addressed by applying methods from information theory, physics,

networking and control.

This thesis contains three self-contained articles focused on distinct systems

architecture. In Chapter 2, we address the following fundamental questions in the

field of wireless networks: how much information can be carried by a wireless ad-hoc

network composed of many nodes, and how should the nodes cooperate to transfer

such information? The approach taken is to depart from traditional stochastic

fading and path loss channel models commonly used in the related literature, and

to address these questions using first physical principles. This lead to theoretical

results of fundamental flavor, which are not tied to specific fading and path loss

models. Our main contribution is to use tools from electromagnetic theory to

derive an upper bound to the law that determines the scaling of the throughput

with the population size of the network, and to conclude that the scaling achieved

by a simple multi-hop communication protocol is optimal in any constant density

wireless network.

In Chapter 3, we consider a large wireless random access system where a

random set of transmitters communicate to a single receiver, in an impulsive and

uncoordinated fashion. In this setting, the amount of information which flows

from transmitters to receiver is limited by the random level of interference at the

receiver. Despite decades of active research, the theory to study random access

communications is far from complete. On the one hand, information theory pro-

vides accurate models for the interference caused by simultaneous transmissions,

but it ignores random information arrivals at the transmitters; on the other hand,

network oriented studies focus on the impulsive nature of information transmission,

but do not accurately describe the underlying physical channel model. In a quest

to bridge the divide between these two approaches, we develop a model for study-

ing random access systems which is information-theoretic in nature, but which also
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accounts for the random activity of the users, as in models arising in the network-

ing literature. We then apply this model to characterize the maximum amount of

information which can be sent in several interesting random access systems.

Finally, Chapter 4 considers engineering applications where one or more dy-

namical systems are controlled using sensing devices and actuators communicating

over wireless channels. In this setting, the amount of information which flows from

sensors to actuator changes dynamically according to the channels condition. We

use information theoretic techniques to characterize the fundamental constraints

posed on the on control performance due to random fluctuations of the commu-

nication channel. Our main result consists in characterizing tight necessary and

sufficient conditions to say when it is possible to design a communication scheme

which changes dynamically following the fluctuations of the channels condition

and, at the same time, is guaranteed to stabilize the system. Our result also cre-

ate an important connection between earlier works in the literature, by showing

a fundamental relationship between the degree of instability of the plant and the

rate of the communication in the feedback control channel.



Chapter 2

Capacity scaling of ad-hoc

networks

It is shown that the capacity scaling of wireless networks is subject to

a fundamental limitation which is independent of power attenuation and fading

models. It is a degrees of freedom limitation which is due to the laws of physics. By

distributing uniformly an order of n users wishing to establish pairwise independent

communications at fixed wavelength inside a two-dimensional domain of size of the

order of n, there are an order of n communication requests originating from the

central half of the domain to its outer half. Physics dictates that the number of

independent information channels across these two regions is only of the order of
√
n, so the per-user information capacity must follow an inverse square-root of n

law. This result shows that information-theoretic limits of wireless communication

problems can be rigorously obtained without relying on stochastic fading channel

models, but studying their physical geometric structure.

4
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2.1 Introduction

A natural question that arises is whether information theory can provide

fundamental bounds on the capacity of wireless ad-hoc networks, which are not

tied to ad-hoc physical channel models. One aim of this work is to show that this

is indeed the case, if the information-theoretic approach is appropriately combined

with the study of the physics of wave propagation. The main contribution, however,

should be seen in a broader context. Relying on functional analysis to study

the vector space of the propagating field, rather than assuming stochastic fading

channel models, could be a rigorous way to tackle other wireless communication

problems.

The information theoretic characterization of the capacity region of wireless

networks is one of the holy grails in information theory. It is a problem of great

mathematical depth and engineering interest. One way to approach the problem

is due to Gupta and Kumar [14], who proposed to study the simpler case in which

all the nodes in the network are required to transmit at the same bit-rate, and to

look at the scaling limit of the achievable rate, as the number of nodes in the net-

work grows. In this way, the capacity region collapses to a single point and order

results on its behavior are obtained. Gupta and Kumar’s bounds were also derived

under some additional assumptions on the physics of propagation, and on some

restrictions on the communication strategy employed by the nodes (i.e. multi-hop

operation and pairwise coding and decoding). Later, starting with the work of Xie

and Kumar [38], information-theoretic scaling laws, independent of any strategy

used for communication, have been established by many authors. These results,

however, heavily depend on the assumptions made on the electromagnetic propa-

gation process. Presence or absence of fading, choice of fading models, and choice

of path loss models, lead to different lower and upper bounds on the scaling limit

of the information rate. As a consequence, a plethora of articles appeared in the

information-theoretic literature [2], [3], [9], [12], [17], [19], [20], [24], [25], [26], [27],

[28], [39], [40], presenting bounds ranging from a per-node rate that rapidly decays

to zero as the number of nodes in the network tends to infinity, to bounds predict-

ing a slower decay, to bounds that are practically constant. In these works, while



6

the lower bounds rely on different cooperative schemes employed by the nodes,

the upper bounds follow from the application of the same mathematical tool: the

information-theoretic cut-set bound [6, Chapter 15]. This single strategy of attack,

and the resulting dependence on ad-hoc physical propagation models, are somehow

undesirable for a theory that seeks the fundamental limits of communication.

In the same two-dimensional geometric setting of the works above, this

work shows that there exists a single scaling law, which is essentially an inverse-

square-root of n law, and is dictated by Maxwell’s physics of wave propagation, in

conjunction to a Shannon-type cut-set bound. The result is then generalized to a

three-dimensional setting at the end of this chapter. The main contribution in 2D

is expressed as follows.

Claim: In a wireless network composed of n uniformly distributed nodes subject to

an individual (or total) power constraint, operating at a fixed wavelength inside a

two-dimensional domain of area n (normalized to the wavelength), and which are

uniformly paired into sources and destinations, each source can communicate to its

intended destination at most at rate O((logn)2/
√
n) bits per second. This scaling

law is a consequence of a limitation in the spatial degrees of freedom of the network

that is independent of empirical path-loss models and stochastic fading models, but

depends only on the geometrical configuration of the network.

By looking closely at the claim above, we see a reflection of what Shannon

has showed us, namely that the information capacity is limited by the power avail-

able for communication, and by the diversity available in the physical channel. In

classical information theory, this diversity is expressed in terms of available fre-

quency bandwidth. In the case of spatially distributed systems, such as wireless

networks, this diversity constraint also appears in space. The usual approach of

postulating stochastic fading channel models hides the explicit computation of the

spatial diversity, while our analysis reveals it.

Being aware of such a fundamental limitation is certainly desirable, but

what conclusions can be drawn from it on the optimal design and operation of

wireless networks? Unfortunately not many. As it is often the case with funda-

mental limits, their generality can also be the curse of their practical applicability.
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But we are not left completely empty handed of engineering guidelines either.

One important implication is that any cooperative communication scheme cannot

achieve a rate higher than what is stated in the claim above, at least in the scaling

limit sense. Physics simply forbids it. Mathematical proofs of higher capacity

scaling [2], [12], [24], [25], [26], [28], achieved using sophisticated cooperative com-

munication schemes, rely on stochastic channel models and in a strict scaling limit

sense are artifacts of such models. This highlights the importance of using ap-

propriate mathematical models of reality to derive information-theoretic results.

But does this also lead to the irrefutable conclusion that sophisticated cooperative

strategies such as network coding, space-time coding, hierarchical cooperation, do

not lead to any gain? The general answer is no. Scaling results are only up to order

and pre-constants can make a huge difference in practice. Sophisticated coopera-

tive communication schemes could in principle be extremely beneficial in networks

of any fixed size. A rigorous proof of this latter statement is, however, difficult

to obtain in a non-limiting scenario, and should take into account many practical

issues related to protocol overhead, like decentralized medium access synchroniza-

tion, and availability of channel state information.

Finally, we wish to spend some additional words on the mathematical tech-

niques we use in this work. Resolving the amount of information that can be

communicated through wave propagation is a venerable subject that has been

treated by a great number of authors in different fields. Papers in optics often re-

fer to the early works of Toraldo di Francia [36], [37]. In the mid nineteen-eighties

the problem has been considered again in a more general context by Bucci and

Franceschetti [4] [5], who introduced the important concepts of spatial bandwidth

and degrees of freedom of scattered fields, and placed them into a rigorous func-

tional analysis framework. More recently, the problem has been treated by the

works of Miller [23], Piestum and Miller [32], Poon, Brodersen and Tse [33], and

Migliore [22]. Our mathematical framework follows the approach of Bucci and

Franceschetti, which we find to be the most rigorous, and does not require far-

field approximations. There are some important differences, however. Bucci and

Franceschetti first establish the spatial bandlimitation property of the field in their
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first paper [4], and then they consider the problem of field reconstruction from a

bounded observation set in their second paper [5], using prolate spheroidal func-

tions, which are known to be optimal in the Landau-Pollack-Slepian sense. Given

the specifics of our problem, we do not need this full machinery, but only inherit

its main philosophy. We follow a singular value decomposition approach, which

is standard in communication theory, and use simpler basis functions for the field

expansion, which are good enough for our purposes. We then look directly at the

behavior of the singular values of this decomposition, without performing a space-

band transform. This leads to simpler computations and shortens the treatment

considerably.

The next section formally defines the problem and outlines its solution.

Section 2.3 completes the solution by studying the dimension of the Hilbert space

spanned by the electromagnetic vector field. Section 2.4 presents the extension to

a three-dimensional geometry and a final discussion of the results is presented in

Section2.5.

2.2 Information-theoretic approach

Throughout this chapter, we consider distance lengths normalized to the

carrier wavelength λ. Consider a Poisson point process P of unit density inside

a disc Dn of radius
√
2n, and partition Dn into two equal parts by drawing a

circular cut of radius
√
n at the origin, which divides Dn into the inner disc D

and the outer annulus A, where for convenience of notation we do not explicitly

indicate the dependence on n. The points of the process represent the nodes of the

network and we assume a uniform traffic pattern: nodes are paired independently

and uniformly, so that there are an order of n communication requests that need

to cross the boundary of the partition, see Figure 2.1.

Assuming that each node in Dn generates at most P watts 1, we want to

find an upper bound on the per-node communication rate R(n) that all nodes can

achieve simultaneously to their intended destinations. To do so, we consider the

1Assuming a total power constraint rather than a per-node one does not change the results.
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AD

δ

Figure 2.1: The partition considered in the analysis.

sum Cn of the rates that can be sent from the transmitters in D to the receivers

in A. We have, with high probability (w.h.p.),

R(n) = O

(
Cn

n

)
. (2.1)

Next, to upper bound Cn we assume that the nodes on one side of the cut can

share information instantaneously among themselves, and can also distribute the

power among themselves in order to establish communication in the most efficient

way with the nodes on the other side; which in turn are able to distribute the

received information instantaneously among themselves. In this way, Cn is upper

bounded by the capacity of a single user multiple-input multiple-output (MIMO)

antenna array communicating across the partition.

The MIMO channel model across the cut is the space-vectorial version of the

additive white Gaussian noise channel. In discrete time steps, it has the following

representation:

Yd[i] =
∑

s∈P∩D
hsd[i]Xs[i] + Zd[i], for all d ∈ P ∩A, (2.2)

where Xs[i] are the symbols sent by node s at time i, Yd[i] are the symbols received

by node d at time i, and Zd[i] are (independent space-time) Gaussian variables with

unit variance. The coefficients hsd[i] model the strength of the propagation channel
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between node s and node d and, given the realization of P, are deterministically

dictated by the physics through Maxwell equations. Throughout this chapter we

assume a fixed environment, i.e., hsd[i] = hsd for all i, but it will be clear that our

results do not change in a dynamic environment where the coefficients hsd vary

over time. In matrix form, (2.2) is rewritten as

YA[i] = H XD[i] + ZA[i]. (2.3)

Considering coding across time using blocks of m symbols and denoting the

mutual information between space-time codewords Xm
D and Ym

A as I(Xm
D ;Y

m
A ),

the information flow through the cut can be upper bounded as follows:

mCn ≤ max
p(Xm

D )
∑m

i=1 X
2
s [i]≤mP,∀s∈P∩D

I(Xm
D ;Y

m
A ). (2.4)

We now divide the information flow across the cut into two contributions. Let V

be the annulus of constant width δ > 0 around D. The first contribution is the

information flow from the nodes in D to the nodes in V . The second contribution

is the information flow from the nodes in D to the nodes in A \ V . Formally:

I(Xm
D ;Y

m
A ) = I(Xm

D ;Y
m
V ,Y

m
A\V )

≤ I(Xm
D ;Y

m
V ) + I(Xm

D ;Y
m
A\V ), (2.5)

where the inequality holds as the space components of ZA[i] are independent.

Combining (2.4) and (2.5), it follows that

mCn ≤ max
p(Xm

D )
∑m

i=1 X
2
s [i]≤mP,∀s∈P∩D

I(Xm
D ;Y

m
V )

+ max
p(Xm

D )
∑m

i=1 X
2
s [i]≤mP,∀s∈P∩D

I(Xm
D ;Y

m
A\V )

=: mC(V ) +mC(A\V ). (2.6)

Next, we consider the two terms in (2.6) separately and derive corresponding up-
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per bounds. The first bound is obtained using standard information-theoretic

arguments and relies only on the power constraint and on counting the number

of transmitters and receivers, while the second bound is obtained by merging the

information theory with a more detailed physical analysis of the wave propagation

process.

Let us start with the easy part: we bound C(V ) by summing the capacities

of the individual multiple-input single-output (MISO) channels between all nodes

in D and each receiver in V . We have, w.h.p.,

CV ≤
∑

d∈P∩V

1

2
log

(
1 +

P

σ2

∑

s∈P∩D
|hsd|2

)

≤ K1

√
n log

(
1 +

P

σ2
K2 n max

s∈P∩D,d∈P∩V
|hsd|2

)

= O(
√
n logn), (2.7)

whereK1, K2 are positive constants. The first inequality is a standard information-

theoretic cut-set bound. The second inequality is due to the number of nodes in V

being w.h.p. O(
√
n) and the number of nodes in A\V being w.h.p. O(n). The last

equality is due to maxs∈P∩D,d∈P∩V |hsd|2 = O(n), as one can at most beamform

the total transmitted power on a single channel. Physically, the bound in (2.7)

shows something very simple: there are at most a constant times
√
n independent

output channels, and the capacity of each of them is at most proportional to log n,

since the total transmitted power is of the order of n. Hence, the bound in this case

is independent of the number of degrees of freedom that are effectively available

in the physical channel and depends only on the total number of transmitting and

receiving antennas.

We now focus on CA\V . In this case the number of degrees of freedom effec-

tively available in the physical channel, rather than the total number of antennas

available for communication, is the bottleneck that provides the required bound.

To show this, we study the physics of the wave propagation process. We start

by noting that CA\V is independent of the nodes in V , so their presence does not

increase the information flow and the upper bound can be computed assuming
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V to be empty. Thanks to the empty separation annulus V , the kernel of the

propagation operator connecting transmitters and receivers does not have singu-

larities due to receivers being arbitrarily close to transmitters, and we can study

the degrees of freedom of such operator using a functional analysis approach. The

result, formally derived in the next sections, is the following. Let H(A\V ) be the

matrix with entries hsd, s ∈ P ∩ D, d ∈ P ∩ (A \ V ). Although O(n) antennas

are available in A \ V ,

rank
(
H(A\V )

)
= O(

√
n logn). (2.8)

It then follows, by performing the same steps leading to (2.7) but summing only

over the effective number of independent MISO channels given by (2.8), rather

than over all the receiving nodes, that w.h.p.,

CA\V = O
(√

n (logn)2
)
. (2.9)

Combining (2.6), (2.7), and (2.9), we have, w.h.p.,

Cn = O
(√

n (log n)2
)
.

The final result now follows immediately from (2.1): w.h.p.,

R(n) = O

(
(log n)2√

n

)
. (2.10)

We make the following remark. The geometric setting considered above is

by now standard in the literature, but it is not the most general one for which

our result holds. We could have considered any arbitrary distribution of nodes

in the disc D and in the annulus A and any matching between the nodes in the

two regions. The only constraint on the distribution of the nodes is either that

the node closest to the boundary of the partition must be at fixed distance δ from

it, or that the number of nodes violating this minimum distance constraint is at

most of O(
√
n), so that their contribution to the information flow can be bounded

by a power constraint argument as in (2.7) rather than by a degrees of freedom
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Figure 2.2: Left-hand side: step one, free space propagation. Right-hand side:
step two, propagation with scattering elements.

argument.

2.3 The physics of the information flow

All that remains to be done is to provide a formal proof of (2.8). We do

this in three steps. In a first step, we study the properties of the electromagnetic

field that propagates up to distance δ > 0 from the inner disc and is incident on

the circumference M, see the left-hand side of Figure 2.2, in which transmitting

and receiving antennas are denoted by black dots, while scatterers are denoted

in grey. In doing so, we assume to have an arbitrary collection of sources and

scatterers placed inside the disc D, while the outside space is empty. Under these

assumptions we show that the field incident on M is completely described by a

linear combination of O(
√
n logn) basis functions. In other words, the number

of degrees of freedom of the incident field is O(
√
n logn). In a second step, we

consider the presence of scatterers outside the circle M and show that these do

not change the number of degrees of freedom of the field incident on M, see the

right-hand side of Figure 2.2. The intuitive justification of this latter fact is that

the field backscattered on M does not provide new information, since this has

already passed through M. Furthermore, we argue by the uniqueness theorem

[15, page 100] that the field at any point outside M, and in particular at the

receiving antennas, is given by a linear transformation of the field on M, which

does not change the number of degrees of freedom. Finally, in a third step, we
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XD YA\Y

ZA\Y

H

O V

K

I(rd) E(rm)F G D

Figure 2.3: The physical channel model.

notice that receiving antennas detect a voltage proportional to the intensity of

the field incident on them, plus some thermal noise, and this leads to the desired

information-theoretic result.

The physical channel model is summarized in Figure 2.3, which shows the

input-output relationship between transmitted and received signals. Such relation-

ship is given by a chain of operators and corresponds to the information-theoretic

channel model in (2.3). These operators are formally studied in the next sections

according to the outline provided above. The figure shows that arbitrary source

symbols represented by the input vector XD are mapped into a physical current

density I(rd) inside the disc D through the operator F . Next, the currents in D

are related to the field E(rm) on M though the free-space radiation operator G.
The operator D accounts for the presence of scatterers outside M and represents

the mapping from the field on M to the vector O of the intensities of the electric

field on the receiving antennas. Finally, the voltage at each receiving antenna is

proportional to the intensity of the electric field incident on it, and the output

symbol vector YA\Y is given by the voltage on the antennas, plus some additive

noise.

The proof outline described above can now be revisited in terms of the

physical channel model depicted in Figure 2.3. We show that the range space

of the operator G is of dimension O(
√
n logn), as n tends to infinity, and that

the operator D is linear and thus does not increase the dimension of the space.

Similarly, the linear map V = KO does not increase the dimension of the space.

The range-space of F can be assumed of arbitrary dimension, and we conclude

that the range-space of HA\V is of dimension O(
√
n log n), as n tends to infinity.



15

2.3.1 Step one, propagation in free space

In this section, we show that the electric field at any point on M lies on a

Hilbert space of dimension O(
√
n logn), as n tends to infinity. We assume sources

and scatterers to be present in D, while the outside space is empty.

Being interested in an upper bound on the information flow, we can assume

that the sources are arbitrarily located in D and can control the current density

inside the disc D. We let such arbitrary current density be I(rd) [A/m
2], rd ∈ D.

Notice that singular sources can be thought of as limiting cases of two-dimensional

distributions.

Assuming two-dimensional cylindrical propagation, so that the current den-

sity is ẑ directed, the electric field radiated by currents in D and observed at

rm ∈ M has only the ẑ component, and is given by [15, pages 223-232]

E(rm) =
−β2

4ωǫ0

∫

D

I(rd)H
(2)
0

(
β|rm − rd|

)
ds, rm ∈ M, (2.11)

where ds is an element of area perpendicular to ẑ, β = 2π
λ

is the wavenumber, ǫ0

is the permittivity of the vacuum, H
(2)
i (x) is the Hankel function of the second

kind and order i, and a Fourier transform convention exp(jωt) has been adopted,

ω = 2π/(
√
ǫ0µ0λ) being the angular frequency, and µ0 being the permeability of

the vacuum. Furthermore, we assume the following power constraint:

a

∫

D

|I(rd)|2 ds ≤ n P, (2.12)

wherein a is a normalization constant and P is the individual power constraint of

each source. This condition ensures that the power radiated by the sources is finite

and linearly proportional to the number of sources in D. Equation (2.11) shows

that the currents in D and the electric field on M are linearly related through the

radiation operator G (whose kernel is the Green’s function). It follows that (2.11)

can be written as:

E(rm) = (GI)(rm), rm ∈ M, (2.13)
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where

(GI)(rm) =
−β2

4ωǫ0

∫

D

I(rd)H
(2)
0

(
β|rm − rd|

)
ds (2.14)

represents the radiation operator, which maps a current density in D into the

electric field at a point rm ∈ M. We can also see from (2.14) the reason why

we have introduced a minimum separation δ > 0 between the sources and the

observation domain M, as the kernel of the radiation operator is singular at rm =

rd. By introducing a separation δ > 0 between the sources and the observation

domain we avoid singularities in the kernel of (2.14), obtaining a compact integral

operator with analytic kernel.

Next, we study the analytical properties of the operator G, and show that

the range-space of such operator is practically finite when the dimension of the

radiating system is large. In order to do so, we represent the electric field on M in

terms of the Hilbert-Schmidt decomposition, that is the equivalent of the singular

value decomposition for operators in the L2 space, and show that the electric field

in (2.11) is completely described by O(
√
n logn) singular functions, as n → ∞.

The Hilbert-Schmidt decomposition of (2.11) is given by

E(rm) =
∞∑

k=−∞
σk 〈I, vk〉L2 uk(rm), rm ∈ M, (2.15)

where {σk} are the singular values of the operator; uk and vk are the k-th left singu-

lar function and right singular function respectively, and 〈a, b〉L2 :=
∫
a(r)b∗(r)dr

denotes the inner product between functions in L2. In order to compute the singu-

lar values {σk}, it is convenient to choose the following set of orthonormal functions:

uk(rm) = − H
(2)
k

(
2π(

√
n+ δ)

)
ejk∠rm

√
2π(

√
n+ δ)1/2

∣∣H(2)
k

(
2π(

√
n+ δ)

)∣∣ , (2.16)

where rm ∈ M, and

vk(rd) =
Jk(β|rd|) ejk∠rd

√
2π
(∫ √

n

0

∣∣Jk(βrd)
∣∣2rd drd

)1/2 , (2.17)
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where rd ∈ D, Jk(x) is the Bessel function of the first kind and order k, and |r|
and ∠r are the magnitude and the angular coordinate of the vector r respectively.

Using the addition theorem for Hankel functions [15, page 232], we can write

H
(2)
0

(
β|rm − rd|

)
in terms of cylindrical wave functions referred to the origin, and

(2.11) can be rewritten as

E(rm) =
−β2

4ωǫ0

∫

D

I(rd)
∞∑

k=−∞
Jk(β|rd|)×

H
(2)
k (β|rm|)ejk∠(rm−rd)ds. (2.18)

Comparing (2.15) and (2.18), and using (2.16) and (2.17), we immediately obtain

that

σk =
πβ2

2ωǫ0

∣∣∣H(2)
k

(
2π(

√
n+ δ)

)∣∣∣ (
√
n + δ)1/2×

(∫ √
n

0

∣∣Jk(βrd)
∣∣2rd drd

)1/2

. (2.19)

The integral in (2.19) can be solved using identity (5.54.2) in [13], yielding

∫ √
n

0

∣∣Jk(β|rd|)
∣∣2rd drd

=
x2

2

[(
Jk(βx)

)2 − Jk−1(βx)Jk+1(βx)
]∣∣∣∣

√
n

0

. (2.20)

Substituting (2.20) into (2.19) we obtain the following expression for the singular

values of the operator G:

σk =

√
µ0

ǫ0

√
2

2
π2
√
n
(√

n + δ
)1/2 ∣∣∣H(2)

k

(
2π(

√
n + δ)

)∣∣∣×
((

Jk(2π
√
n)
)2 − Jk−1(2π

√
n)Jk+1(2π

√
n)
)1/2

. (2.21)

The electric field incident on M lies on a Hilbert space whose dimension

depends on the behavior of the singular values in (2.21) as a function of the index

k. It turns out that these are approximately constant up to a critical value kc ≈
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Figure 2.4: Plot showing the phase transition of the singular values σk.

2π
√
n, after which they undergo a phase transition and rapidly decay to zero. The

transition tends to become a step function as n → ∞, as shown in Figure 2.4. This

leads to the conclusion that the electric field can be represented with a vanishing

error using roughly kc basis functions. This latter claim is made precise in the next

theorem, proven in Appendix 2.6.1.

Theorem 2.3.1. Let

ÊN(rm) =
N∑

k=−N

σk 〈I, vk〉L2 uk(rm).

There exists an N0 = O(
√
n log n), such that for all rm ∈ M we have

lim
n→∞

‖E(rm)− ÊN0(rm)‖2 = 0. (2.22)

Some remarks are now in order. The theorem shows that the electric field

on M can be represented using O(
√
n log n) functions as n tends to infinity. The

log n factor ensures that we are sufficiently far from the critical value kc, so that the

singular values corresponding to the tail of the field decomposition are essentially

zero and the field can be reconstructed with vanishing error.
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2.3.2 Step two, the presence of scatterers

In this section we show that the field outside M can be represented using

O(
√
n log n) basis functions, even when scattering elements are present in the do-

main. This result has a simple physical interpretation in terms of an information

conservation principle, which relies on the electromagnetic uniqueness theorem.

The uniqueness theorem ensures that the electric field at any point outside M is

uniquely determined by the field on M. This is composed by the field radiated

by D, which by Theorem 2.3.1 we know has a limited number of degrees of free-

dom, and by the field backscattered from outside M, which does not provide any

additional information since M is a closed curve capturing the whole information

flow coming out of D. Next, we place this simple intuition into a more rigorous

framework.

The electric field at any point ry ∈ A \ V , and in particular at the receiv-

ing antennas, is given by the superposition of two field vectors, denoted ED and

ES, representing the field due to the currents inside and outside M, respectively.

Formally:

E(ry) = ED(ry) + ES(ry), ry ∈ A \ V. (2.23)

We show that both field vectors in (2.23) can be represented using O(
√
n log n)

basis functions, as n → ∞.

Let us first focus on ED, i.e. the field vector due to the source currents and

to the induced currents inside M. The induced currents are due to the scattered

field inside D, and also to the field backscattered from outside D. Since in the

analysis of section 2.3.1 the current density in D was assumed arbitrary, the same

analysis applies here, by including in I(rd) the currents induced by the backscat-

tered field. Thus, by the same steps leading to (2.15) we can now write the field

ED at a point ry outside M as

ED(ry) =

∞∑

k=−∞
σk

H
(2)
k (β|ry|)

H
(2)
k (2π(

√
n+ δ))

〈I, vk〉L2 uk(ry). (2.24)

By (2.15) it follows that (2.24) also corresponds to the field due to the currents
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inside D at the point rm ∈ M with ∠rm = ∠ry, having scaled each harmonic

by the factor H
(2)
k (β|ry|)/H(2)

k (2π(
√
n + δ)). Then, using (2.13) we conclude that

there exists a linear operator Df such that

ED(ry) = (Df ◦ GI)(ry), ry ∈ A \ V. (2.25)

We now focus on ES, the field vector at the receiving antennas due to the

currents induced on the scatterers outside M. We show that ES is linearly related

to the field on the scatterers, and that this field is in turn linearly related to the

currents inside D.

Let S ⊆ (A \ V ) denote the domain occupied by the scattering elements

outside M, and let I(rs) denote the induced current density on S. The functional

relationship between I(rs) and ES is given by (2.11), where we integrate over S,
in lieu of D. Thus,

ES(ry) =
−β2

4ωǫ0

∫

S

I(rs)H
(2)
0 (β|(ry − rs)|)ds, ry ∈ A \ V. (2.26)

By Maxwell equations, we can write I(rs) in terms of the electric field on S as

follows:

I(rs) = jω(ǫ(rs)− ǫ0)E(rs), rs ∈ S, (2.27)

wherein ǫ(rs) is the permittivity of the dielectric material2 at rs. Substituting

(2.27) into (2.26) we obtain

ES(ry) =
−jβ2

4ǫ0

∫

S
(ǫ(rs)− ǫ0)E(rs)×

H
(2)
0 (β|(ry − rs)|)ds, ry ∈ A \ V, (2.28)

which shows that ES is linearly related to the field on S.
Substituting (2.28) into (2.23) we obtain that the field on S is given by the

2The analysis in the case of metallic scatterers is completely equivalent.
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solution of the following integral equation:

E(rs) = ED(rs) +
−jβ2

4ǫ0

∫

S
(ǫ(rs)− ǫ0)E(rs)×

H
(2)
0 (β|(rs − r′)|)ds′, rs ∈ S. (2.29)

This is an inhomogeneous Fredholm integral equation of the second kind, whose

solution leads to the Liouville-Neumann series. More important for us is that

(2.29) shows a linear relationship between ED and the field on S. Since we have

already shown in (2.28) that the field on S is linearly related to ES, it now follows

that ES and ED are also linearly related. Finally, by using (2.25) we conclude that

there exists a linear operator Ds, such that

ES(ry) = (Ds ◦ GI)(ry), ry ∈ A \ V. (2.30)

Putting things together, we conclude from (2.23), (2.25) and (2.30) that

the electric field at the receiving antennas placed in A \ V can be expressed as

the superposition of two field vectors. Each of these lies in a Hilbert space whose

dimension is limited by the rank of the radiation operator G and hence can be

represented with O(
√
n log n) basis functions, as n tends to infinity.

2.3.3 Step three, back to information theory

The input-output relationship between the electromagnetic field at the out-

put of each receiving antenna and the current densities in D can be expressed, in

functional form, as:

E(ry) = (D ◦ GI)(ry), ry ∈ A \ V, (2.31)

where D = Df + Ds. The values in (2.31) can be stack in a vector O, whose

d-th component indicates the intensity of the electric field at receiving node d ∈
P ∩ (A \ V ).

The voltage at each receiving antenna is proportional to the intensity of
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the field at the antenna and is corrupted by some additive electric noise, which

is assumed Gaussian and uncorrelated across antennas. Thus, the voltage values

detected by the receiving nodes can be written as

YA\V = K O+ ZA\V , (2.32)

where K is a constant, and ZA\V is the Gaussian noise vector. Finally, the input-

output relationship between symbols sent by nodes in P∩D and received by nodes

in P ∩ (A \ V ) at time i is given by

YA\V [i] = H(A\V ) XD[i] + ZA\V [i]. (2.33)

where H(A\V ) is given by the composition of the linear operators D, G, F , and

the scalar K. It follows from the analysis in the previous section that the rank of

H(A\V ) is limited by the rank of G. Thus, we obtain

rank
(
H(A\V )

)
= O(

√
n logn), (2.34)

which proves (2.8).

2.4 Extension to three-dimensional networks

In this section we consider networks in which nodes are located according

to a Poisson point process of unit density inside a sphere Bn of radius (2n)1/3. As

before, points of the Poisson process are paired uniformly at random. Assuming

that each node generates at most P watts, we show that w.h.p. all nodes can

(simultaneously) communicate to their intended destinations at rate

R(n) = O

(
(log n)3

n1/3

)
. (2.35)

The proof follows the same steps as in the two-dimensional case, with some

minor differences that we outline below. We partition Bn into two equal parts by

drawing a spherical cut of radius n1/3 at the origin, which divides Bn into the inner
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sphere D and the outer spherical annulus A. Since an order of n communication

requests have to cross the boundary of the partition, as before we first study the

sum Cn of the rates that can be sent from the transmitters in D to the receivers

in A, and then divide Cn by n to obtain the per-node rate Rn. We divide A into

an inner and an outer part, denoted by V and A \ V respectively, by drawing a

sphere of radius n1/3 + δ. The total information flow from D to A is decomposed

into two contributions:

Cn ≤ CV + CA\V , (2.36)

wherein CV and CA\V represent the information flow from D to V and from D to

A \ V , respectively.

By summing the capacities of the individual MISO channels between the

nodes in D and each receiver in V , we have, w.h.p.,

CV = O(n2/3 log n). (2.37)

On the other hand, CA\V is limited by the number of spatial degrees of freedom,

which are O(n2/3(log n)2). As a consequence, we have that, w.h.p.,

CA\V = O(n2/3(log n)3). (2.38)

Combining (2.36), (2.37) and (2.38), and dividing by n, (2.35) follows.

As before, a proof of (2.38) is obtained by studying the physics of the

information flow from D to A \ V . There are some geometrical differences that

we outline below. Assume that the sources are arbitrarily located in D and can

generate an arbitrary current density I(rd) [A/m3], rd ∈ D, polarized in the ẑ

direction

The electric field radiated by the currents in D and observed on the surface
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M separating A from A \ V is given by

E(rm) = −jωµA(rm) +
1

jωǫ0
∇(∇ ·A(rm)), (2.39)

Az(rm) =
1

4π

∫

D

e−jβ|rm−rd|

|rm − rd|
I(rd)drd, rm ∈ M, (2.40)

wherein A denotes the magnetic vector potential [15], and Az denotes its z com-

ponent. The integral kernel in (2.40) can be decomposed into the sum of spherical

harmonics [16, page 742], yielding

Az(rm) = −jβ
∞∑

k=0

k∑

i=−k

h
(2)
k (2π(n1/3 + δ))×

Yk,i(θm, φm)〈I, jkYk,i〉L2 , (2.41)

wherein rm ∈ M has spherical coordinates ((n1/3 + δ), θm, φm), jk is the spherical

Bessel function of the first kind and order k, h
(2)
k is the spherical Hankel function

of second kind and order k, and Yk,i is the (k-th, i-th) spherical harmonic function.

The Hilbert-Schmidt decomposition of (2.41) can be written as:

Az(rm) =

∞∑

k=0

σk

k∑

i=−k

〈I, vk,i〉L2 uk,i(rm), rm ∈ M, (2.42)

wherein, for rm = ((n1/3 + δ), θm, φm) ∈ M,

uk,i(rm) =
h
(2)
k (2π(n1/3 + δ)) Yk,i(θm, φm)

(n1/3 + δ)
∣∣∣h(2)

k (2π(n1/3 + δ))
∣∣∣

(2.43)

while, for rd = (rd, θd, φd) ∈ D,

vk,i(rd) = −j
jk(βrd) Yk,i(θd, φd)(∫ n1/3

0
|jk(βrd)|2 r2d drd

)1/2 (2.44)
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and

σk =β |h(2)
k (2π(n1/3 + δ))|(n1/3 + δ)×
(∫ n1/3

0

|jk(βrd)|2 r2ddrd
)1/2

. (2.45)

Evaluating the integral in (2.45) using identity (5.54.2) of [13], and writing the

spherical Bessel functions in terms of cylindrical Bessel functions of fractional

order using identities in [13, par. 10.1.1], we obtain

σk =
π
√
λ√
8
n1/3

√
n1/3 + δ |H(2)

k+1/2(2π(n
1/3 + δ))|×

((
Jk+1/2(2πn

1/3)
)2 − Jk−1/2(2πn

1/3)Jk+3/2(2πn
1/3)

)1/2
. (2.46)

Let us compare (2.46) and (2.21). The two equations have the same asymptotic

behavior, provided that in (2.21) we replace n1/2 with n1/3, ceteris paribus. By fol-

lowing exactly the same steps as in the proof of Theorem 1 and using (2.42), it then

follows that there exists an N0 = O(n1/3 log n), such that Az can be represented

with vanishing error as n → ∞ using

N0∑

k=0

(1 + 2k) = O
(
n2/3(logn)2

)
,

singular functions. We have assumed so far that the current density inside D was

arbitrary, but polarized in the ẑ direction. By symmetry, the analysis in the cases

of polarization in the x̂ and ŷ directions is equivalent and, by the superposition of

the effects, the general case of arbitrary polarization can lead up to a three-fold

increase in the degrees of freedom. However, since an arbitrary electromagnetic

field in an homogeneous source-free space can be obtained by superposition of

Traverse Electric and Transverse Magnetic solutions, and since both of them can

be represented in terms of spherical harmonics [15, pp. 129–131, pag. 267], the

increase is only two-fold in case of arbitrary polarization. In any case, the order

result O
(
n2/3(logn)2

)
does not change in the case of arbitrary polarization. On the

other hand, (2.39) shows that the electric field E and Az are related through a linear
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operator, so E can also be represented with a vanishing error using O
(
n2/3(log n)2

)

basis functions, as n → ∞. Next, proceeding exactly as in section (2.3.2), it

follows that the presence of scattering objects in A \ V does not increase the

number of degrees of freedom of the field at the receiving antennas. Finally, (2.38)

is obtained as before, by applying the information-theoretic cut-set bound and

assuming to beamform the total transmitted power in each of the O
(
n2/3(log n)2

)

spatial channels between transmitters and receivers.

2.5 Linear capacity scaling

The objective of the network engineer is to design wireless systems which

fully exploit the number of degrees of freedom available for communication. With

a successful design, and if the number of degrees of freedom scales linearly with

the number of nodes, then more and more users can be added to the network

without sacrificing performance and the engineer fulfills the dream of achieving

linear capacity scaling. A recent paper of Özgür, Lévêque and Tse [28] almost

fulfilled this dream. The authors assume a stochastic fading channel model in

which all emitted signals are received with independent phases, which leads to a

number of spatial degrees of freedom that scales linearly with the number of nodes.

Then, they propose an ingenious node cooperation protocol which exploits these

degrees of freedom, and allows to maintain an almost constant per-node bit rate

as the network’s size scales, when the path loss is sufficiently low.

However, we have shown that the number of spatial degrees of freedom

cannot be assumed to grow linearly with the number of nodes, but in 2D it is

limited by the spatial length of the cut that divides the network into two halves,

so it can grow at most as
√
n; and in 3D it is limited by the surface of the cut,

growing as n2/3. Hence, space can be viewed as a capacity bearing object which

poses a fundamental limit on the achievable information rate, independent of path

loss assumptions. An intuitive picture of this is a as follows. Each communication

channel can be viewed as occupying a unit of space along the cut through which

the information must flow. Sharing this limited spatial resource among all the
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nodes leads to our capacity bounds.

Given this limitation, we are led to the following engineering guideline: ge-

ometry should play a key role in the design of the network, hand in hand with

protocol development. While previously proposed cooperation strategies are not

tied to the geometric configuration and dimensionality of the network, with a care-

ful geometric design the spatial resource can be carefully allocated to the users of

the network, and then exploited by the communication protocol. For example, one

could try to design sparse networks in which the number of nodes is small com-

pared to the spatial resource available for communication and investigate whether

this spatial resource can be exploited in practice through node cooperation. One

such configurations could be a network in which the nodes are confined to a two-

dimensional space, while propagation and scattering occurs in all three dimensions.

We wish to investigate these issues in a forthcoming work, whose seeds are in [11],

and shall not discuss them further here.

Looking in retrospective, we also see that the results reported in this work

are of similar flavor as the ones obtained for point-to-point multiple antenna arrays

in [18] [21] [33] [34], where physical arguments have been used to challenge the

original optimistic results reported in the celebrated works of Foschini [8] and

Telatar [35]. This challenge has also been supported by experimental evidence

that the mutual coupling between antennas, arising when the spacing between

them becomes smaller than the wavelength, does not allow independent signals to

be detected at the receivers [7].

To bypass such arguments, it is customary to note that while the above can

be of concern in antenna arrays where radiating elements are packed close to each

other, in the context of nodes spatially distributed at random on the plane this

issue is irrelevant, as nodes are typically in the far field of each other. For example,

in a network operating at 3 GHz, the carrier wavelength is 0.1 m, while a reasonable

separation distance between nearest neighbor nodes would be of the order of tens of

meters, very much beyond the danger of incurring into near field coupling effects!

Nevertheless, our results show that this heuristic argument fails in the scaling limit.

By the uniqueness theorem, the field on the closed cut considered in our analysis
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completely determines the signal measured at all the receivers outside the cut and

such field has in 2D only an order of
√
n degrees of freedom. Therefore, it is not

possible to generate an order of n independent signals at the receivers, even if all

the nodes are in the far field of each other. In other words, the degrees of freedom

bottleneck is due to the flow through the cut, rather than to the spacing between

the antennas.

As a final remark, we underline that the asymptotic results presented in

this work cannot be directly applied to fixed size networks, for which capacity can

be limited by numerous other factors. Position and properties of the different ob-

jects in the environment that are responsible for reflection, diffraction, scattering,

and absorption of the propagating waves play an important role in determining

the number of available spatial degrees of freedom, while the results presented

here hold uniformly over all possible propagation environments, having fixed the

dimensionality of the space, and in the limit of large networks. For this reason,

the question of when the geometric limitations showed here become of practical

relevance does not appear to have a unique answer. For small 2D networks, the

number of available degrees of freedom in a rich scattering environment can be

much larger than n, before eventually reaching its asymptotic O(
√
n) value as the

network grows larger. In contrast, in an environment dominated by absorption the

number of available degrees of freedom can be as small as zero, when communica-

tion is shaded by large absorbing obstacles.

To conclude, we are still far from reaching the holy grail of information

theory for wireless communication, and the mathematical characterization of the

capacity region of any fixed-size network remains “a hope beyond the shadow of a

dream”.

Chapter 2, in part, is a reprint of the material as it appears in M. France-

schetti, M. D. Migliore, P. Minero, “The capacity of wireless networks: information-

theoretic and physical limits,” IEEE Trans. on Information Theory, vol. 55, no.

8, August 2009. The dissertation author was the primary investigator and author

of this paper.
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2.6 Appendix

2.6.1 Proof of Theorem 2.3.1

From (2.15) we have that, for any rm ∈ M,

∥∥∥E(rm)− ÊN0(rm)
∥∥∥
2

≤
∥∥∥∥∥

−N0∑

k=−∞
σk 〈I, vk〉L2 uk(rm)

∥∥∥∥∥

2

+

∥∥∥∥∥

∞∑

k=N0

σk 〈I, vk〉L2 uk(rm)

∥∥∥∥∥

2

≤
−N0∑

k=−∞
|σk|2 〈I, I〉L2 +

∞∑

k=N0

|σk|2 〈I, I〉L2

≤ 2nP

a

∞∑

k=N0

∣∣σk(
√
n+ δ)

∣∣2 , (2.47)

where the first inequality follows from the triangle inequality; the second inequality

follows from the fact that uk and vk have unit norm and from the Cauchy-Schwarz

inequality; the third inequality follows from σk = σ−k (due to the symmetry of

Bessel functions of integer order) and the power constrain in (2.12). Thus, in order

to prove the theorem, it suffices to show that there exists an N0 = O(
√
n log n),

such that

lim
n→∞

n

∞∑

k=N0

∣∣σk(
√
n+ δ)

∣∣2 = 0. (2.48)

Using the recurrence formulas [1, identity 9.1.27] we can relate the Bessel functions

of order k−1 and k+1 to the corresponding Bessel functions of order k, as follows:

Jk−1(2π
√
n) =

k

2π
√
n
Jk(2π

√
n) + J ′

k(2π
√
n)

Jk+1(2π
√
n) =

k

2π
√
n
Jk(2π

√
n)− J ′

k(2π
√
n),
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wherein J ′
k(x) denotes the derivative of the Bessel function with respect to the

argument x. Thus,

Jk−1(2π
√
n)Jk+1(2π

√
n)

=
k2

4π2n

(
Jk(2π

√
n)
)2 −

(
J ′
k(2π

√
n)
)2
. (2.49)

Substituting (2.49) into (2.21), the singular values can be written as:

σk(
√
n+ δ) =

√
µ02n
2
√
ǫ0

π2
(√

n + δ
)1/2 ∣∣∣H(2)

k

(
2π(

√
n+ δ)

)∣∣∣×
((

J ′
k(2π

√
n)
)2 −

(
k2/(4π2n)− 1

) (
Jk(2π

√
n)
)2)1/2

, (2.50)

where we emphasize the dependence of the singular values on the radius of the

circle M. Observe that (k2/(4π2n)− 1) ≥ 0 for all k ≥ 2π
√
n. Thus, from (2.50)

it follows that, for k ≥ 2π
√
n,

∣∣σk(
√
n+ δ)

∣∣2 =O
(
n3/2

∣∣∣H(2)
k

(
2π(

√
n+ δ)

)∣∣∣
2

×
∣∣J ′

k(2π
√
n)
∣∣2
)
, (2.51)

as n → ∞.

Next, we use Olver’s uniform asymptotic expansions for Bessel functions

[29] [30] to bound the right-hand side of (2.51). Notice that, while the Hankel

function |H(2)
k (2π(

√
n + δ))| is exponentially increasing in k, the derivative of the

Bessel function |J ′
k(2π

√
n)| is exponentially decreasing in k. In the following, by

studying the rate of growth and decay of the two functions, we conclude that the

singular values decrease exponentially to zero as k approaches infinity.

Let z denote the ratio between the argument and the order of J ′
k(2π

√
n), i.e.

z = 2π
√
n

k
. Identity (5.10) of [30] and the triangle inequality yield, for 0 < z ≤ 1,

|J ′
k(kz)| ≤

2

k2/3 z

(
1− z2

4ζ(z)

)1/4 [Ai
(
k2/3ζ(z)

)

k2/3

+
∣∣Ai′
(
k2/3ζ(z)

)∣∣+ |η(k, z)|+ |ǫ(k, z)|
k2/3

]
, (2.52)



31

wherein Ai denotes the Airy function, for 0 < z ≤ 1 the function ζ(z) is defined

as,

2

3
ζ3/2(z) =

∫ 1

z

√
1− u2

u
du

= log

(
1 +

√
1− z2

z

)
−
√
1− z2, (2.53)

and |ǫ(k, z)| and |η(k, z)| are subject to the following bounds [30, Section 5]:

|ǫ(k, z)| ≤ k−1Ai
(
k2/3ζ(z)

)
, (2.54)

|η(k, z)| ≤ k−1Ai
(
k2/3ζ(z)

)
. (2.55)

Substituting (2.54) and (2.55) into (2.52), and using Ai(x)/|Ai′(x)| ≤ 2, which

holds for all x ≥ 0 [30, page 11], we obtain that, for 0 < z ≤ 1,

|J ′
k(kz)| ≤

14

k2/3 z

(
1− z2

4ζ(z)

)1/4 ∣∣Ai′(k2/3ζ(z))
∣∣ . (2.56)

Equation (2.56) provides a bound (uniform in 0 < z ≤ 1) for |J ′
k(kz)| in terms of

the derivative of the Airy function. We now want to find a similar bound for the

Hankel function. We start by noticing that

|H(2)
k (x)| ≤ |Jk(x)|+ |Yk(x)|, (2.57)

wherein Yk(x) is the Bessel function of the second kind and order k. Let zδ denote

the ratio between the argument and the order of H
(2)
k

(
2π(

√
n + δ)

)
, i.e. zδ =

2π(
√
n+δ)
k

= z + 2πδ
k
. By identities (9.3.6) in [1], we have that, for 0 < zδ ≤ 1,

Jk(kzδ) =

(
4ζ(zδ)

1− z2δ

)1/4
[
Ai
(
k2/3ζ(zδ)

)

k1/3

+
e−2/3kζ3/2(zδ)

1 + k1/6ζ1/4(zδ)
O

(
1

k4/3

)]
(2.58)
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and

Yk(kzδ) = −
(
4ζ(zδ)

1− z2δ

)1/4
[
Bi
(
k2/3ζ(zδ)

)

k1/3

+
e+2/3kζ3/2(zδ)

1 + k1/6ζ1/4(zδ)
O

(
1

k4/3

)]
. (2.59)

Thus, putting together (2.57), (2.58), and (2.59), we also have a bound (uniform

in 0 < zδ ≤ 1) for the Hankel function in terms of the Airy functions Ai and Bi.

The next step is to provide exponential bounds for the Airy functions.

We have, for k2/3ζ ≥ 1 [31, page 394]:

Ai(k2/3ζ) ≤ e−
2
3kζ3/2

k1/6ζ1/4
,

|Ai′(k2/3ζ)| ≤ k1/6ζ1/4e−
2
3
kζ3/2,

Bi(k2/3ζ) ≤ e+
2
3 kζ3/2

k1/6ζ1/4
.

(2.60)

By (2.53), we notice that ζ(z) is a decreasing function of z, which tends to infinity

as z → 0+ and is 0 when z = 1. Hence, the condition k2/3ζ
(

2π
√
n

k

)
≥ 1, which

is required for (2.60) to hold, is not satisfied when k is close to the critical value

2π
√
n. However, by choosing k ≥ 2π

√
n logn the desired condition holds for n

large.

Thus, substituting (2.60) into (2.56), (2.58), and (2.59), it follows that, for

k ≥ 2π
√
n log n,

∣∣∣H(2)
k

(
2π(

√
n+ δ)

)∣∣∣ = O

(
1

k1/2(1− z2δ )
1/4

e+
2
3
kζ3/2(zδ)

)
, (2.61)

∣∣J ′
k

(
2π(

√
n)
)∣∣ = O

(
(1− z2)1/4

k1/2 z
e−

2
3
kζ3/2(z)

)
, (2.62)

as n → ∞.

Notice that ζ(zδ) < ζ(z), since |zδ| > |z| for any δ > 0. As a consequence,

the rate of growth of the exponential in (2.61) is smaller than the rate of decay of

the exponential in (2.62). Substituting (2.61) and (2.62) into (2.51), and using the
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fact that (1− z2)/(1− z2δ ) = O(1) as n → ∞, we obtain that for k ≥ 2π
√
n logn,

∣∣σk(
√
n + δ)

∣∣2 =O

(√
n exp

{
−4

3
k

[
ζ3/2

(
2π

√
n

k

)

−ζ3/2
(
2π

√
n

k
+

2πδ

k

)]})
(2.63)

as n → ∞.

Let us focus on the exponent in the right-hand side of (2.63). By (2.53),

we have

− 2k

[
2

3
ζ3/2

(
2π

√
n

k

)
− 2

3
ζ3/2

(
2π

√
n

k
+

2πδ

k

)]

= −2k

∫ 2π
√

n
k

+ 2πδ
k

2π
√

n
k

√
1− u2

u
du

≤ −2k

∫ 2π
√

n
k

+ 2πδ
k

2π
√

n
k

(
1

u
− 1

)
du

= −2k log

(
1 +

δ√
n

)
+ 4πδ, (2.64)

where the inequality follows from
√
1− u2 ≥ 1− u, for all u ∈ [0, 1]. Substituting

(2.64) into (2.63) it follows that, for all δ > 0 and for all k ≥ 2π
√
n log n,

∣∣σk(
√
n + δ)

∣∣2 = O

(√
ne

−2 k log
(

1+ δ√
n

)

)
, (2.65)

as n → ∞.

Finally, to obtain (2.48) we choose N0 = max{2
δ
, 2π} √

n log n and use the

bound (2.65), which is uniform in k ≥ max{2
δ
, 2π}√n log n. Hence, for the choice
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of N0 above, there exists a uniform constant C, such that as n → ∞, we have

n
∞∑

k=N0

∣∣σk(
√
n + δ)

∣∣2

= n
∞∑

k=max{ 2
δ
,2π} √

n logn

∣∣σk(
√
n+ δ)

∣∣2

≤ n3/2
∞∑

k=max{ 2
δ
,2π} √

n logn

Ce
−2k log

(

1+ δ√
n

)

= n3/2

C

(
e
−2 log

(

1+ δ√
n

)

)max{ 2
δ
,2π}√n logn

1− e
−2 log

(

1+ δ√
n

)

≤
(

n5/2

2δ
√
n+ δ2

+ n3/2

)
C e

− logn4
[√

n
δ

log
(

1+ δ√
n

)]

= o

(
1

n2

)

→ 0,

which concludes the proof. �
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Chapter 3

An information-theoretic

perspective to random access

In this chapter, we consider a random access system where each sender can

be in two modes of operation, active or not active, and where the set of active

users is available to a common receiver only. Active transmitters encode data into

independent streams of information, a subset of which are decoded by the receiver,

depending on the value of the collective interference. The main contribution is

to present an information-theoretic formulation of the problem which allows us to

characterize, with a guaranteed gap to optimality, the rates that can be achieved

by different data streams.

Our results are articulated as follows. First, we exactly characterize the

capacity region of a two-user system assuming a binary-expansion deterministic

channel model. Second, we extend this result to a two-user additive white Gaussian

noise channel, providing an approximate characterization within
√
3/2 bit of the

actual capacity. Third, we focus on the symmetric scenario in which users are active

with the same probability and subject to the same received power constraint, and

study the maximum achievable expected sum-rate, or throughput, for any number

of users. In this case, for the symmetric binary expansion deterministic channel

(which is related to the packet collision model used in the networking literature),

we show that a simple coding scheme which does not employ superposition coding

achieves the system throughput. This result also shows that the performance of

38
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slotted ALOHA systems can be improved by allowing encoding rate adaptation at

the transmitters, achieving constant (rather than zero) throughput as the number

of users tends to infinity. For the symmetric additive white Gaussian noise channel,

we propose a scheme that is within one bit of the system throughput for any value

of the underlying parameters.

3.1 Introduction

Random access is one of the most commonly used medium access control

schemes for channel sharing by a number of transmitters. Despite decades of active

research in the field, the theory of random access communication is far from com-

plete. What has been notably pointed out by Gallager in his review paper more

than two decades ago [12] is still largely true: on the one hand, information theory

provides accurate models for the noise and for the interference caused by simulta-

neous transmissions, but it ignores random message arrivals at the transmitters;

on the other hand, network oriented studies focus on the bursty nature of mes-

sages, but do not accurately describe the underlying physical channel model. As

an example of the first approach, the classic results by Ahlswede [3] and Liao [15]

provide a complete characterization of the set of rates that can be simultaneously

achieved communicating over a discrete memoryless (DM) multiple access channel

(MAC). But the coding scheme they develop assumes a fixed number of trans-

mitters with continuous presence of data to send. As an example of the second

approach, Abramson’s classic collision model for the ALOHA network [2] assumes

that packets are transmitted at random times and are encoded at a fixed rate, such

that a packet collision occurs whenever two or more transmitters are simultane-

ously active. The gap between these two lines of research is notorious and well

documented by Ephremides and Hajek in their survey article [10].

In this work, we try to bridge the divide between the two approaches de-

scribed above. We present the analysis of a model which is information-theoretic

in nature, but which also accounts for the random activity of users, as in models

arising in the networking literature. We consider a crucial aspect of random ac-
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cess, namely that the number of simultaneously transmitting users is unknown to

the transmitters themselves. This uncertainty can lead to packet collisions, which

occur whenever the underlying physical channel cannot support the transmission

rates of all active users simultaneously. However, our viewpoint is that the ran-

dom level of the interference created by the random set of transmitters can also

be exploited opportunistically by allowing transmission of different data streams,

each of which might be decoded or not, depending on the interference level at the

receiver.

To be fair, the idea of transmitting information in layers in random access

communication is not new; however an information-theoretic perspective of this

layering idea was never exposed. Previously, Medard et al. [17] studied the per-

formance of Gaussian superposition coding in a two-user additive white Gaussian

noise (AWGN) system, but did not investigate the information-theoretic optimality

of such a scheme. In the present work, we present coding schemes with guaranteed

gaps to the information-theoretic capacity. We do so under different channel mod-

els, and also extending the treatment to networks with a large number of users.

Interestingly, it turns out that in the symmetric case in which all users are subject

to the same received power constraint and are active with the same probability,

superposition coding is not needed to achieve up to one bit from the throughput

of an AWGN system.

This chapter is organized in incremental steps, the first ones laying the

foundation for the more complex scenarios. Initially, we consider a two-user ran-

dom access system, in which each sender can be in two modes of operation, active

or not active. The set of active users is available to the decoder only, and active

users encode data into two streams: one high priority stream ensures that part

of the transmitted information is always received reliably, while one low priority

stream opportunistically takes advantage of the channel when the other user is

not transmitting. Given this set-up, we consider two different channel models.

First, we consider a binary-expansion deterministic (BD) channel model in which

the input symbols are bits and the output is the binary sum of a shifted version

of the codewords sent by the transmitters. This is a first-order approximation
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of an AWGN channel in which the shift of each input sequence corresponds to

the amount of path loss experienced by the communication link. In this case,

we exactly characterize the capacity region and it turns out that senders need to

simultaneously transmit both streams to achieve capacity. Second, we consider

the AWGN channel and present a coding scheme that combines time-sharing and

Gaussian superposition coding. This turns out to be within
√
3/2 bit from capac-

ity. Furthermore, we also show that in the symmetric case in which both users are

subject to the same received power constraint, superposition coding is not needed

to achieve up to
√
3/2 bit from capacity.

Next, we consider an m-user random access system, in which active trans-

mitters encode data into independent streams of information, a subset of which

are decoded by a common receiver, depending on the value of the collective in-

terference. We cast this communication problem into an equivalent information-

theoretic network with multiple transmitters and receivers and we focus on the

symmetric scenario in which users are active with the same probability p, indepen-

dently of each other, and are subject to the same received power constraint, and we

study the maximum achievable expected sum-rate —videlicet throughput. Given

this set-up, we again consider the two channel models described above. First,

we consider the BD channel model in the symmetric case in which all codewords

are shifted by the same amount. In this setting, input and output symbols are

bits, so that the receiver observes the binary sum of the codewords sent by the

active transmitters. The possibility of decoding different messages in the event of

multiple simultaneous transmissions depends on the rate at which the transmitted

messages were encoded. Colliding codewords are correctly decoded when the sum

of the rates at which they were encoded does not exceed one. This is a natural

generalization of the classic packet collision model widely used in the networking

literature, where packets are always encoded at rate one, so that transmissions are

successful only when there is one active user. We present a simple coding scheme

which does not employ superposition coding and which achieves the throughput.

The coding scheme can be described as follows. When p is close to zero, active

transmitters ignore the presence of potential interferers and transmit a stream of
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data encoded at rate equal to one. By doing so, decoding at the receiver is suc-

cessful if there is only one active user, and it fails otherwise. This is what happens

in the classic slotted ALOHA protocol, for which a collision occurs whenever two

or more users are simultaneously active in a given slot. In contrast, when p is close

to one, the communication channel is well approximated by the standard m-user

binary sum DM-MAC, for which the number of transmitters is fixed and equal to

m. In this regime, active users transmit a stream of data encoded at rate equal to

1
m
, that is, each active user requests an equal fraction of the m-user binary sum

DM-MAC sum-rate capacity. Any further increase in the per-user encoding rate

would result in a collision. When p is not close to either of the two extreme values,

based on the total number of users m and the access probability p, transmitters

estimate the number of active users by solving a set of polynomial equations. If k

is the inferred number, then transmitters send one stream of data encoded at rate

1
k
, that is, each user requests an equal fraction of the k-user binary sum DM-MAC

sum-rate capacity. Interestingly, it turns out that the estimator needed to achieve

the throughput is different from the maximum-likelihood estimator ⌊mp⌋ for the

number of active users. The analysis also shows that the performance of slotted

ALOHA systems can be improved by allowing encoding rate adaptation at the

transmitters. In fact, we show that the expected sum-rate of our proposed scheme

tends to one as m tends to infinity. Hence, there is no loss due to packet collisions

in the so called scaling limit of large networks. This is in striking contrast with

the well known behavior of slotted ALOHA systems in which users cannot adjust

the encoding rate, for which the expected sum-rate tends to zero as m tends to

infinity. In practice, however, medium access schemes such as 802.11x typically use

backoff mechanisms to effectively adapt the rates of the different users to the chan-

nel state. It is interesting to note that while these rate control strategies used in

practice are similar to the information-theoretic optimum scheme described above

for the case of equal received powers, practical receivers typically implement sub-

optimal decoding strategies, such as decoding one user while treating interference

as noise.

Next, we consider the case of the m-user AWGN channel. For this channel,
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we present a simple coding scheme which does not employ superposition coding and

which achieves the throughput to within one bit — for any value of the underlying

parameters. Perhaps not surprisingly, this coding scheme is very similar to the

one described above for the case of the BD channel. In fact, the close connection

between these two channel models has recently been exploited to solve capacity

problems for AWGN networks through their deterministic model counterpart [5].

Finally, we wish to mention some additional related works. Extensions of

ALOHA resorting to probabilistic models to explain when multiple packets can

be decoded in the presence of other simultaneous transmissions appear in [13]

and [19]. An information-theoretic model to study layered coding in a two-user

AWGN-MAC with no channel state information (CSI) available to the transmitters

was presented in a preliminary incarnation of this work [18]. The two-user BD

channel has been studied in the adaptive capacity framework in [14] and in this

work we also provide a direct comparison with that model. We also rely on the

broadcast approach which has been pursued in [20], and [22] to study multiple

access channels with no CSI available. A survey of the broadcast approach and

its application to the analysis of multiple antenna systems appeared in [21], and

we refer the reader to this work and to [6] for an overview of the method and for

additional references. The DM-MAC with partial CSI was studied in [8] assuming

two compressed descriptions of the state are available to the encoders.

The rest of the chapter is organized as follows. The next section formally

defines the problem in the case of a two-user AWGN random access system. Sec-

tion 3.5 presents the extension to of the m-user random access system assuming

an additive channel model. Section 3.6 consider the case of a BD channel model,

while section 3.7 deals with the AWGN channel. A discussion about practical

considerations and limitations of our model concludes the chapter.
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Figure 3.1: The two-user MAC with partial CSI modeling random access
communications.

3.2 The two-user Additive Random Access Chan-

nel

Consider a two-user synchronous additive DM-MAC where each sender can

be in two modes of operation, active or not active, independently of each other. The

set of active users is available to the decoder, while encoders only know their own

mode of operation. This problem is the compound DM-MAC with distributed state

information depicted in Fig. 3.1. Specifically, the state of the channel is determined

by two statistically independent binary random variables S1 and S2, which indicate

whether user one and user two, respectively, are active, and it remains unchanged

during the course of a transmission. Each sender knows its own state, while the

receiver knows all the senders’ states. The presence of side information allows each

transmitter to adapt its coding scheme to its state component. We can assume

without loss of generality that senders transmit a codeword only when active,

otherwise they remain silent.

Each sender transmits several streams of data, which are modeled via in-

dependent information messages, a subset of which is decoded by the common

receiver, depending on the state of the channel. The notation we use is as follows.

We denote by W1 = {W1,1, . . . ,W1,|W1|} and W2 = {W2,1, . . . ,W2,|W2|} the ensem-
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ble of independent messages transmitted by user 1 and user 2, respectively. We

assume that each message Wi,j is a random variable independent of everything else

and uniformly distributed over a set with cardinality 2nRi,j , for some non-negative

rate Ri,j , j ∈ {1, . . . , |Wi|}, i ∈ {1, 2}. We let Wi(A) ⊆ Wi denotes the set of mes-

sages transmitted by user i, i ∈ {1, 2}, that are decoded when the set of senders

A ⊆ {1, 2} is active. Finally ri(A) denotes the sum of the rates at which messages

in Wi(A) are encoded.

Therefore, we can distinguish three non-trivial cases: if user 1 is the only

active user, then the receiver decodes the messages in W1({1}) and the trans-

mission rate is equal to r1({1}); similarly, if user 2 is the only active user, then

the receiver decodes the messages in W2({2}), which are encoded at total rate of

r2({2}); finally, the receiver decodes messages in W1({1, 2}) and W2({1, 2}) when
both users are active, so senders communicate at rate r1({1, 2}) and r2({1, 2}),
respectively. The resulting information-theoretic network is illustrated in Fig. 3.2,

where one auxiliary receiver is introduced for each channel state component. In

the illustration, the subscript index in Y and in Z denote the set of active users,

W1({1, 2}) andW1({1, 2}) represent set of messages that are always decoded, while

W1({1}) \W1({1, 2}) and W2({2}) \W2({1, 2}) denote messages that are decoded

when there is no interference. It is clear from the figure that, upon transmission,

each transmitter is connected to the receiver either through a point-to-point link

or through an additive DM-MAC, depending on the channel state.

Observe that if the additive noises in Fig. 3.2 have the same marginal dis-

tribution, then the channel output sequence observed by the MAC receiver is a

degraded version of the sequence observed by each of the two point-to-point re-

ceivers, because of the mutual interference between the transmitted codewords.

As in a degraded broadcast channel, the “better” receiver can always decode the

message intended for the “worse” receiver, similarly here each point-to-point re-

ceiver can decode what can be decoded at the MAC receiver. Thus, there is no

loss of generality in assuming that

W1({1, 2}) ⊆ W1({1}) (3.1)



46

X1

X2

Z1

Z2

Z12

Y1

Y2

Y12

W1

W2

W1({1})

W2({2})

W1({1, 2})
W2({1, 2})

Tx1

Tx2

Rx1

Rx2

Rx12

Figure 3.2: Network model for a two-user random access system.

and that

W2({1, 2}) ⊆ W2({2}). (3.2)

Then, messages in W1({1, 2}) and W1({1, 2}) ensure that some transmitted in-

formation is always received reliably, while the remaining messages provide ad-

ditional information that can be opportunistically decoded when there is no in-

terference. If conditions (3.1) and (3.2) are satisfied, then we say that W =

({W1,W2}, {W1({1}),W1({1, 2}),W2({2}),W2({1, 2})}) denotes a message struc-

ture for the channel in Fig. 3.2.

For a given message structure W , we say that the rate tuple (r1({1}), r2({2}),
r1({1, 2}), r2({1, 2})) is achievable if there exist a sequence of coding and decoding

functions such that each receiver in Fig. 3.2 can decode all intended messages with

arbitrarily small error probability as the coding block size tends to infinity. We

define the capacity region CW as the closure of the set of achievable rate tuples.

Observe that as we vary |W1|, |W2|, and the sets of decoded messages, there

are infinitely many possible message structures for a given channel. For each one

of them we define CW .

Next, we define the capacity of the channel in Fig. 3.2, denoted by C, as

the closure of the union of CW over all possible message structures W . Note that

C represents the optimal tradeoff among the rates (r1({1}), r2({2}), r1({1, 2}),
r2({1, 2}) over all possible ways of partitioning information into different informa-



47

tion messages such that conditions (3.1) and (3.2) are satisfied.

In the next section we answer the question of characterizing C for two ad-

ditive channels of practical interest. First, we consider the BD channel model, for

which we completely characterize the capacity region C. Perhaps not surprisingly,

we show that to achieve C it suffices that each sender transmits two independent in-

formation messages, one of which carries some reliable information which is always

decoded, while the remaining one carries additional information which is decoded

when the other user is not transmitting. Second, we consider the AWGN channel,

for which we provide a constant gap characterization of C, where the constant

is universal and independent of the channel parameters. Finally, we apply this

result to the study of the throughput of a two-user random access system under

symmetry assumptions.

3.3 Example 1: the two-user BD random access

channel

Suppose that channel input and output alphabets are each the set {0, 1}n1,

for some integer number n1, and that at each time unit t ∈ {1, . . . , n} inputs and

outputs are related as follows:

Y1,t = X1,t,

Y12,t = X1,t + Sn1−n2X2,t,

Y2,t = Sn1−n2X2,t,

(3.3)

where n2 ≤ n1 denotes an integer number, summation and product are over GF(2),

and Sn1−n2 denotes the (n1 − n2)× (n1 − n2) shift matrix having the (i, j)th com-

ponent equal to 1 if i = j + (n1 − n2), and 0 otherwise. By pre-multiplying X2,t

by Sn1−n2, the first n2 components of X2,t are down-shifted by (n1 − n2) positions

and the remaining elements are set equal to zero. We refer to this model as the

two-user BD random access channel (RAC), see Fig. 3.3 for a pictorial representa-

tion. Physically, this channel represents a first-order approximation of a wireless

channel in which continuous signals are represented by their binary expansion, the
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Figure 3.3: The two-user BD-RAC, and the message structure used to prove the
achievability of the capacity region.

codeword length n1 represents the noise cut-off value, and the amount of shift

n1 − n2 corresponds to the path loss of user 2 relative to use 1 [5]. The following

theorem characterizes the capacity region of this channel.

Theorem 3.3.1. The capacity region C of the two-user BD-RAC is the set of

non-negative rate tuples such that

r1({1}) ≤ n1,

r2({2}) ≤ n2,

r1({1}) + r2({1, 2}) ≤ n1,

r2({2}) + r1({1, 2}) ≤ n1,

r1({1, 2}) ≤ r1({1}),
r2({1, 2}) ≤ r2({2}).

(3.4)

The proof of the converse part of the above theorem can be sketched as

follows. Observe that the common receiver observing Y12 , {Y12,1, . . . , Y12,n} can

decode messages in W2({1, 2}). Let us suppose that this receiver is given messages

in W2\W2({1, 2}) as side information. Then, it has full knowledge of W2, so it can

compute the codeword X2 transmitted by user 2, subtract it from the aggregate

received signal Y12, obtaining X1. Thus, given the side information, the channel

output observed by the common receiver becomes statistically equivalent to Y1.
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Since receiver 1 can decode W1({1}) upon observing Y1, we conclude that receiver

12 must also be able to decode message W2({1, 2}). Hence, r1({1}) + r2({1, 2}) ≤
n1. By providing side information about message W1 \ W1({1, 2}) and following

the same argument above, we obtain that r2({2})+r1({1, 2}) ≤ n1. The remaining

bounds are trivial.

The proof of the achievability part of the theorem shows that it suffices to

partition information into two independent messages, such that W1 = {W1,1,W1,2}
and W2 = {W2,1,W2,2}. Messages W1,2 and W2,2 represent ensure that part of

the transmitted information is always received reliably, while W1,1 and W2,1 are

decoded opportunistically when one user is not transmitting. The corresponding

message structure is illustrated in Fig. 3.3. In general, the coding scheme which

we employ in the proof of the achievability requires that user 1 simultaneously

transmits W1,1 and W1,2. However, in the special symmetric case in which n1 = n2

all rate tuples in the capacity region can be achieved by means of coding strategies

in which each user transmits only one of the two messages.

Proof. First, we prove the converse part of the theorem. The first two inequali-

ties which define C are standard point-to-point bounds which can be derived via

standard techniques. To obtain the third inequality, observe that by Fano’s in-

equality we have that H(W1({1, 2})|Y12) ≤ nǫn, H(W2({1, 2})|Y12) ≤ nǫn, as

well as H(Wi(i)|Yi) ≤ nǫn, where ǫn tend to zero as the block length n tends to

infinity. From the independence of the source messages, we have that

n(r1({1}) + r2({1, 2})) = H(W1({1}),W2({1, 2})),
= H(W1({1}),W2({1, 2})|W2 \W2({1, 2})),
= I(W1({1}),W2({1, 2});Y12|W2 \W2({1, 2})),

+H(W1({1}),W2({1, 2})|Y12,W2 \W2({1, 2})).
(3.5)

Using the memoryless property of the channel and the fact that conditioning re-

duces the entropy, the first term in the right hand side of (3.5) can be upper
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bounded as

I(W1({1}),W2({1, 2});Y12|W2 \W2({1, 2})) ≤ nn1. (3.6)

On the other hand, from the chain rule, the fact that conditioning reduces the

entropy, and Fano’s inequality, we have that

H(W1({1}),W2({1, 2})|Y12,W2 \W2({1, 2}))
= H(W2({1, 2})|Y12,W2 \W2({1, 2})) +H(W1({1})|Y12,W2)

≤ H(W2({1, 2})|Y12) +H(W1({1})|Y12,W2,X2)

= H(W2({1, 2})|Y12) +H(W1({1})|Y1)

≤ 2nǫn (3.7)

where the last equality is obtained observing from (3.3) that, if X2 is given, then

Y12 is statistically equivalent to Y1. Substituting (3.6) and (3.7) into (3.5), we

have that

n(r1({1}) + r2({1, 2})) ≤ nn1 + 2nǫn,

and the desired inequality is obtained in the limit of n going to infinity. The

fourth inequality in (3.4) is obtained by a similar argument. Finally, the last two

inequalities in (3.4) follow from (3.1) and (3.2).

Next, to prove the direct part of the theorem, we establish that C is equal

to the capacity of the two-user BD-RAC for the specific message structure defined

by Wi = {Wi,1,Wi,2}, Wi({i}) = Wi, and Wi({12}) = {Wi,2}, i ∈ {1, 2}. For this
message structure we have that

r1({1}) = R1,2 +R1,1,

r2({2}) = R2,2 +R2,1,

r1({1, 2}) = R1,2,

r2({1, 2}) = R2,2.

(3.8)



51

We have established above that if (r1({1}), r2({2}), r1({1, 2}), r2({1, 2}) ∈ CW ⊆
C, then inequalities (3.4) have to be satisfied. Combining the non-negativity of

the rates, (3.4), and (3.8), and eliminating (r1({1}), r2({2}), r1({1, 2}), r2({1, 2})
from the resulting system of inequalities, we obtain

R1,1 +R1,2 ≤ n1,

R2,1 +R2,2 ≤ n2,

R1,1 +R1,2 +R2,2 ≤ n1,

R2,1 +R1,2 +R2,2 ≤ n1.

(3.9)

The above system of inequalities is the image of (3.4) under the linear map (3.8).

Since the map is invertible, proving the achievability of all rate tuples (r1({1}),
r2({2}), r1({1, 2}), r2({1, 2}) satisfying (3.4) is equivalent to proving the achievabil-
ity of all rate tuples (R1,1, R2,1, R1,2, R2,2) satisfying (3.9). It is tedious but simple

to verify that the set of non-negative rate tuples satisfying (3.9) is equal to the con-

vex hull of ten extreme points, four of which are dominated by one of the remaining

six. Given two vectors u and v, we say that u dominates v if each coordinate of u

is greater than or equal to the corresponding coordinate of v. The six dominant ex-

treme points of (3.9) are given by v1 = [n2, n2, n1−n2, 0]
T , v2 = [n1−n2, 0, 0, n2]

T ,

v3 = [0, 0, n1 − n2, n1]
T , v4 = [n1, n2, 0, 0]

T , v5 = [0, 0, n1, 0]
T , v6 = [0, 0, 0, n2]

T ,

where the four coordinates denote (R1,1, R2,1, R1,2, R2,2), respectively.

The achievability of v1, . . . ,v6 can be sketched as follows. To achieve v1

sender 1 transmit simultaneously W1,2 and W1,1, in the first n1 − n2 and last n2

components of X1, respectively. User 2, instead, transmits W2,1 in the first n2

components of X2. Because of the downshift in X2, the multiple access decoder

receives the binary sum of W1,1 and W2,1 in the last n2 components of Y12, and

can successfully decoded W1,2 from the first n1 − n2 interference-free components.

Coding is performed so that W1,1 and W2,1 are received “aligned” at the common

receiver, see Fig. 3.4 for a pictorial representation. Observe that in the special case

in which n1 = n2, sender 1 only transmit message W1,2. Likewise, v2, . . . ,v6 can be

achieved by transmitting one message per user, in such a way that the transmitted

codewords do not interfere with each other at the multiple access receiver. For
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Figure 3.4: The coding scheme achieving the rate tuple R1,1 = n2, R1,2 = n1 − n2,
R2,1 = n2, R1,2 = 0.

example, to achieve v1 user 2 transmits W2,2 in the first n2 components of X2,

while user 1 transmits W1,2 in the first n1 − n2 components of X1.

Next, observe that if an extreme point v is achievable, then all extreme

points dominated by v are also achievable by simply decreasing the rate of some

of the messages. Finally, any point in (3.4) can be written as convex combination

of the extreme points, hence it can be achieved by time-sharing among the basic

coding strategies which achieve v1, . . . ,v6. This shows that all rate tuples satisfying

(3.9) are achievable.

3.3.1 The throughput in a symmetric scenario.

Having an exact characterization of the capacity region at hands, it is now

possible to formulate and solve optimization problems of practical interests. As an

example, we consider the problem of maximizing the throughput in the symmetric

scenario where n1 = n2 = 1, and where each user is independently active with

probability p.

This model represents a first-order approximation of a wireless channel in

which data arrivals follow the same law, and where transmitted signals are received

at the same power level. The codeword length is normalized to 1 so that the

maximum amount of information which can be conveyed across the channel is
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one bit per channel use, regardless the number of active users. The possibility of

decoding different messages in the event of multiple simultaneous transmissions

depends on the rate at which the messages were encoded. Colliding codewords are

correctly decoded when the sum of the rates at which they were encoded does not

exceed one. This is a natural generalization of the classic packet collision model

widely used in the networking literature, where packets are always encoded at rate

one, so that transmissions are successful only when there is one active user. The

parameter p represents the burstiness of data arrivals, and determines the law of

the variables S1 and S2 in Fig. 3.1, hence the channel law. Based on the knowledge

of p, each sender can “guess” the state of operation of the other user, and optimize

the choice of the encoding rates so that the expected sum-rate, or throughput, is

maximized.

Formally, we look for the solution of the following optimization problem:

max p(1− p) [r1({1}) + r2({2})] + p2 [r1({1, 2}) + r2({1, 2})]

subject to the constraint that the rates should be in C. Observe that the weight

assigned to each rate component ri(A) is uniquely determined by p, and is equal

to the probability that users in the set A are active. By means of Theorem 3.3.1,

it is easy to show that the solution to the above problem is equal to

{
2p(1− p), if p ∈ (0, 1/2];

p, if p ∈ (1/2, 1].

The coding strategy used to achieve the throughput can be described as follows.

If the transmission probability p lies in the interval (0, 1/2], then user i transmits

messageWi,1 encoded at rate 1. A collision occurs in the event that both senders are

simultaneously transmitting, which occurs with probability p2, in which case the

common receiver cannot decode the transmitted codewords. Decoding is successful

if only one of the two users is active, so the expected sum-rate achieved by this

scheme is equal to 2p(1− p). If, instead, the transmission probability p lies in the

interval (1/2, 1], then user i transmits message Wi,2 encoded at rate 1/2, i.e., at
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half the sum-rate capacity of the two-user binary additive MAC. By doing so, the

transmitted codewords are never affected by collisions, and can be decoded in any

channel state. This yields an expected sum-rate of 2p(1 − p)1/2 + p2. It should

be highlighted that in this symmetric scenario each user transmits only one of the

two messages for any value of p.

We show later that this optimization problem can be solved in the general

case of a network with more than two users.

3.4 Example 2: the two-user AWGN-RAC

We now turn to another example of additive channels. Assume that at each

discrete time step inputs and outputs are related as follows:

Y1,t = X1,t + Z1,t,

Y12,t = X1,t +X2,t + Z12,t,

Y2,t = X2,t + Z2,t,

(3.10)

where Z1,t, Z2,t, and Z12,t are independent standard Gaussian random variables,

and the sum is over the field of real numbers. Assume that the realizations of

{Xi,t} satisfy the following average power constraint

n∑

t=1

x2
i,t ≤ nPi

for some positive constant Pi, i = 1, 2, and that P1 ≥ P2. We refer to the model in

(3.10) as the two-user AWGN-RAC. In the rest of this chapter, we use the notation

C(x) , 1/2 log(1 + x).

An outer bound to the capacity region C of the two-user AWGN-RAC in

(3.10) is given by the following Theorem.
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Theorem 3.4.1. Let C denote the set of non-negative rates such that

r1({1}) ≤ C(P1),

r2({2}) ≤ C(P2),

r1({1}) + r2({1, 2}) ≤ C(P1 + P2),

r2({2}) + r1({1, 2}) ≤ C(P1 + P2),

r1({1, 2}) ≤ r1({1}),
r2({1, 2}) ≤ r2({2}).

(3.11)

Then, C ⊆ C .

The proof of the above theorem is similar to the converse part of Theorem

3.3.1 and it is hence omitted.

Next, we prove an achievability result by computing an inner bound to the

capacity region CW of the two-user AWGN-RAC for a specific message structure W .

As for the BD-RAC, we let Wi = {Wi,1,Wi,2}, Wi(i) = Wi, and Wi(12) = {Wi,2},
i ∈ {1, 2}. The encoding scheme we use is Gaussian superposition coding. Each

sender encodes the messages using independent Gaussian codewords having sum-

power less or equal to the power constraint. Decoding is performed using successive

interference cancelation: messages are decoded in a prescribed decoding order,

treating interference of messages which follow in the order as noise. Then, each

decoded codeword is subtracted from the aggregate received signal.

Proposition 3.4.2. Let C
′
W

denote the set of non-negative rates such that

r1({1}) ≤ C(P1),

r2({2}) ≤ C(P2),

r1({1}) + r2({2}) ≤ C(P1 + P2),

r1({1, 2}) ≤ r1({1}),
r2({1, 2}) = r2({2}).

(3.12)

Similarly, let C
′′
W

denote the set of non-negative rates satisfying (3.12) after after

swapping the indices 1 and 2. Finally, let C
′′′
W

denote the set of non-negative rates
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satisfying the following inequalities

r1({1, 2}) ≤ C
(

(1−β1)P1

β1P1+β2P2+1

)
,

r2({1, 2}) ≤ C
(

(1−β2)P2

β2P2+β2P2+1

)
,

r1({1, 2}) + r2({1, 2}) ≤ C
(

(1−β1)P1+(1−β2)P2

β2P2+β2P2+1

)
,

r1({1}) ≤ r1({1, 2}) + C(β1P1),

r2({2}) ≤ r2({1, 2}) + C(β2P2).

(3.13)

for some (β1, β2) ∈ [0, 1] × [0, 1]. Let C W = closure(C ′
W ∪ C

′′
W ∪ C

′′′
W ). Then,

C
W

⊆ CW ⊆ C.

Proof. Suppose that sender two does not transmit message W2,1, i.e., R2,1 = 0.

The achievability of C
′
2 can then be shown by using a standard random coding

argument as for the AWGN-MAC. To send (W1,2,W1,1), encoder one sends the

sum of two independent Gaussian codewords having sum-power equal to P1. On

the other hand, sender two encodes W2,2 into a Gaussian codeword having power

P2. A key observation is that the common receiver observing Y12 can decode all

transmitted messages: W1,2, W2,2 can be decoded by assumption, while W1,1 can

be decoded after having subtracted X2 from the received channel output. Thus, by

joint typical decoding, decoding is successful with arbitrarily small error probability

if R1,1+R1,2+R2,2 < C(P1+P2), i.e., r1({1})+r2({2}) < C(P1+P2). Similarly, the

receiver observing Y1 can decode messages W1,2, W1,1 as long as R1,1+R1,2 < C(P1),

i.e., r1({1}) < C(P1) while the receiver observing Y2 can decode messages W2,2 if

r2({2}) ≤ C(P2). We conclude that C
′
2 is an inner bound to the capacity region. By

swapping the role of user 1 and user 2 it is easy to see that C
′′
2 is also an inner bound

to the capacity region. We claim that C
′′′
2 can be achieved by a coding scheme

which combines Gaussian superposition coding and multiple access decoding. As

in the Gaussian broadcast channel, to send the message pair
(
Wi,1,Wi,2

)
, encoder

i sends the codeword Xi

(
Wi,1,Wi,2

)
= Ui

(
Wi,2

)
+Vi

(
Wi,1

)
, where the sequences

Ui and Vi are independent Gaussian codewords having power (1− βi)Pi and βiPi

respectively, i = 1, 2. Upon receiving Y12, decoder 12 first decodes W1,2 and W2,2

using a MAC decoder and treating V1

(
W1,1

)
+ V2

(
W2,1

)
as noise. Decoding is
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successful with arbitrarily small error probability if

R2,2 < C
(

(1−β1)P1

β1P1+β2P2+1

)
,

R1,2 < C
(

(1−β2)P2

β1P1+β2P2+1

)
,

R1,2 +R2,2 < C
(

(1−β1)P1+(1−β2)P2

β1P1+β2P2+1

)
.

(3.14)

Upon receiving Yi = Ui

(
Wi,2

)
+ V

(
Wi,1

)
+ Zi, decoder i performs decoding via

successive interference cancelation: it first decodes Wi,2 treating Vi

(
Wi,1

)
+ Zi as

noise, then it subtracts Ui

(
Wi,2

)
from Yi and decodes Wi,1 from Vi

(
Wi,1

)
+ Zi.

Thus, decoding of Wi,2 is successful if Ri,2 < C
( (1−βi)Pi

βiPi+1

)
, while decoding of Wi,1

is successful if Ri,1 < C
(
β1P

)
. After combining these conditions to the equalities

which relate (r1({1}), r2({2}), r1({1, 2}), r2({1, 2}) to (R1,1, R2,1, R1,2, R2,2), and

eliminating (R1,1, R2,1, R1,2, R2,2) from the resulting system of inequalities, we

obtain that (3.14) have to be satisfied for the above coding scheme to work. Finally,

a standard time-sharing argument can be used to show that the closure(C ′
2∪C

′′
2 ∪

C
′′′
2 ) ⊆ C2

The following theorem explicitly characterizes the gap between the above

inner and outer bounds on C.

Theorem 3.4.3. Let R ∈ C . Then, there exists R′ ∈ C W such that ‖ R−R′ ‖≤
√
3
2
.

Proof. See Appendix 3.9.1.

Observe Gaussian superposition coding is not the optimal coding strategy

for the AWGN channel under consideration. However, the above theorem ensures

that Gaussian superposition coding achieves to within
√
3/2 bit from the capacity

C. It is important to note that this bound holds independently of the power

constraints P1 and P2. The proof of the above theorem is established by showing

that for any extreme point v of C 2, there exists an r ∈ C 2 at distance less that
√
3/2 from v. Since any point R in C 2 is a convex combination of extreme points

of C 2, we can employ a time-sharing protocol among the various achievable rate

points {r} and achieve a rate point at distance less that
√
3/2 from R.
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3.4.1 An approximate expression for the throughput.

As an application of the above result, consider the symmetric scenario where

P1 = P2 = P, and where each user is active with probability p. Based on the

knowledge of p, transmitters optimize the choice of the encoding rates so that

the throughput is maximized. Formally, we look for the solution of the following

optimization problem:

max p(1− p) [r1({1}) + r2({2})] + p2 [r1({1, 2}) + r2({1, 2})]

subject to the constraint that the rates should be in C. Combining Theorem

3.4.1 and Theorem 3.4.2, it is possible to show that the above maximum is equal

T (p,P) + ε(p,P), where

T (p,P) =

{
2p(1− p)C(P), if p ∈ (0, p1(P)];

pC(2P), if p ∈ (p1(P), 1],

p1(P) = 1 − C(2P)/(2C(P)) ∈ (0, 1/2], and 0 ≤ ε(p,P) ≤ 1. Observe that the

bound on the error term holds for any choice of the parameters p and P.

The coding strategy used to achieve T (p,P) is similar to the one described

for the case of the symmetric BD channel. If the transmission probability p lies in

the interval (0, p1(P)], then user i transmits message Wi,1 encoded at the maximum

point-to-point coding rate, i.e., C(P). If, instead, the transmission probability p

lies in the interval (p1(P), 1], then each active user transmits message Wi,2 encoded

at rate 1/2C(2P), i.e., at half the sum-rate capacity of the two-user AWGN-MAC.

The parameter p1(P) represents a threshold value below which it is worth taking

the risk of incurring in a packet collision. Observe that p1(P) → 1/2 as P → ∞.

Fig. 3.5 compares T (p,P) to the expected sum-rate achieved under the

adaptive-rate framework [14], and to its counterpart assuming that full CSI is avail-

able to the transmitters. In the adaptive-rate framework, each sender transmits at

a rate of C(2P)/2, so that users can always be decoded. The figure illustrates how

our approach allows us to improve upon the expected adaptive sum-rate for small

values of p, for which the collision probability is small. In this regime, our inner
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Figure 3.5: Throughput of the two-user symmetric AWGN-RAC (P = 20dB).

bound is in fact close to the curve obtained giving full CSI to the transmitters.

Later in this chapter, we shall see that the gain provided by our approach becomes

more significant when the population size of the network increases.

3.5 The m-user additive RAC

In this section we extend the analysis previously developed for a two-user

system to the case of an m-user MAC, where m denotes an integer ≥ 2, and in

which each transmitter can be in two modes of operation, active or not active.

The set of active users, denoted in the sequel by A, determines the state of the

channel. That is, the channel is said to be in state A if all users in the set A are

active. As in the two-user case, transmitters only know their own state component,

and encode data into independent streams of information. The common receiver

knows the set of active users, and decodes subsets of the transmitted data streams

depending on the state of the channel.

By introducing one auxiliary receiver per each channel state, we can map

this problem to a broadcast network with m transmitters and 2m − 1 receivers. A



60

one-to-one correspondence exists between the set of receivers and the set of non-

empty subsets of {1, . . . , m}, so that for each set of active users A, there exists a

unique corresponding receiver, which with abuse of notation we refer to as receiver

A. Receiver A observes the sum of the codewords transmitted by users in A plus

noise, and decodes a subset of the data streams sent by the active users. Observe

that for a given channel state, only one among these auxiliary broadcast receivers

corresponds to the actual physical receiver.

The formal description of the problem is as follows.

3.5.1 Problem formulation

Definition 3.5.1. An m-user DM-RAC ({X1, . . . ,Xm}, {YA : A  {1, · · · , m}},
(p({yA : A  {1, · · · , m}}|x1, . . . , xm)) consists of m input sets X1, . . . ,Xm, 2

m−1

output sets {YA}, and a collection of conditional probabilities on the output sets.

The channel is additive if at any discrete unit of time t ∈ {1, . . . , n}, the
input symbols (X1,t, . . . , Xm,t) are mapped into 2m − 1 channel output symbols

{YA,t} via the additive map

YA,t =
∑

a∈A
Xa,t + ZA,t, (3.15)

where the {ZA,t} are mutually independent random variables with values in a set

Z, and the sum is over a field F such that there exists m embeddings Fi : Xi → F ,

and one embedding Fm+1 : Z → F . In the next section we consider two classes of

additive random access channels: the symmetric BD-RAC, for which the channel

inputs are strings of bits, and the sum is binary; and the symmetric AWGN-

RAC, for which X = Z = R, the channel inputs are subject to an average power

constraint, and the sum is over the reals.

Definition 3.5.2. A message structure W = ({W1, . . . ,Wm}, {Wi(A) : i ∈ A ⊆
{1, · · · , m}}) for an m-user RAC consists of m input message sets Wi, Wi =

{Wi,1, · · · ,Wi,|Wi|}, and m2m−1 output sets Wi(A), Wi(A) ⊆ Wi, such that the

following condition is satisfied:
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A1. Wi(B) ⊆ W1(A) for all i ∈ A ⊆ B ⊆ {1, . . . , m}.

For each i and j ∈ {1, . . . , |Wi|}, message Wi,j is a random variable inde-

pendent of everything else and uniformly distributed over a set with cardinality

2nRi,j , for some non-negative rate Ri,j, j ∈ {1, . . . , |Wi|}.
The reason for imposing condition A1. is as follows. Observe from (3.15)

that if A ⊆ B and the marginal distributions of the noises ZB and ZA are equal,

then YB is a (stochastically) degraded version of YA. Then, condition A1. says

that the “better” receiver A must decode what can be decoded at the “worse”

receiver B.

For a given message structure W , let

ri(A) =
∑

j:Wi,j∈Wi(A)

Ri,j (3.16)

denote the sum of the rates of the messages in Wi(A). Observe that (3.16) defines

a linear mapping from R
|W1|×...×|Wm|
+ into Rm2m−1

+ that shows how a macroscopic

quantity, the rate at which user i communicates to receiver A, is related to various

microscopic quantities, the coding rates of the individual transmitted messages.

Definition 3.5.3. An n-code for the RAC ({X1, . . . ,Xm}, {YA : A  {1, · · · , m}},
(p({yA : A  {1, · · · , m}}|x1, . . . , xm)) and for the message structure W consists of

m encoding functions (encoders) and 2m−1 decoding functions (decoders). Encoder

i maps each {Wi,1, · · · ,Wi,|Wi|} into a random codeword Xi , {Xi,1, Xi,2, . . . , Xi,n}
of n random variables with values in the set Xi. Decoder A maps each channel

output sequenceYA ∈ Yn
A into a set of indexes ∪j:Wi,j∈Wi(A){Ŵi,j}, where each index

Ŵi,j ∈ {1, . . . , 22nRi,j} is an estimate of the corresponding transmitted message

Wi,j ∈ Wi(A).

Definition 3.5.4. For a given n-code, the average probability of decoding error

at the decoder A is defined as

Pr
{
Ŵi,j 6= Wi,j : Wi,j ∈ Wi(A), j ∈ {1, . . . , |Wi(A)|}, i ∈ A

}
. (3.17)
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Definition 3.5.5. A rate tuple {ri(A)} is said to be achievable if there exists a

sequence of n codes such that the average probability of a decoding error (3.17) for

each decoder vanishes to zero as the block size n tends to infinity.

Definition 3.5.6. The capacity region CW of the m-user RAC ({X1, . . . ,Xm},
{YA : A  {1, · · · , m}}, (p({yA : A  {1, · · · , m}}|x1, . . . , xm)) for the message

structure W is closure of the set of achievable rate vectors {ri(A)}.

Finally,

Definition 3.5.7. The capacity region C of the m-user RAC ({X1, . . . ,Xm}, {YA :

A  {1, · · · , m}}, (p({yA : A  {1, · · · , m}}|x1, . . . , xm)) is defined as

C = closure(∪W CW ).

3.5.2 An outer bound to the capacity C

Theorem 3.5.1. The capacity region C of the additive m-user additive RAC in

(3.15) is contained inside the set of non-negative rate tuples satisfying

ri(B) ≤ ri(A) for all i ∈ B ⊆ A, (3.18)

and
K∑

k=1

rik({i1 . . . ik}) ≤ I(Xi1 , . . . , XiK ; Yi1...iK ), (3.19)

for all K ∈ {1, . . . , m} and i1 6= . . . 6= im ∈ {1, . . . , m}, and some joint distribution

p(q)p(x1|q) · · ·p(xm|q). Here the auxiliary random variable Q has the cardinality

bound |Q| ≤ eΓ(m+1,1) − 1, where Γ(,̇)̇ denote the incomplete Gamma function.

Proof. See Appendix 3.9.2.

Remark 1: In the special case of a network with two users, it is immediate

to verify that the outer bound given by the above theorem reduces to the region
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given by Theorem 3.3.1 and Theorem 3.4.1 for the two-user BD-RAC and the

two-user AWGN-RAC, respectively.

Remark 2: An inspection of the proof of the above theorem shows that

the additive channel model assumed in the theorem can be replaced with a more

general family of maps, namely with those channels with the property that, if XA′

is given, then YA is statistically equivalent to YA\A′, A′ ⊆ A.

Remark 3: Observe that (3.19) gives
(
m
K

)
K! inequalities for any value of

K ∈ {1, . . . , m}, so it defines
∑m

K=1

(
m
K

)
K! = eΓ(m+1,1) − 1 inequalities. It can be

shown that eΓ(m+1,1) → em! as m → ∞.

Equation (3.19) can be obtained as follows. Suppose that we fix a set of ac-

tive users i1, . . . , iK , for some K ∈ {1, . . . , m}, and we provide the receiver observ-

ing Yi1...iK with messages in the set ∪K
r=1WiK−r+1

\WiK−r+1
({i1 . . . iK−r+1}) as side

information. Suppose that this receiver decodes one user at the time, starting with

user iK and progressing down to user i1. Let us consider the first decoding step.

By assumption, receiver {i1 . . . iK} can decode information in WiK ({i1 . . . iK}) so,
given the side information WiK \ WiK ({i1 . . . iK}) it has full knowledge of WiK ,

it can compute the codeword XiK transmitted by user iK and subtract it from

the aggregate received signal, obtaining Yi1...iK − XiK = Yi1...iK−1
. Thus, at the

end of the first decoding step the channel output observed by receiver {i1 . . . iK} is

statistically equivalent to Yi1...iK−1
. It follows that at the next decoding step it can

decode information in WiK−1
({i1 . . . iK−1}). By proceeding this way, at the rth it-

eration we obtain a sequence which is statistically equivalent to Yi1...iK−r+1
. Hence,

receiver {ı1 . . . iK} can decode information in WiK−r+1
({i1 . . . iK−r+1}), then make

use of the side information WK−r+1 \WiK−r+1
({i1 . . . iK−r+1}) to compute XiK−r+1

and subtract it from the aggregate received signal before turning to decoding the

next user. In other words, at the rth step of the iteration user iK−r+1’s signal

is only subject to interference from users i1, . . . , ik−r, as the signal of the remain-

ing users has already been canceled. Therefore, user ik−r+1 communicates to the

receiver at a rate equal to rik−r+1
({i1 . . . ik−r+1}).

In summary, equation (3.19) says that the sum of the communication rates

across the K iterations cannot exceed the mutual information between the chan-
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nel inputs on the transmitters side and the channel output on the receiver side,

regardless of the permutation on the set of users originally chosen.

3.5.3 The throughput of a RAC

Assume that each user is active with probability p, independently of other

users, and that p is available to the encoders. In light of these assumptions,

Definition 3.5.8. The maximum expected sum-rate, or throughput, of a RAC is

defined as

T (p,m) , max
∑

A⊆{1,...,m}
p|A|(1− p)m−|A|

∑

i∈A
ri(A). (3.20)

where the maximization is subject to the constraint that the rates should be in the

capacity region C of that channel.

The fact that each user is active with the same probability p has one im-

portant consequence. By re-writing the objective function in (3.20) as

m∑

k=1

pk(1− p)m−k
∑

A⊆{1,...,m}
|A|=k

∑

i∈A
ri(A)

and defining

ρk =
∑

A⊆{1,...,m}
|A|=k

∑

i∈A
ri(A), k ∈ {1, . . . , m}, (3.21)

it is clear that the objective function in (3.20) depends only on ρ1, . . . , ρm. It

follows that in order to compute T (p,m) it is sufficient to characterize the optimal

tradeoff among these m variables. This motivates the following definition

Definition 3.5.9. Let Cρρρ denote the image of the capacity C of an m-user additive

RAC under the linear transformation given by (3.21).

It should be emphasized that the symmetry of the problem allow us to

greatly reduce the complexity of the problem: instead of characterizing C, which

is a convex subset of Rm2m−1

+ , it suffices to study the set Cρρρ , which is a convex
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subset of Rm
+ . Thus, we have that

T (p,m) = max
ρ1,...,ρm∈Cρρρ

m∑

k=1

pk(1− p)m−kρk. (3.22)

In the sequel, outer and inner bounds on Cρρρ are denoted by C ρρρ and C ρρρ respectively.

In what follows, we denote by

fm,k(p) ,

(
m

k

)
pk(1− p)m−k

the probability of getting exactly k successes in m independent trials with success

probability p, and we denote by

Fm,k(p) ,

k∑

i=0

fm,i(p)

the probability of getting at most k successes.

3.6 Example 1: the m-user symmetric BD-RAC

In this section, we consider the m-user generalization of the symmetric BD-

RAC considered in Section 3.3, where all transmitted codewords are shifted by the

same amount. This model represents an approximation of a wireless channel in

which signals are received at the same power level.

Suppose the X and Y alphabets are each the set {0, 1}, the additive channel
(3.15) is noise-free, so ZA ≡ 0, and the sum is over GF(2). Observe that this is

the m-user version of the channel model in (3.3) in the special case where n1 =

. . . = nm = 1. The codeword length is normalized to 1. As mentioned above, this

channel model can be thought of as a natural generalization of the packet collision

model widely used in the networking literature, where packets are always encoded

at rate one, so that transmissions are successful only when there is one active user.

Theorem 3.5.1 yields the following proposition.

Proposition 3.6.1. The capacity region C of the m-user symmetric BD-RAC is
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contained inside the set of {ri(A)} tuples satisfying

ri(B) ≤ ri(A) for all i ∈ B ⊆ A, (3.23)

and
m∑

k=1

rik({i1 . . . ik}) ≤ 1, (3.24)

for all i1 6= . . . 6= im ∈ {1, . . . , m}.

3.6.1 The throughput of the symmetric BD-RAC

Next, we turn to the problem of characterizing the throughput T (p,m) for

the symmetric BD-RAC. The following theorem provides the exact characterization

of Cρρρ for this channel.

Theorem 3.6.2. Cρρρ for the m-user symmetric BD-RAC is equal to the (ρ1, . . . , ρm)

tuples satisfying

ρk(
m
k

) ≥ ρk+1

(k + 1)
(

m
k+1

) ≥ . . . ≥ ρm

m
(
m
m

) ≥ 0, (3.25a)

and

m∑

k=1

ρk

k
(
m
k

) ≤ 1. (3.25b)

Proof. See Appendix 3.9.3.

We outline the proof of the theorem as follows. The outer bound in the

above theorem makes use of Proposition 3.6.1. To prove the achievability, we show

that Cρρρ is equal to the image under the linear transformation given by (3.21) of the

capacity region CW of the m-user symmetric BD-RAC for the message structure

W defined by

Wi = {Wi,1, . . . ,Wi,m}, i ∈ {1, . . . , m} (3.26)



67

and

Wi(A) = ∪j≥|A|Wi,j, (3.27)

for i ∈ A ⊆ {1, . . . , m}. This message structure is the natural generalization of

the message structure used for the two-user BD-RAC. Each sender transmits m

independent messages, which are ordered according to the amount of interference

which they can tolerate, so that message Wi,j is decoded when there are less than

j interfering, regardless the identity of the interferers.

To prove the achievability of Cρρρ using this message structure, we observe

that Cρρρ is the convex hull of m extreme points, and that to achieve the kth extreme

points it suffices that user i transmits a single information message, namely Wi,k,

encoded at rate 1
k
. Thus, a simple single-layer coding strategy can achieve all

extreme points of Cρρρ , and the proof of the achievability is completed by means of

a time-sharing argument.

Having an exact characterization of Cρρρ at hands, we can explicitly solve the

throughput optimization problem. The main result of this section is given by the

following theorem.

Theorem 3.6.3. Let Πm represent the partition of the unit interval into the set

of m intervals

(p0, p1], (p1, p2], . . . , (pm−1, pm],

where p0 , 0, pm , 1 and, for 0 < k < m, pk is defined as the unique solution in

(0, 1) to the following polynomial equation in p

1

k + 1
Fm−1,k(p) =

1

k
Fm−1,k−1(p). (3.28)

Then, the following facts hold

1. p1 =
1
m
, pm−1 =

1
m1/(m−1) , and p ∈ (0, k

m
) for k ∈ {2, . . . , m− 2}.

2. The throughput of the m-user symmetric BD-RAC is given by

T (p,m) =
mp

k
Fm−1,k(p), if p ∈ (pk−1, pk], (3.29)
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for k ∈ {1, . . . , m}.

3. T (p,m) is achieved when all active senders transmit a single message encoded

at rate

r(p) =
1

k
, if p ∈ (pk−1, pk], (3.30)

for k ∈ {1, . . . , m}.

4. T (p,m) is a continuous function of p; it is concave and strictly increasing in

each interval of the partition Πm.

Proof. See Appendix 3.9.4.

Remarks: The above theorem says that T (p,m) can be achieved by a coding

strategy which does not require simultaneous transmission of multiple messages.

Instead, each active user transmits a single message encoded at rate r(p). In-

spection of (3.33) reveals that r(p) is a piecewise constant function of p, whose

value depends on the transmission probability p. If p is in the kth interval of

the partition Πm, then r(p) is equal to 1
k
. Similarly, the corresponding achievable

throughput T (p,m) is a piecewise polynomial function of p. The boundary values

of the partition, denoted by the sequence {pk}, are given in semi-analytic form as

solutions of (3.28), and closed form expressions are available only for some special

values of m and k. Nevertheless, Theorem 3.7.3 provides the upper bound pk <
k
m
.

The structure of the solution is amenable to the following intuitive inter-

pretation. Based on the knowledge of m and p, transmitters estimate the number

of active users. More precisely, if p is in the kth interval of the partition Πm, i.e.,

pk−1 < p ≤ pk, then transmitters estimate that there are k active users. Since

pk < k
m
, it is interesting to observe that the computed estimator is in general

different from the maximum-likelihood estimator ⌊mp⌋. Then, they encode their

data at rate 1
k
, that is, each user requests an equal fraction of the k-user binary

MAC sum-rate capacity. Clearly, there is a chance that the actual number of ac-

tive users exceed k, in which case a collision occurs. Vice-versa, the scheme results

in an inefficient use of the channel when the number of active users is less than
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k. However, this strategy represents the right balance between the risk of packet

collisions and inefficiency.

It is interesting to note that when p ≤ pk−1 the optimal strategy consists

of encoding at rate 1, i.e., at the maximum rate supported by the channel. As

already remarked, this is the coding strategy used in the classic ALOHA protocol.

Notice that since p1 = 1
m
, this strategy is optimal when the probability of being

active is less that the inverse of the population size in the network. In this case,

there is no advantage in exploiting the multi-user capability at the receiver. On

the other hand, for p > 1
m
, the throughput of an ALOHA system is limited by

packet collisions, which become more and more frequent as p increases. In this

regime, the encoding rate has to decrease in order to accommodate the presence,

which become more and more likely as p increases, of other potential active users.

3.6.2 Throughput scaling for increasing values of m

If we let the population size m grow while keeping p constant, the law of

large number implies that the number of active users concentrates around mp, so

one would expect that the uncertainty about the number of active users decreases

as m increases. This intuition is confirmed by the following corollary, which states

that the probability of collision tends to zero as m grows to infinity.

Corollary 3.6.4. Let p ∈ (0, 1). Then, limm→∞ T (p,m) = 1.

So far, we have been assuming that p does not depend on m. Assume now

that the total packet arrival rate in the system is λ, and let p = λ
m

be the arrival

probability at each transmitting node. Let T (λ) denote the throughput in the limit

m → ∞. Then, by applying the law of rare events to (3.28) and (3.29) we obtain

the following corollary to Theorem 3.6.3.

Corollary 3.6.5. Let λ0 , 0, λ∞ , ∞ and, for 0 < k < ∞, let λk be defined as

the unique solution in (0,∞) to the following polynomial equation in λ

1

k + 1
Γ(k + 1, λ) = Γ(k, λ)
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Figure 3.6: Comparison between T (λ) and the throughput of the slotted ALOHA
protocol.

where Γ(k+1, λ) is the incomplete gamma function. Then, as m tends to infinity,

the throughput is given by

T (λ) =
λ

k!k
Γ(k + 1, λ), if λ ∈ (λk−1, λk],

for k ∈ Z. The rate which attains the throughput is given by r(λ) = 1
k
, if λ ∈

(λk−1, λk], k ∈ Z. Finally, T (λ) is a continuous function of λ; it is concave and

strictly increasing in each interval (λk−1, λk], and limλ→∞ T (λ) = 1.

Note that the claim above is in striking contrast with the throughput scal-

ing of the classic slotted ALOHA protocol. The throughput of slotted ALOHA

increases for small λ, it reaches a maximum e−1 at λ = 1/m, after which it de-

creases to zero as λ tends to infinity. See Fig. 3.6 for a comparison between T (λ)

and the throughput of standard ALOHA as a function of λ.
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3.7 Example 2: the m-user symmetric AWGN-

RAC

We now turn to another important example of additive channels. Sup-

pose that the codewords generated by the m encoders are composed by n random

variables taking values over the reals, and whose realizations satisfy the following

average power constraint
n∑

t=1

x2
i,t ≤ nP

for some positive constant P. Observe that we focus on the symmetric case in

which all users are subject to the same received power constraint. Furthermore,

suppose that {ZA} in (3.15) are independent standard Gaussian random variables,

and that the sum in (3.15) is over the field of real numbers. Applying Theorem

3.5.1, we obtain the following proposition.

Proposition 3.7.1. The capacity region C of the m-user symmetric AWGN-RAC

is contained inside the set of {ri(A)} tuples satisfying

ri(B) ≤ ri(A) for all i ∈ B ⊆ A,

and
K∑

k=1

rik({i1 . . . ik}) ≤ C(KP),

for all K ∈ {1, . . . , m} and i1 6= . . . 6= im ∈ {1, . . . , m}.

3.7.1 An approximate expression to within one bit for the

throughput

Next, we turn to the problem of characterizing the throughput T (p,m,P)

for the symmetric AWGN-RAC as a function of the transmission probability p, the

population size m, and the available power P. First, we provide inner and outer

bounds on Cρρρ for this channel.
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Theorem 3.7.2. Let C ρρρ denote the set of rates {ρk} ∈ Rm such that

ρk

k
(
m
k

) ≥ ρk+1

(k+1)
(

m
k+1

) ≥ . . . ≥ ρm

m
(
m
m

) ≥ 0,

and
K∑

k=1

ρk

k
(
m
k

) ≤ C(KP),

for all K ∈ {1, . . . , m}. Let C ρρρ denote the set of rates {ρk} ∈ Rm that satisfy

(3.25a) and

1
C(P)

ρ1(
m
1

) +
m∑

k=2

(
k

C(kP) − k−1
C((k−1)P)

)
ρk

k
(
m
k

) ≤ 1.

Then, C ρρρ ⊆ Cρρρ ⊆ C ρρρ.

The proof of the above theorem is omitted since it closely follows the proof

of Theorem 3.6.2. As for the case of the BD-RAC, the achievable region in the

above theorem is obtained by considering the message structure defined by (3.26)

and (3.27) and the coding scheme we utilize does not require the use of Gaussian

superposition coding.

In virtue of Theorem 3.7.2 it is possible to bound T (p,m) as

T (p,m,P) ≤ T (p,m) ≤ T (p,m,P),

where lower and upper bounds are given by (3.22) after replacing Cρρρ,m with

C ρρρ,m and C ρρρ,m respectively. The following theorem provides an expression for

T (p,m,P).

Theorem 3.7.3. Let Πm(P) represent the partition of the unit interval into the

set of m intervals

(p0(P), p1(P)], . . . , (pm−1(P), pm(P)],

where p0(P) , 0, pm(P) , 1 and, for k ∈ {1, . . . , m − 1}, pk(P) is defined as the
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unique solution in
(
0, k

m

)
to the following polynomial equation in p

C((k + 1)P)

k + 1
Fm−1,k(p) =

C(kP)
k

Fm−1,k−1(p). (3.31)

Then, T (p,m,P) is a continuous function of p, concave, strictly increasing in each

interval of the partition Πm(P), and is given by

T (p,m,P) =
C(kP)

k
mpFm−1,k−1(p), if p ∈ (pk−1(P), pk(P)], (3.32)

for k ∈ {1, . . . , m}. To achieve T (p,m,P), it suffices that each active user trans-

mits a unique message encoded at rate

r(p,m,P) =
C(kP)

k
if p ∈ (pk−1(P), pk(P)], (3.33)

for k ∈ {1, . . . , m}.

The proof of the above theorem is omitted since it closely follows the proof

of Theorem 3.6.2. Similarly to what stated by Theorem 3.6.2 for the BD-RAC, the

above theorem says that T (p,m,P) can be achieved by a coding strategy which

does not require superposition coding: each active user transmits a single message

encoded at rate r(p,m,P). Both r(p,m,P) and T (p,m,P) are piecewise constant

function of p, whose value depends on the transmission probability p.

The coding scheme used to achieve T (p,m,P) for the symmetric AWGN-

RAC is similar to the one used to achieve the throughput of the symmetric BD-

RAC: based on the knowledge of m and P and p, transmitters estimate the number

of active users. More precisely, if p is in the kth interval of the partition Πm(P),

i.e., pk−1(P) < p ≤ pk(P), then transmitters estimate that there are k active users.

Then, they encode their data at rate 1
k
C(kP), that is, each user requests an equal

fraction of the k-user AWGN MAC sum-rate capacity.

A natural question to ask is how close this scheme is to the optimal per-

formance. To answer this question, we first need to provide an expression for

T (p,m,P). This is done in the next Theorem.
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Theorem 3.7.4. Let Πm represent the partition of the unit interval into the set

of m intervals

(p0, p1], . . . , (pm−1, pm],

where p0 , 0, pm , 1 and, for every k ∈ {1, . . . , m}, pk is defined as the unique

solution in
(
0, k

m

)
to the following polynomial equation in p

1

k + 1
Fm−1,k(p) =

1

k
Fm−1,k−1(p). (3.34)

Then, T (p,m,P) is a continuous function of p, concave and strictly increasing in

each interval of the partition Πm(P), and is given by

T (p,m,P) =mp

m∑

i=1

vk,iFm−1,i−1(p) if p ∈ (pk−1, pk], (3.35)

for k ∈ {1, . . . , m}, where

v1,i =





2C(2P)− C(P), i = 1,

2C(iP)− C((i+ 1)P)− 2C((i− 1)P), i ∈ {2, . . . , m},
C(mP)− C((m− 1)P), i = m,

(3.36)

For k ∈ {2, . . . , m− 2}

vk,i =





0, i ∈ {1, . . . , k − 1},
k+1
k
C(kP)− C((k + 1)P), i = k,

2C(iP)− C((i+ 1)P)− C((i− 1)P), i ∈ {k + 1, . . . , m− 1},
C(mP)− C((m− 1)P), i = m,

(3.37)

For k = m− 1

vm−1,i =





0, i ∈ {1, . . . , m− 2},
m

m−1
C((m− 1)P)− C(mP), i = m− 1,

C(mP)− C((m− 1)P), i = m,

(3.38)
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For k = m

vm,i =

{
0, i ∈ {1, . . . , m− 1},
1
m
C(mP), i = m.

(3.39)

Proof. See Appendix 3.9.5.

The proof of the above theorem is conceptually simple but technical, as it

requires finding the analytic solution of a linear program. Comparing the state-

ments of Theorems 3.7.3 and 3.7.4, one can observe that the basic structure of

T (p,m,P) and T (p,m,P) is the same. As opposed to the sequence {pk(P)} de-

fined in Theorem 3.7.3, the sequence {pk} in Theorem 3.7.4 does not depend on

the power P. It is easy to see that pk(P) ≤ pk ≤ k/m, for every k. Furthermore,

the sequence {pk} defined in Theorem 3.7.4 is equal to the sequence defined in

Theorem 3.6.2. By directly comparing T (p,m,P) and T (p,m,P) we obtain the

following result.

Theorem 3.7.5. Let p ∈ (0, 1], m ≥ 2 and P > 0. Then,

T (p,m,P)− T (p,m,P) ≤ 1.

Proof. See Appendix 3.9.6.

The above theorem says that our suggested coding scheme achieves an ex-

pected sum-rate which is only 1 bit away from the optimum, independently of the

values of p, P and m. It it remarkable that the gap does not increase with the

population size of the system. Thus we conclude that transmitting at rate 1
k
C(kP)

when p is in the kth interval of the partition Πm(P) represents the right balance be-

tween risk of collision and efficiency: encoding rates above 1
k
C(kP) would increase

the collision probability, yielding a decrease in the expected sum-rate. Viceversa,

rates lower than 1
k
C(kP) would result in an inefficient use of the channel.

Fig. 3.7 shows plots of T (p,m,P), T (p,m,P), and r(p,m,P) for the case

of networks with four users. Observe that the T (p,m,P) is a piecewise concave

function of the transmission probability.
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Figure 3.7: Bounds on the throughput of a four-user symmetric AWGN-RAC and
encoding rate achieving the lower bound (P = 15 dB).

3.7.2 Comparison with other notions of capacity

The expression for the throughput derived in the previous section can be

compared to similar expressions obtained assuming other notions of capacity. A

natural outer bound is given by the throughput achieved assuming that full CSI is

available to the transmitters. In this case, the sum-rate of the k-user AWGN-MAC

can be achieved whenever k users are active. Averaging over the message arrival

probability, we obtain the following expression for the throughput:

TCSI(p,m,P) ,

m∑

k=1

fm,k(p)C(kP). (3.40)

On the other hand, if we study the symmetric AWGN-RAC following the adaptive

capacity framework as in [14], then each transmitter designs a code which has to

be decoded regardless the number of active users. This is a conservative viewpoint

and forces each user to choose a rate of 1/mC(mP) so that users can be decoded
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Figure 3.8: Throughput of the symmetric AWGN-RAC with m = 25 users (P =
20dB).

even when all m transmitters are active. Thus, we obtain

TAD(p,m,P) , pC(mP). (3.41)

Fig. 3.8 compares the obtained bounds on T (p,m,P) for the case m = 25 and P =

20dB to the throughput under the adaptive-rate framework (3.41), and assuming

full CSI available to the transmitters (3.40).

Finally, observe that in order to achieve T (p,m,P) transmitters have to

estimate the number of active users by solving the polynomial equations (3.31).

A natural question to ask is what is the achievable throughput performance if

a maximum-likelihood estimator for the number of active user is used instead.

Consider the following strategy. Suppose that, based on the knowledge of m and

p, and assuming no prior on the number of active users, transmitters compute kML,

the maximum-likelihood estimator for the number of active users, and encode their

data at rate C(kMLP)/kML. Since the most probable outcome of (m−1) Bernoulli

trials1 with success probability p is the integer number between mp−1 and mp, we

1Each active transmitter estimates the state of the remaining (m− 1) users.
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Figure 3.9: Throughput performance of the proposed estimator vs ML estimator
for the number of active users (P = 20dB, m = 25).

have that kML = ⌊mp⌋. Thus, we obtain the following expression for the expected

sum-rate capacity:

TML(p,m,P) ,
mp

kML
C(kMLP)Fm−1,kML−1(p). (3.42)

Fig. 3.9 compares T (p,m,P) and (3.42) for the case m = 25 and P = 20dB. We

remark is that the ML estimator for the number of active users result in a strictly

suboptimal throughput performance.

3.8 Discussion and practical considerations

In networking, much research effort has been put in the design of distributed

algorithms where each agent has limited information about the global state of the

network. The model we developed in this work allowed us to focus on the rate

allocation problem that occurs when multiple nodes attempt to access a common

medium, and when the set of active users is not available to the transmitters.

Our analysis has lead to a distributed algorithm which is easily implementable in

practical systems, and which is optimal in some information-theoretic sense. The

rule of thumb which we have developed is that, upon transmission, senders should
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estimate the number of active users according to a prescribed algorithm based on

the knowledge of the population size and the transmission probability m, and then

choose the encoding rate accordingly.

In this work we focused primarily on the problem of characterizing the

throughput assuming perfect symmetry in the network, that is, the same trans-

mission probability and received power constraint across users. The reasons for

enforcing symmetry are twofold. First, throughput maximization is a meaningful

performance metric only in symmetric scenarios. Second, it allows us to focus on

random packet arrivals at the transmitters, and not on the different power levels

at which transmitted signals are received by the common receiver. This set-up is

a realistic model for uplink communications in power-controlled cellular wireless

systems. Nevertheless, an interesting open question is how to apply the layering

approach to the m-user AWGN-RAC with unequal power levels at the receiver,

assuming that each sender only knows its own power level and state.

We made the underlying assumption that users can be synchronized, both at

block and symbol level. In light of this assumption, a time-sharing protocol could

be employed to prove achievability results. A simple way to achieve this partial

form of cooperation among senders is to establish, prior to any transmission, that

different coding schemes are used in different fractions of the transmission time.

However, in practice achieving such complete synchronization may not be feasible.

An interesting open question is to characterize the performance loss due to lack of

synchronism. In this case, the resulting capacity region need not be convex, as for

the collision model without feedback studied by Massey and Mathys [16].

We also assumed that the receiver has perfect CSI, that is, it knows the

set of active users. The question, relevant in practice, of how the receiver can

acquire such information is not discussed here, and we refer the reader to the

recent studies of Fletcher et al. [11], Angelosante et al. [4], and Biglieri and

Lops [7], which address the issue using sparse signal representation techniques and

random set theory.

Finally, in this work the transmission probability p and the number of

users m play a pivotal role in setting the encoding rate, and these quantities are
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supposed to be known at the transmitters. The probability p is determined by the

burstiness of the sources, while m has to be communicated from the receiver to the

transmitters. In practice, our model applies to communication scenarios in which

the base station grants access to the uplink channel to m users, but where only a

subset of these users actually transmit data.

3.9 Appendix

3.9.1 Proof of Theorem 3.4.3

Observe that C 2 is a polytope in R4
+ defined as the intersection of eight

hyperplanes, two of which representing non-negativity constraints. By the Weyl-

Minkowski theorem, C 2 is the convex hull of finitely many rate vectors. It is

tedious but simple to verify that

C 2 = conv {v1, . . . ,v14}

= conv
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C(P1)

C(P2)

C
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C
(

P2
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)








. (3.43)

By convexity, it suffices to show that for every i ∈ {1, . . . , 14}, there exists an

achievable rate vector ri such that d(vi, ri) ≤ 1. It is straightforward to verify that,

for every i ∈ {1, . . . , 11}, vi ∈ C
′
2 ∪ C

′′
2. Thus, d(vi, ri) = 0 for all i ∈ {1, . . . , 11}.

Consider the rate vector r12 ∈ C
′′′
2 obtained by setting equality sign in
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the inequalities (3.14) with β1 = P2

P1
and β2 = 1, i.e., r12 =

[
C(P2) + C

(
P1−P2

2P2+1

)
,

C(P2), C
(

P1−P2

2P2+1

)
, 0
]T
. We have that

d(v12, r12) ≤
√∣∣∣∣C(P1)− C(P2)− C

(
P1 − P2

2P2 + 1

)∣∣∣∣
2

+

∣∣∣∣C
(

P1

P2+1

)
− C

(
P1 − P2

2P2 + 1

)∣∣∣∣
2

=

√∣∣∣∣
1

2
log

(
1 +

P1P2 − P2
2

P1P2 − P2
2

)∣∣∣∣
2

+

∣∣∣∣
1

2
log

2P2 + 1

P2 + 1

∣∣∣∣
2

≤
√∣∣∣∣

1

2
log

2P1P2

P1P2 − P2
2

∣∣∣∣
2

+

∣∣∣∣
1

2
log

2P2 + 1

P2 + 1

∣∣∣∣
2

≤ 1√
2
. (3.44)

Next, consider the rate vector r13 = [C(P1), C(P2), 0, 0]
T ∈ C

′′′
2 , obtained by setting

equality sign in the inequalities (3.14) with β1 = 1 and β2 = 1. We have that

d(v13, r13) =
∣∣∣C
(

P2

P1+1

)∣∣∣ ≤ 1√
2
. (3.45)

Finally, the distance between v14 and r12 can be bounded as follows

d(v14, r12)

≤
√∣∣∣∣C(P1)− C(P2)− C

(
P1 − P2

2P2 + 1

)∣∣∣∣
2

+

∣∣∣∣C
(

P1

P2+1

)
− C

(
P1 − P2

2P2 + 1

)∣∣∣∣
2

+
∣∣∣C
(

P2

P1+1

)∣∣∣
2

≤
√
3

2
. (3.46)

Combining (3.44), (3.45), and (3.46) we conclude that d(vi, ri) ≤
√
3
2
, i ∈ {12, 13, 14},

which concludes the proof.

3.9.2 Proof of Theorem 3.5.1

Inequalities (3.18) follow immediately from assumption A1.. Next, fix i1 6=
i2 6= . . . 6= im ∈ {1, . . . , m}. By Fano’s inequality, we have that, for all r ∈
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{1, . . . , m},

H
(

r∪
k=1

Wik({i1 . . . ir}) |Yi1...ir

)
≤ nǫn, (3.47)

where ǫn → 0 in the limit of n going to infinity. In particular, (3.47) implies that

H (Wir({i1 . . . ir}) |Yi1...ir ) ≤ nǫn. (3.48)

Let K ∈ {1, . . . , m}. Then, the following chain of equalities holds:

n

K∑

k=1

rik({i1 . . . ik})

= H

(
K∪
k=1

Wik({i1 . . . ik})
)

= H

(
K∪
k=1

Wik({i1 . . . ik})
∣∣∣∣
K∪
k=1

{
Wik \Wik({i1 . . . ik})

})

= I

(
K∪
k=1

Wik({i1 . . . ik});Yi1...iK

∣∣∣∣
K∪
k=1

{
Wik \Wik({i1 . . . ik})

})

+H

(
K∪
k=1

Wik({i1 . . . ik})
∣∣∣∣Yi1...iK ,

K∪
k=1

{
Wik \Wik({i1 . . . ik})

})
(3.49)

The first term in the right hand side of (3.49) can be upper bounded as follows

I

(
K∪
k=1

Wik({i1 . . . ik});Yi1...iK

∣∣∣∣
K∪
k=1

{
Wik \Wik({i1 . . . ik})

})

= H (Yi1...iK )−H

(
Yi1...iK

∣∣∣∣
K∪
k=1

Wik

)

≤ H (Yi1...iK )−H

(
Yi1...iK

∣∣∣∣
K∪
k=1

Wik ,Xi1 , . . . ,XiK

)

=

n∑

t=1

I (Xi1,t, . . . , XiK ,t; Yi1...iK ,t) (3.50)

where we use the fact conditioning reduces the entropy and the memoryless prop-

erty of the channel. On the other hand, application of the chain rule on the second
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term at the left hand side of (3.49) yields

H

(
K∪
k=1

Wik({i1 . . . ik})
∣∣∣∣Yi1...iK ,

K∪
k=1

{
Wik \Wik({i1 . . . ik})

})

=

K∑

r=1

H

(
Wir({i1 . . . ir})

∣∣∣∣Yi1...iK ,
K∪
k=1

{
Wik \ Wik({i1 . . . ik})

}
,

K∪
k=r+1

Wik({i1 . . . ik})
)

=

K∑

r=1

H

(
Wir({i1 . . . ir})

∣∣∣∣Yi1...iK ,
r∪

k=1

{
Wik \ Wik({i1 . . . ik})

}
,

K∪
k=r+1

Wik

)

=
K∑

r=1

H

(
Wir({i1 . . . ir})

∣∣∣∣Yi1...iK ,
r∪

k=1

{
Wik \ Wik({i1 . . . ik})

}
,

K∪
k=r+1

Wik ,
K∪

k=r+1
Xik

)

(3.51)

=

K∑

r=1

H

(
Wir({i1 . . . ir})

∣∣∣∣Yi1...ir ,
r∪

k=1

{
Wik \ Wik({i1 . . . ik})

})

=

K∑

r=1

H (Wir({i1 . . . ir}) |Yi1...ir ) (3.52)

≤ Knǫn, (3.53)

where (3.51) uses the fact that Xik is a function of Wik , (3.52) uses the fact

conditioning reduces the entropy, and (3.53) follows from (3.48).

Therefore, substituting (3.50) and (3.53) into (3.49), we obtain that

n
K∑

k=1

rik({i1 . . . ik}) ≤
n∑

t=1

I (Xi1,t, . . . , XiK ,t; Yi1...iK ,t) + nKǫn, (3.54)

and the claim is completed by introducing a standard timesharing random variable

and letting the block size n tend to infinity.

3.9.3 Proof of Theorem 3.6.2

Let P denote the convex subset of Rm described described by inequalities

(3.25a) and (3.25b). First we prove the converse part, by establishing that Cρρρ ⊆ P.
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As a first step, we derive a useful identity. Let k ∈ {1, . . . , m}. Then,

∑

i1 6=···6=im∈{1,...,m}
rik({i1 . . . ik}) = (m− k)!

∑

i1 6=···6=ik∈{1,...,m}
rik({i1 . . . ik})

= (m− k)!(k − 1)!
∑

A⊆{1,...,m}
|A|=k

∑

i∈A
ri(A)

= (m− k)!(k − 1)!ρk, (3.55)

where the second equality uses the fact that rik(i1 . . . ik) = rik({iσ1 , . . . , iσk−1
, ik})

for any permutation σσσ over the set {1, . . . , k − 1}. Now we can establish the

necessity of (3.25b). It follows from (3.24) that the following inequality has to

hold

m∑

k=1

rik(i1 . . . ik) ≤ 1, (3.56)

for all i1 6= · · · 6= im ∈ {1, . . . , m}. By summing both sides of (3.56) over all

permutations over the first m integers, we obtain

∑

i1 6=···6=im∈{1,...,m}

m∑

k=1

rik({i1 . . . ik}) ≤ m!. (3.57)

By means of (3.55), (3.57) can be re-written as

m∑

k=1

(m− k)!(k − 1)!ρk ≤ m!. (3.58)

Dividing both sides of (3.58) by m!, we conclude that (3.25b) is a necessary con-

dition for the achievability of a rate vector ρρρ.

Next, note from (3.23) that ri(A) ≥ ri(B) for all i ∈ A ⊆ B ⊆ {1, . . . , m}
is a necessary condition to the achievability of a rate vector {ri(A)}. By summing



85

these inequalities over all B having cardinality |A|+ 1, we obtain that

ri(A) ≥
1

m− |A|
∑

B:i∈A⊆B⊆{1,...,m}
|B|=|A|+1

ri(B). (3.59)

Next, observe that, for every k ∈ {1, . . . , m− 1},

ρk ≥
∑

A:A⊆{1,...,m}
|A|=k

∑

i∈A
ri(A)

=

m∑

i=1

∑

A:A⊆{1,...,m}
i∈A, |A|=k

ri(A)

≥
m∑

i=1

∑

A:A⊆{1,...,m}
i∈A, |A|=k

1

m− k

∑

B:i∈A⊆B⊆{1,...,m}
|B|=k+1

ri(B) (3.60)

=
1

m− k

m∑

i=1

∑

B:B⊆{1,...,m}
i∈B,|B|=k+1

∑

A:A⊆B
i∈A, |A|=k

ri(B) (3.61)

=
k

m− k

m∑

i=1

∑

B:B⊆{1,...,m}
i∈B,|B|=k+1

ri(B)

=
k

m− k
ρk+1 (3.62)

where (3.60) follows from (3.59), while (3.61) is obtained observing that there are k

subsets of B which have cardinality k and contain the element i. After multiplying

right and left hand side of (3.62) by ((m−1)!)
(k−1)!

and rearranging the terms, we obtained

the desired inequality

ρk

k
(
m
k

) ≥ ρk+1

(k + 1)
(

m
k+1

)

which proves (3.25a). In summary, we showed that inequalities (3.25a) and (3.25b)

are necessary conditions for the achievability of a rate vector ρρρ, i.e., Cρρρ ⊆ P.

Next, we prove the achievability of P, establishing the reversed inclusion

P ⊆ Cρρρ . To do so, it suffices to show that the extreme points of P are achievable,
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as the rest of the region can be achieved my means of a time-sharing protocol. We

claim that

P = conv
{
0,
{1
k

k∑

i=1

i
(
m
i

)
ei

}m

k=1

}
. (3.63)

where the vector ei denotes the ith unit vector in Rm. To see this, consider an

invertible linear transformation L : Rm → Rm given by





xm = ρm

m
(
m
m

) ,

xk = ρk

k
(
m
k

) − ρk+1

(k+1)
(

m
k+1

) , k ∈ {1, . . . , m− 1}.
(3.64)

It is straightforward to check that the image P under L is given by the oriented

m-simplex LP = {x ∈ Rm
+ :

∑m
k=1 kxk ≤ 1} = conv {0,v′

1, . . . ,v
′
m} , wherein

v′
k = 1

k
ek. Since L is invertible, the extreme points of P can be obtained by

applying L−1 to the extreme points of LP. Thus, P = conv {0, ρρρ1, . . . , ρρρm} where

ρρρk = L−1v′
k =

1

k

k∑

i=1

i

(
m

i

)
ei, (3.65)

k ∈ {1, . . . , m}. Hence (3.63) is proved.

Next, we show that each rate vector ρρρk given by (3.65) is achievable. Con-

sider the following message structure:

Wi = {Wi,1, . . . ,Wi,m} (3.66)

and

Wi(A) =

{
∪j≥|A|Wi,j, i ∈ A;

∅, i 6∈ A.
(3.67)

It is immediate to verify that the above sets satisfy conditions A1., so the message

structure is well defined. For every i, sender i transmits m independent messages

{Wi,1, . . . ,Wi,m} encoded at rates {Ri,1, . . . , Ri,m}. For every k ∈ {1, . . . , m}, the
kth message Wi,k is decoded at receiver A if i ∈ A and if |A| ≤ k, that is, if

user i is active and there are less than k active users. To achieve the rate vector

ρρρk it suffices to set Ri,k = 1
k
for all i, and the other rates equal to zero, that is,
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each sender i transmits a single message of information Wi,k encoded at rate 1
k
.

Encoding is performed by means of a standard multiple-access random codebook.

It follows from (3.67) that receiver A decodes Wi,k if i ∈ A and |A| ≤ k. Thus, we

have

ri(A) =

{
1
k
, i ∈ A and |A| ≤ k;

0, otherwise.
(3.68)

Observe that for every receiver A the sum of the rates of the decoded messages

is at most 1. It follows that decoding can be performed by means of a standard

kuser multiple-access decoder. By plugging (3.68) into (3.21), we obtain that

ρk,i =

{
i
k

(
m
i

)
, if i ∈ {1, . . . , k}

0, otherwise,
(3.69)

hence (3.65) is achievable.

3.9.4 Proof of Theorem 3.6.3

In order to prove the theorem, we first need to state two lemmas. The

first lemma builds upon properties of the cumulative distribution function of the

Binomial distribution.

Lemma 3.9.1. Let k ∈ {1, . . . , m− 1}. There exists a pk ∈
(
0, k

m

)
such that

1

k
Fm−1,k−1(p)−

1

k + 1
Fm−1,k(p)





> 0, p < pk

= 0, p = pk

< 0, p > pk

. (3.70)

Proof. Define f(p) = 1
k
Fm−1,k−1(p)− 1

k+1
Fm−1,k(p). The binomial sum Fm−1,k−1(p)

is related to the incomplete Beta function by [1, (6.6.4) page 263]

Fm−1,k−1(p) = 1− k
(m−1

k

) ∫ p

0
tk−1(1− t)m−1−kdt. (3.71)

Substituting (3.71) into the definition of f(p) and differentiating, we obtain the fol-

lowing expression for the derivative of f with respect to p f ′(p) = − 1
p(1−p)

fm−1,k(p)
[
1−

p m
k+1

]
. By studying the sign of f ′(p) one can see that f(p) is a strictly decreasing
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function of p in the range
(
0, k+1

m

)
, reaches a minimum at p = k+1

m
and is a strictly

increasing in the interval
(
k+1
m

, 1
)
. We have f(1) = 0, and the Taylor expansion

centered at p = 1 shows that f(p) increases to zero as p tends to one. Thus,

f
(
k+1
m

)
< 0. Note that f(0) > 0 so, by the monotonicity of f and by the mean

value theorem, there exists a unique pk ∈
(
0, k+1

m

)
such that

f(p)





> 0, p < pk

= 0, p = pk

< 0, p > pk

. (3.72)

To complete the proof, we show that pk < k
m
. Direct computation shows that

p1 = 1/m, while for k ∈ {2, . . . , m− 1}, we have that

f
(

k
m

)
= 1

k
Fm−1,k−1

(
k
m

)
− 1

k+1
Fm−1,k

(
k
m

)

=
(
1
k
− 1

k+1

)
Fm−1,k−1

(
k
m

)
− 1

k+1
fm−1,k

(
k
m

)

<
(
1
k
− 1

k+1

)
kfm−1,k−1

(
k
m

)
− 1

k+1
fm−1,k−1

(
k
m

)

= 0, (3.73)

where the inequality follows from the fact that fm−1,i

(
k
m

)
≤ fm−1,k−1

(
k
m

)
for i ∈

{0, . . . , k − 1}, with equality iff i = k − 1, and that fm−1,k−1

(
k
m

)
= fm−1,k

(
k
m

)
for

k ∈ {2, . . . , m− 1}. Thus, (3.72) and (3.73) show that pk <
k
m

as claimed.

Roughly speaking, the above says that to achieve the throughput the en-

coding rate has to decrease as the transmission probability increases. The second

lemma shows that 1/k is the optimal encoding rate when p is in the kth interval

of the partition Πm(P).

Lemma 3.9.2. Let k ∈ {1, . . . , m}. Define p0 , 0 and pm , 1 and let {pk}m−1
k=1 be

as in Lemma 4.4.2. Then,

1

k
Fm−1,k−1(p) ≥

1

j
Fm−1,j−1(p), j ∈ {1, . . . , m}, (3.74)

for p ∈ [pk−1, pk].
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Proof. In virtue of Lemma 4.4.2, it suffices to show that pk < pk+1, for k ∈
{0, . . . , m − 1}. As p1 ∈ (0, 1/m], it follows that p0 < p1. Next, suppose that

k ∈ {1, . . . , m − 1}. Lemma 4.4.2 shows that 1
k
Fm−1,k−1(pk) =

1
k+1

Fm−1,k(pk) and

that pk ∈
(
0; k

m

)
. Thus, we have

1
k+1

Fm−1,k(pk)− 1
k+2

Fm−1,k+1(pk)

= 1
k
Fm−1,k−1(pk)− 1

k+2
Fm−1,k+1(pk)

=
(
1
k
+ 1

k+2

)
Fm−1,k−1(pk)− 1

k+2

(
Fm−1,k−1(pk) + Fm−1,k+1(pk)

)

> 2(k+1)
k(k+2)

Fm−1,k−1(pk)− 2
k+2

Fm−1,k(pk)

= 2(k+1)
k(k+2)

Fm−1,k−1(pk)− 2(k+1)
k(k+2)

Fm−1,k−1(pk)

= 0, (3.75)

where the inequality uses the fact that Fm−1,k−1(pk)+Fm−1,k+1(pk)
)
< 2Fm−1,k(pk)

for p < k/m. Comparing (3.70) and (3.75), we obtain the desired inequality

pk < pk+1.

Using the above lemma, it is immediate to prove theorem 3.6.3.

Proof. Observe that the optimum value of a linear program, if it exists, is always

achieved at one of the extreme point of the feasibility set. Thus, (3.63) implies

that

T (p,m,P) = max
k∈{1,...,m}

1

k

k∑

i=1

i

(
m

i

)
pi(1− p)m−i

= max
k∈{1,...,m}

mp
1

k
Fm−1,k−1(p)

= mp

m∑

k=1

1

k
Fm−1,k−1(p)1{p∈(pk−1,pk]},

where the last equality follows from Lemma 3.9.2.
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3.9.5 Proof of Theorem 3.7.4

Let ck , C(kP). In order to evaluate T (p,m,P), it is convenient to make

the change of variable





xm = ρm

m
(
m
m

) ,

xk = ρk

k
(
m
k

) − ρk+1

(k+1)
(

m
k+1

) , k ∈ {1, . . . , m− 1}.
(3.76)

Substituting the new variables into (3.22), (3.25a), and (3.25b) and performing a

modicum of algebra, we obtain,

T (p,m,P) = max
x∈Cx,m

mp
m∑

i=1

Fm−1,i−1(p) xi, (3.77)

where C x,m denote the set of rates {xk} ∈ Rm
+ such that

K−1∑

k=1

kxk +K
m∑

k=K

xk ≤ cK (3.78)

for every K ∈ {1, . . . , m}. Observe that the optimum value of the linear program

(3.77) is achieved at one of the extreme point of the feasibility set. Therefore, to

prove the theorem it suffices to show that {vk}mk=1 as defined in (3.36-3.39) are

extreme points of C x,m, and that the objective function in (3.77) reaches a strict

local maximum at vk when p is in the kth interval of the partition Πm(P).

For every k ∈ {1, . . . , m}, it is straightforward to check that vk satisfies

(3.78) for K ∈ {k, . . . , m}, and that vk has k − 1 zero components. Thus, we

conclude that vk is an extreme point of C x,m.

Next, we establish that if p ∈ [pk−1, pk], where {pk−1} are defined in Lemma

4.4.2, then the objective function reaches a local maximum at vk. We proceed

by showing that the objective function at vk is strictly greater than at any of

its neighboring extreme points. By definition, two extreme points are neighbors

if they are connected by an edge. It is possible to show that vk has exactly m

neighbor extreme points, which we denote by
{
n
(k)
j

}m

j=1
. The proof of this fact is

straightforward albeit fairly lengthy, so is not reported here. For k ∈ {1, . . . , m−1},
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we have that

• If j ∈ {1, . . . , k − 1}, then

n
(k)
j,i =





k
j(k−j)

cj − 1
k−j

ck, i = j,

0, i ∈ {1, . . . , j − 1} ∪ {j + 1, . . . , k − 1},
k−j+1
j(k−j)

ck − 1
k−j

cj − ck+1, i = k,

vk,i, i ∈ {k + 1, . . . , m}
(3.79)

• If j = k, then n
(k)
j = vk+1.

• If j ∈ {k + 1, . . . , m− 2}, then

n
(k)
j,i =





3
2
cj−1 − cj−2 − 1

2
cj+1, i = j − 1,

0, i = j,

3
2
cj+1 − cj+2 − 1

2
cj−1, i = j + 1,

vk,i, i ∈ {1, . . . , j − 2} ∪ {j + 2, . . . , m}
(3.80)

• If j = m− 1, then

n
(k)
m−1,i =





3
2
cm−2 − cm−3 − 1

2
cm, i = m− 2,

0, i = m− 1,

1
2
cm − 1

2
cm−2, i = m,

vk,i, i ∈ {1, . . . , m− 3}

(3.81)

• Finally, if j = m then

n
(k)
m,i =





cm−1 − cm−2, i = m− 1,

0, i = m,

vk,i, i ∈ {1, . . . , m− 2},
(3.82)
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On the other hand, for k = m and j ∈ {1, . . . , m− 1}, we have that

n
(m)
j,i =

{
m

j(m−j)
cj − 1

m−j
cm, i = j,

1
m−j

cm − 1
m−j

cj, i = m,
(3.83)

It can be immediately verified that
{
n
(k)
j

}m

j=1
as defined above are extreme points

of C x,m, and neighbors of vk.

Next, we establish that the objective function in (3.77) reaches a local

maximum at vk by comparing the value achieved at vk to the one at its neighboring

extreme points. First, suppose k ∈ {1, . . . , m− 1}.

• If j ∈ {1, . . . , k − 1}, we can observe, from plugging (3.79) into (3.77) and

performing some algebraic manipulations, that

mp

m∑

i=1

(vk,i − n
(k)
j,i )Fm−1,i−1(p)

= Fm−1,k−1(p)

(
1

k − j
cj −

j

k(k − j)
ck

)
− Fm−1,j−1(p)

(
k

j(k − j)
cj −

1

k − j
ck

)

> Fm−1,k−1(p)

(
1

k − j
cj −

j

k(k − j)
ck

)
− j

k
Fm−1,k−1(p)

(
k

j(k − j)
cj −

1

k − j
ck

)

= 0,

because Fj−1 <
j
k
Fm−1,k−1(p) if p is in the kth interval of the partition Πm(P).

• If j = k, then

mp
m∑

i=1

(vk,i − n
(k)
k,i )Fm−1,i−1(p)

=
1

k + 1

(
k + 1

k
ck − ck−1

)(
1

k
Fm−1,k−1(p)−

1

k + 1
Fm−1,k(p)

)

> 0,
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• If j ∈ {k + 1, . . . , m− 1}, then

mp

m∑

i=1

(vk,i − n
(k)
j,i )Fm−1,i−1(p) =

= 2

(
cj −

cj−1 + cj+1

2

)(
Fm−1,k(p)−

Fm−1,k−1(p) + Fm−1,k+1(p)

2

)

> 0,

• If j = m, then

mp

m∑

i=1

(vk,i − n
(k)
m,i)Fm−1,i−1(p) =

= (cm − cm−1) (Fm−1,m−1(p)− Fm−1,m−2(p))

> 0,

Next, suppose k = m. Compare the utility function at vm and n
(m)
j .

mp

m∑

i=1

(vk,i − n
(k)
m,i)Fm−1,i−1(p) =

= Fm−1,m−1(p)

(
1

m− j
cj −

j

m(m− j)
cm

)
− Fm−1,j−1(p)

(
m

j(m− j)
cj −

j

m− j
cm

)

= Fm−1,m−1(p)

(
1

m− j
cj −

j

m(m− j)
cm

)
− j

m
Fm−1,m−1(p)

(
m

j(m− j)
cj −

j

m− j
ck

)

= 0.

Therefore, we have established that the objective function reaches a local maximum

at vk and completed the proof.

3.9.6 Proof of Theorem 3.7.5

Let ck , C(kP). For every k ∈ {1, . . . , m}, if p ∈ (pk−1, pk] we have that

T (p,m,P) ≥ mp
ck
k
Fm−1,k−1(p). (3.84)
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In particular, equality holds in (3.84) when p ∈ [max(pk−1 , pk−1(P)),min(pk, pk(P))].

It follows that

T (p,m,P)− T (p,m,P) ≤ mp
m∑

i=1

vk,iFm−1,i−1(p)−mp
ck
k
Fm−1,k−1(p). (3.85)

for p ∈ (pk−1, pk]. To prove the theorem, we show that the right hand side of

(3.85) is upper bounded by one for every k ∈ {1, . . . , m}. First, we consider the

case k = 1. By substituting (3.36) into (3.85), we obtain that

mp

[
m∑

i=1

v1,iFm−1,i−1(p)− C(P)Fm−1,0(p)

]

= mp

[
3(c2 − c1)Fm−1,0(p) +

m∑

j=1

(cj+1 − cj)fm−1,j

]

= mp

[
3

2
Fm−1,0(p) +

m−1∑

j=1

1

2j
fm−1,j

]

=
3

2
fm,1(p) +

m−1∑

j=1

j + 1

2j
fm,j+1

≤ 3

2
fm,1(p) +

m∑

j=2

fm,j

=
3

2
fm,1(p) + (1− fm,0(p)− fm,1(p))

≤ 1

where the second equality uses the fact that cj+1 − cj ≤ 1/(2j), while the last

equality follows from 2fm,0(p) ≥ fm,1(p) for p ∈ (0, 1/m]. Similarly, from (3.37) we
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obtain that, for every k ∈ {2, . . . , m− 1},

mp

[
m∑

i=1

vk,iFm−1,i−1(p)−
ck
k
Fm−1,k−1(p)

]

= mp

[
(ck − ck−1)Fm−1,k−1(p) +

m−1∑

i=k+1

(2ci − ci−1 − ci+1)Fm−1,i−1(p)

+(cm − cm−1)Fm−1,m−1(p)]

= mp

[(
ck − ck−1 +

m−1∑

i=k+1

(
2ci − ci−1 − ci+1

)
+ cm − cm−1

)
Fm−1,k−1(p)

+

m∑

j=k+1

m−1∑

i=j

(
2ci − ci−1 − ci+1 + cm − cm−1

)
fm−1,j−1(p)

]

= mp
m∑

j=k+1

(cj − cj−1)fm−1,j−1(p)

≤ mp

m∑

j=k+1

1

2(j − 1)
fm−1,j−1(p)

= mp

m−1∑

j=k

1

2j
fm−1,j(p)

≤ 1

The proof is concluded observing that we have T (p,m,P) = T (p,m,P) when

k = m.
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Chapter 4

Control and Communications

A data rate theorem for stabilization of a linear, discrete-time, dynami-

cal system with arbitrarily large disturbances, over a rate-limited, time-varying

communication channel is presented. Necessary and sufficient conditions for stabi-

lization are derived, their implications and relationships with related results in the

literature are discussed. The proof techniques rely on both information-theoretic

and control-theoretic tools.

4.1 Introduction

In modern control theory, the data rate theorem refers to the smallest feed-

back data rate above which an unstable dynamical system can be stabilized. In

its scalar form, it states that a discrete linear plant of unstable mode |λ| ≥ 1 can

be stabilized if and only if the data rate R over the (noise free) digital feedback

link satisfies the inequality R > log2 |λ| bits per sample, where H̃ = log2 |λ| is
called the intrinsic entropy rate of the plant. From its first appearance, this result

has been generalized to different notions of stability and system models, and has

also been extended to multi-dimensional systems [1] [3] [5] [13] [16] [21] [24] . The

survey papers [2] and [17] give an historical and technical account of the various

formulations.

In many engineering applications, the aim is to control one or more dy-

namical systems using multiple sensors and actuators communicating over digital

98
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Figure 4.1: Feedback loop model.

links. In this framework, the data rate theorem represents a point of contact where

the theories of control and communication converge, as it relates the speed of the

dynamics of the plant to the information rate of the communication channel. From

an information-theoretic perspective, the existence of a critical positive rate below

which there does not exist any quantization and control scheme able to stabilize an

unstable plant is reminiscent of Shannon’s source coding theorem [20]. Stated in-

formally, this says that if one wants to communicate with a fixed-length code over

a noise free channel the output of a finite-valued stationary ergodic source process

with entropy rate H(X ), then the number of bits that must be used to represent

the source sequence with arbitrarily small error probability is at least H(X ). In

other words, Shannon’s entropy rate, representing the amount of uncertainty of

the source, poses a fundamental limit on the communication rate. Similarly, the

intrinsic entropy rate H̃ = log2 |λ| of an unstable linear dynamical system, rep-

resenting the growth of the state space spanned by the open loop system, poses

a fundamental limit on the minimum data rate that must be available over the

feedback loop to guarantee stability.

In this work, we are concerned with the formulation of the data rate theo-

rem over time-varying feedback channels. A motivating example is given by sensors

and actuators communicating over a wireless channel for which the quality of the

communication link varies over time because of random fading in the received sig-

nal. In the case of digital communication, this can reflect in a time variation of the

rate supported by the wireless channel. However, if the channel variations are slow

enough, transmitter and receiver can estimate the quality of the link by sending

a training sequence, and can adapt the communication scheme to the channel’s
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condition. We ask the following question: is it possible to design a communication

scheme that changes dynamically according to the channel’s condition and, at the

same time, is guaranteed to stabilize the system?

To answer the above question, we assume the following model. The com-

munication channel, at any given time k, allows transmission of Rk bits without

error, where Rk fluctuates randomly over time. Rk remains constant in blocks of

n consecutive channel uses and then varies according to an independent and iden-

tically distributed (i.i.d) process across blocks. Furthermore, both encoder and

decoder have causal knowledge of the rate supported by the communication link,

see Figure 4.1. It is clear from the illustration that of the feedback loop model

that the (encoded) estimated state sk is quantized and sent to a decoder over a

wireless digital link that supports error-free transmission of Rk bits per discrete

unit time. We remark that such channel state information (CSI) can be obtained

through feedback from the receiver to the transmitter if the fading variation is slow

enough.

The model above includes the erasure channel as a special case, by allowing

the rate process to have only a value R > 0, or zero if an erasure occurs. In this

case, CSI at the transmitter can be simply obtained through one bit feedback that

notifies the sender of erasures.

The model, however, does not capture the possibility of having other de-

coding errors beside erasures. Rather than addressing general channels with noise,

our aim here is to obtain crisp results in a simple setting which can be used to

understand the basic trade-offs between the intrinsic entropy rate of the system,

the available rate on the communication channel, and the additional randomness

due to the changing conditions of the environment. In this framework, our work

directly relates to the ones in [9] [13] [16] [19] [21] and we describe this relationship

in more detail next, while we refer the reader interested in more general channels

with noise to the work of Sahai and Mitter [18], as well as to the works in [14] [15]

[22] [23].

In an influential paper, Tatikonda and Mitter [21] have studied a model

similar to ours in which the rate is fixed and system disturbances are bounded. Nair
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and Evans [16] addressed the case in which the rate is still fixed, but disturbances

can have an unbounded support (Gaussian disturbances are a special case of this).

Finally, Martins, Dahleh, and Elia [13] considered the case of a scalar system with

state feedback, random time-varying rate and bounded disturbances, and they

provided necessary and sufficient conditions for m-th moment stability. In this

work, we allow both the system disturbances to have unbounded support and the

rate to vary randomly. Furthermore, the encoder has access to output feedback

rather than to state feedback and we also consider the multi-dimensional case. This

formulation requires the use of an adaptive quantizer, as this must be capable of

tracking the state when atypically large disturbances affect the system and must

dynamically adapt to the rate that is instantaneously supported by the channel.

Naturally, our results can recover the ones mentioned in the above papers.

We also want to spend a few words on a different approach that has been

used in the literature to model control over time-varying channels. This has a

network-theoretic flavor rather than the information-theoretic one described above.

In this case, the channel uncertainty is modeled using random packet dropouts.

Packets are considered as single entities, each carrying the estimated state, that

can be lost independently, with some probability. Furthermore, channel state

information is in this case modeled as packet acknowledgement at the transmitter.

An extensive survey of different works following this approach appears in [11] and

we refer the reader to this work for references. The network-theoretic equivalent of

the data rate theorem is the proof of existence of a critical dropout probability above

which the closed loop system cannot be stabilized, see for example [7] [9] [12] [19].

Our present work reveals an important link between the network-theoretic,

packet-loss model described above, and the information-theoretic approach. From

an information-theoretic perspective, the packet loss model corresponds to an era-

sure channel in which the rate is infinity, with probability 1 − p and zero with

probability p. This is because a single packet, representing the state of the sys-

tem which is a real quantity, can carry an infinite amount of information, as a

real number can have arbitrarily many bits within its binary expansion. Now, if

we apply our results to an erasure channel, where the rate is R with probability
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1− p and zero with probability p, in the high data rate limit (R → ∞) this chan-

nel can be seen as communicating real numbers with random i.i.d erasures, and

in this case we obtain a necessary and sufficient condition for stabilization that

is the same as the one in [9], obtained under the network theoretic model, with

Bernoulli packet dropouts, acknowledgement of packet reception, and Gaussian

system disturbances.

The rest of the chapter is organized as follows. The main contributions

are informally summarized and discussed next. Section 4.3 formally defines the

problem. Section 4.4 is devoted to the proof of the necessary and sufficient condi-

tions for stabilizability in the scalar case. These are shown via the entropy-power

inequality (necessary) and the construction of an adaptive, variable length encoder

(sufficiency). Section 4.5 is devoted to the more complex multi-dimensional case,

for which necessary and sufficient conditions are shown to be tight in some special

cases.

4.2 Overview of the results

In the scalar case, we prove that a necessary and sufficient condition to

stabilize a linear system of unstable mode |λ| ≥ 1 in the second moment sense over

a digital link of time-varying limited rate Rk as described above, is

E

[(
λ2

22R

)n]
< 1, (4.1)

where n is the length of the block during which the rate on the digital link remains

constant, and the rates Rk’s are i.i.d. across blocks and distributed as a random

variable R.

The condition above is amenable to the following intuitive interpretation.

If no information is sent over the link during a transmission block, the estimation

error at the decoder about the state of the system grows by λ2n. The information

sent by the encoder can reduce this error by at most 22nR, where nR is the total

rate supported by the channel in a given block. However, if averaging over the

fluctuation of the rate λ2n exceeds 22nR, then the information sent over the channel
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cannot compensate (on average) the dynamics of the system and it is not possible

to stabilize the plant. Notice that if the rate is fixed over time and equal to

a constant R, then the condition in (4.1) reduces to the well known inequality

R > log2 |λ|.
Finally, it is also easy to see that when communicating over an erasure

channel for which R = ∞ with probability 1 − p and R = 0 with probability

p, then for n = 1 the necessary and sufficient condition for stabilization in (4.1)

reduces to

p <
1

λ2
,

which is the same critical loss probability derived in [9] for systems with Gaussian

(i.e. unbounded-support) disturbances under the network-theoretic model.

The proof of the result in (4.1) is based on an information-theoretic ar-

gument based on the entropy-power inequality (necessary condition), and on an

explicit construction of an adaptive quantizer and coder-decoder pair (sufficient

condition). In the latter case, the main challenge is to design a quantizer that

adapts dynamically to the exogenous rate process and can handle atypically large

disturbances. The construction of the coder-decoder pair is similar to the one by

Nair and Evans [16]. There are, however, some key differences vis-à-vis in the way

the stabilizing scheme is constructed. In [16], time is divided into cycles of fixed

duration, and system state observations are quantized using a fixed number of

bits, which are transmitted over the digital link for the duration of a cycle. Thus,

communication between coder and decoder occurs at a fixed transmission rate. In

our case, the total number of bits available in a cycle of fixed duration is random

and it is not known a priori, as the rate process is known only causally at the coder

and the decoder. As a consequence, the choice of an appropriate quantization rate

is not immediate. Our solution consists in dividing time into cycles of fixed du-

ration, but quantize the state observations using a random number of bits, which

depends on the realization of the rate process. The fact that future realizations of

the rate process are not known in advance is not a problem, since the quantizer

we use is successively refinable, and can dynamically adapt to the rate that is

instantaneously supported by the digital link. Hence, our scheme performs as if
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the future realizations of the rate process were known in advance at the coder and

decoder. An alternative approach consists of quantizing the observations using a

fixed number of quantization points, but allowing cycles to have variable duration.

A scheme based on this approach is outlined in section 4.5.4. Finally, we remark

that, as in related works in the literature [13] [16] [21], the construction provided in

this work relies on the crucial assumption that the coder and decoder can agree on

the initial values of the internal states through an a priori iterative communication

process.

The extension of the analysis to multi-dimensional linear systems entails

the difficulty of the rate allocation to the different unstable modes. In this case,

we derive necessary conditions for second moment stabilizability, which define a

region with a special polymatroid structure. When the rate is fixed and equal to

a constant R, the necessary conditions reduce to

H̃ :=
∑

|ηi|≥1

log2 |ηi| < R,

where η1, . . . , ηn are the open loop eigenvalues (raised to their corresponding al-

gebraic multiplicities). Again, this recovers the well known data rate theorem for

vector systems with deterministic rate [16], [21]. Finally, as in the scalar case, in

the high data rate limit over an erasure channel, we also recover the necessary

condition on the critical dropout probability of [9].

Finally, we provide a general coder-decoder construction for vector systems

and show that this is optimal in some limiting cases. For some specific rate distri-

butions, however, it is possible to design more efficient schemes. This latter point

is shown by considering stabilization over a binary erasure channel, for which a

better scheme is proposed.

4.3 Problem formulation

In the sequel, the following notation is used: vectors are written in bold-

faced type and sequences {ai}ki=0 are denoted as ak0; expectation with respect to
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the random variable X is written as EX [·], the differential entropy of a continuous

random vector X as h(X) = −E[ln fX(x)] and the entropy of a discrete random

vector X as H(X) = −E[lnP (X)]; the set of non-negative integers as N, the

positive integers as Z+, and the rational numbers as Q; finally, the cardinality of

a finite set S is denoted as |S|.
Consider the partially-observed, discrete-time state-space unstable stochas-

tic linear system

xk+1 = Axk +Buk + vk, yk = Cxk +wk, ∀k ∈ N, (4.2)

where xk ∈ Rd is the state process, uk ∈ Rm is the control input, vk ∈ Rd process

disturbance, the measurement yk and measurement noise wk are random vectors in

Rp. SupposeA is uniquely composed by unstable modes (having magnitude greater

or equal to unity). No Gaussian assumptions are made on the initial condition x0

and the disturbances, but the following is assumed to hold:

A0. (A,B) is reachable and (C,A) observable.

A1. x0,vk and wj are mutually independent for all k, j ∈ N.

A2. ∃ǫ > 0 such that x0,vk and wj have uniformly bounded (2 + ǫ)-th absolute

moments over k ∈ N.

A3. infk∈N h(vk) > −∞. Thus, ∃β > 0 such that e
2
d
h(vk) > β for all k ∈ N and

vk ∈ Rd.

Suppose that coder and decoder are connected by a time-varying digital

link, see Figure 4.1. The transmission rate supported by the digital link is assumed

constant over blocks of n ∈ N channel uses but changes independently from block

to block according to a given probability distribution. Formally, at time k ∈ N the

digital link is an identity map on an alphabet {1, · · · , |Sk|}; log2 |Sk| denotes the

transmission rate supported by the digital link, and coincides with Rj if and only

if k ∈ {jn, jn + 1, · · · , (j + 1)n− 1}. At time k ∈ {jn, jn + 1, · · · , (j + 1)n− 1},
coder and decoder know Rj , while the realization of the rate process in future

blocks, {Ri}∞i=j+1, is unknown to them. The {Rj}j∈N are i.i.d random variables



106

distributed as R, where R is an integer-valued random variable taking values on

R ⊆ N. We denote by rmin the minimum value in the set R.

This definition of the rate process is motivated by communication over

wireless channels. In fact, the rate supported by a block fading wireless channel can

be modeled as a random variable, since this is a function of the (random) channel

gain that attenuates the transmitted signal. The block fading model captures a

fading scenario where the fading channel state remains invariant over a block of

time but changes from block to block. If the fading variation is slow enough,

feedback from the receiver to the transmitter can be used to acquire channel state

information. If the channel state information is known, then the rate supported by

the channel is also known at both transmitter and receiver. Finally, the rate can

be modeled as an i.i.d. random process across the channel blocks if we assume that

block lengths are similar to coherence time intervals (length of time over which the

channel’s statistical properties do not change) of the channel. For example, the

i.i.d. assumption is valid for a slow frequency hopped time division multiple access

channel.

Example 4.3.1. We call erasure channel a digital link where R = r with prob-

ability 1 − p and R = 0 with probability p, for some nonnegative integer r and

p ∈ (0, 1). If r = 1, we call the channel binary erasure channel.

Each transmitted symbol can depend on all past and present measurements,

the present channel state and the past symbols,

Sk = gk
(
yk
0 , S

k−1
0 , Rj

)
,

k ∈ {jn, . . . , (j + 1)n− 1}, ∀j ∈ N,

where gk(·) is the coder mapping at time k. The control sequence, on the other

hand, can depend on all past and present channel symbols

uk = δk
(
Sk
0

)
, ∀k ∈ N,

where δk(·) is the controller mapping at time k.
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We want to construct a coder-decoder pair which stabilizes the plant in the

mean square sense

sup
k∈N

E
[
‖ xk ‖2

]
< ∞, (4.3)

using the finite data rate provided by the time-varying digital feedback link.

4.4 Scalar systems

In this section it is assumed that the plant in (4.2) is scalar and has a

representation of the following type:

xk+1 = λxk + uk + vk, yk = xk + wk, ∀k ∈ N, (4.4)

where |λ| ≥ 1, so that the system is unstable. The result for the scalar case is now

stated:

Theorem 4.4.1. Under assumptions A0.-A3. above, necessary and sufficient

condition for stabilizing the plant (4.4) in the mean square sense (4.3) is that

E

[( |λ|2
22R

)n]
< 1, (4.5)

where n is the length of the channel block with the same rate.

4.4.1 Necessity

In order to prove the statement, we find a lower bound for the second

moment of the state, and show that (4.5) is a necessary condition for this lower

bound to be finite. We focus on the times k = jn with j ∈ N, i.e. on the beginning

of each channel block. Let S̄j = {S0, . . . , S(j+1)n−1}, denote the symbols sent over

the noiseless channel until the end of the j-th channel block. By iteration of (4.4),

we have

x(j+1)n = λnxjn +

(j+1)n−1∑

k=jn

λ(j+1)n−1−k[δk(S
k
0 ) + vk].
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Let nj =
1

2πe
ES̄j−1

[
e2h(xjn|S̄j−1=s̄j−1)

]
be the conditional entropy power of xjn con-

ditioned on the event {S̄j−1 = s̄j−1}, averaged over all possible s̄j−1. The second

moment of xjn is lower bounded by nj:

E[x2
jn] = ES̄j−1

[
E[x2

jn|S̄j−1 = s̄j−1]
]

=
1

2πe
ES̄j−1

[
eln(2πeE[x

2
jn|S̄j−1=s̄j−1]

]

≥ 1

2πe
ES̄j−1

[
e2h(xjn|S̄j−1=s̄j−1)

]

= nj,

where the inequality follows from the maximum entropy theorem [4, Theorem

9.4.1]. It follows that a necessary condition for (4.3) to hold is that supj∈N nj < ∞.

We now complete the proof by showing that this necessary condition is violated

whenever (4.5) does not hold. We make use of the following technical lemma

(proved in the Appendix A),

Lemma 4.4.2. For all non-negative random variables Rj, the following inequality

holds

ES̄j |S̄j−1,Rj

[
e2h(xjn|S̄j=s̄j)

]
≥ 1

22nRj
e2h(xjn|S̄j−1=s̄j−1).

First, we show that nj evolves according to a recursive equation. Using

standard properties of entropy [4] (translation invariance, conditional version of
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entropy power inequality), and assumptions A1. and A3., it follows that

ES̄j

[
e2h(x(j+1)n|S̄j=s̄j)

]
=

= ES̄j

[
e2h(λ

nxjn+
∑(j+1)n−1

k=jn λ(j+1)n−1−kvk |S̄j=s̄j)
]

≥ λ2nES̄j

[
e2h(xjn|S̄j=s̄j)

]
+ γ

= λ2nES̄j−1,Rj

[
ES̄j |S̄j−1,Rj

[
e2h(xjn|S̄j=s̄j)

]]
+ γ

≥ λ2nES̄j−1,Rj

[
1

22nRj
e2h(xjn|S̄j−1=s̄j−1)

]
+ γ

= λ2nERj

[
1

22nRj

]
ES̄j−1

[
e2h(xjn|S̄j−1=s̄j−1)

]
+ γ,

wherein the second inequality follows from assumption A3. above, i.e. e2h(vk) >

β. The constant γ is defined as γ :=
∑(j+1)n−1

k=jn λ2[(j+1)n−1−k]β. Finally, the last

inequality follows from Lemma 4.4.2 and the fact that Rj is independent of xjn

and S̄j−1. Thus, using the fact that the rate process is i.i.d., we have

nj+1 ≥ E
[(

λ2

22R

)n]
nj +

γ

2πe
.

Therefore, E
[(

λ2

22R

)n]
≥ 1 implies that supj∈N nj = ∞.

4.4.2 Sufficiency

We first describe the adaptive quantizer that is at the base of the construc-

tive scheme. A fundamental property of this quantizer is then stated as a lemma,

whose proof appears in [16].

Quantizer

The quantizer partitions the real line into non-uniform regions, and a pa-

rameter ρ > 1 determines the speed at which the quantizer range increases. The

quantizer generates 2ν , ν ≥ 0, quantization intervals labeled from left to right by

Iν(0), . . . , Iν(2
ν − 1). Let I0(0) := (−∞,∞), I1(0) := (−∞, 0] and I1(1) := (0,∞).

If ν ≥ 2 the quantization intervals are generated by
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• partitioning the set [−1, 1] into 2ν−1 intervals of equal length,

• partitioning the sets (ρi−2, ρi−1], [−ρi−2,−ρi−1) into 2ν−1−i intervals of equal

length, i ∈ {2, . . . , ν − 1}.

The two open sets (−∞,−ρν−2] and (ρν−2,∞) are respectively the leftmost and

rightmost intervals of the quantizer. Let

• κν(ω) be half-length of interval Iν(ω) for ω ∈ {1, . . . , 2ν − 2}, be equal to

ρν − ρν−1 when ω = 2ν − 1 and equal to −(ρν − ρν−1) when ω = 0.

• qν(x) := ω̄ν(ω) be midpoint of interval x ∈ Iν(ω) for ω ∈ {1, . . . , 2ν − 2}, be
equal to ρν when ω = 2ν − 1 and equal to −ρν when ω = 0.

A property of this construction is that for ν ≥ 2 the quantization intervals

Iν(·) can be generated recursively starting from q2(·). In fact, for any integer i ≥ 2

the quantizer intervals for qi+1(·) are formed by partitioning each bounded interval

Ii(ω) ω ∈ {1, . . . , 2i − 2} into two uniform subintervals, and partitioning the semi-

infinite interval Ii(0) = (−∞,−ρi−2] into two intervals Ii+1(0) = (−∞,−ρ(i+1)−2]

and Ii+1(1) = (−ρ(i+1)−2,−ρi−2] and, similarly, partitioning the semi-infinite in-

terval Ii(2
i − 1) = (ρi−2,∞) into two intervals Ii+1(2

i+1 − 2) = (ρi−2, ρ(i+1)−2] and

Ii+1(2
i+1 − 1) = (ρ(i+1)−2,+∞).

Given a real-valued random variable X , if its realization x is in I(ω) for

some ω ∈ {0, . . . , 2ν − 1}, then the quantizer approximates x with ω̄ν(ω). The

quantization error is not uniform over x ∈ R, but is bounded by κν(ω) for all

ω ∈ {1, . . . , 2ν − 2}. A fundamental property of the quantizer is that the average

quantization error diminishes like the inverse square of the number of levels, 2−2ν .

More precisely, if the (2 + ǫ)-th moment of X is bounded for some ǫ > 0, then an

upper bound of the second moment of the estimation error decays as 2−2ν . The

higher moment of X is useful to bound the estimation error (using Chebyshev’s

inequality) whenX lies in one of the two open intervals (ρν−1,∞) and (−∞,−ρν−1].

Let L ∈ R+ be any random variable, define the functional

Mǫ[X,L] ≡ E[L2 +X2+ǫL−ǫ]. (4.6)
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The functional Mǫ[X,L] is an upper bound to the second moment of X :

E[X2] = E[X2(1|X|≤L + 1|X|>L)] ≤ Mǫ[X,L]. (4.7)

Define the conditional version ofMǫ[X,L] given a random variable R asMǫ[X,L|R]

≡ E[L2+X2+ǫL−ǫ|R]. The fundamental property of the quantizer described above

is given by the following result:

Lemma 4.4.3. [16, Lemma 5.2] Let X and L > 0 and be random variables with

E[X2+ǫ] < ∞ for some ǫ > 0, and n ∈ N. If ρ > 22/ǫ, then for any R ∈ N the

quantization errors X − LqnR(X/L) satisfy

Mǫ[X − LqnR(X/L), LκnR(ω)] ≤
ζ

22nR
Mǫ[X,L],

where ω ∈ {0, . . . , 2nR − 1} is the index of the quantizer level qnR(X/L), and ζ is

a constant greater than 2 determined only by ǫ and ρ.

Next, the coder and decoder are described.

Coder

The first stage of the encoding process consists of computing the linear

minimum variance estimator of the plant state based on the previous measurements

and control sequences. The filter process satisfies a recursive equation of the same

form as (4.4), namely

x̄k+1 = λx̄k + uk + zk, ∀k ∈ N. (4.8)

where zk := (yk− x̄k)lk is the product of the innovation yk− x̄k and the appropriate

optimal gain lk. The (2 + ǫ)-th moment of zk can be shown to be bounded, under

assumption A2., for any finite k. From the orthogonality principle the stability of

x̄ is equivalent to that of x. The output x̄k of the filter (or a function of it) must

be transmitted using the finite number of bits supported on the digital channel.

Coder and decoder share a state estimator x̂k based uniquely on the symbols sent

over the digital link. Since x̂k is available both at the coder and decoder, while
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the minimum variance estimator is available at the coder only, the encoder uses

the quantizer described in the previous section to encode the error between x̄k and

x̂k. The error is scaled by an appropriate coefficient and then recursively encoded

using the quantizer in section 4.4.2. An accurate approximation of the error is

obtained by transmitting the quantization index across many channel blocks. The

fact that the random rate available at future times is not known in advance is not

a problem, as the quantizer is successively refinable and can dynamically adapt to

the rate that is instantaneously supported by the channel. By transmitting for a

large enough number of blocks, the error between the two estimators can be kept

bounded.

Define the coder error at time k ∈ N as fk = x̄k − x̂k. Times k ∈ N are

divided into cycles {jnτ, . . . , (j + 1)nτ}, j ∈ N, of integer duration nτ , τ ∈ Z+.

Notice that each cycle consists of τ channel blocks.

At time k = jnτ , just before the start of the j-th cycle, the coder sets the

quantization rate equal to nRjτ , i.e. the rate in the first channel block in the j-th

cycle, and computes

ω̄nRjτ
(ωjnτ) = qnRjτ

(fjnτ/lj) ,

where lj is a scaling factor updated at the beginning of each cycle. This factor is

used to scale fjnτ close to the origin, where the quantizer provides better estimates.

The index ωjnτ of the quantization level is converted into a string of nRjτ bits

and transmitted using the n channel uses of the jτ -th channel block. Denote by

InRjτ
(ωjnτ) the quantization interval labeled by ωjnτ . After the first n transmissions

in the cycle, coder and decoder agree on the fact that fjnτ/lj ∈ InRjn
(ωjnτ). The

remaining (n − 1)τ transmissions in the cycle are devoted to reducing the size of

the uncertainty interval InRjτ
(ωjnτ).

At time k = jnτ + n, the rate Rjτ+1 supported during the next channel

block becomes known at both coder and decoder. Thus, coder and decoder divide

up InRjτ
(ωjnτ) into 2nRjτ+1 sub-intervals in the manner described above (uniform

partitions of bounded intervals and exponential partition of semi-infinite intervals),

sequentially generating the partitions InRjτ+nRjτ+1
(·) ⊆ InRjτ

(ωjnτ) of the quantizer

qnRjτ+nRjτ+1
(fjnτ/lj).
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Then, the coder sends to the decoder the index of the sub-interval containing

fjnτ/lj . At the end of the second channel block in the cycle, coder and decoder

agree on the fact that fjnτ/lj ∈ InRjτ+nRjτ+1
(ωjnτ+n).

Continue this process until the end of the τ -th channel block. After re-

ceiving the last sequence of bits, the decoder computes the final uncertainty inter-

val Iνj(ω(j+1)nτ−n), corresponding to the uncertainty set formed by the quantizer

qνj (fjnτ/lj), where the random variable

νj := nRjτ + nRjτ+1 + ... + nR(j+1)τ−1

indicates the cumulative number of bits sent in the j-th cycle.

Before the beginning of the (j + 1)-th cycle, the coder updates the state

estimator as follows,

x̂(j+1)nτ = λnτ [x̂jnτ + ljqνj (fjnτ/lj)]+

+

(j+1)nτ−1∑

k=jnτ

λ(j+1)nτ−1−kP x̂k, (4.9)

where

x̂k+1 = (λ+ P )x̂k, ∀k ∈ {jnτ, . . . , j(n+ 1)τ − 2}, (4.10)

and x̂0 = 0. P is the certainty-equivalent control coefficient such that |λ+P | < 1.

Finally, the scaling coefficient lj is updated as follows

lj+1 = max{σ, lj |λ|nτκνj (ω(j+1)nτ−n)}, (4.11)

with l0 = σ and where σ2+ǫ is a uniform bound for the (2 + ǫ)-moment of

gj :=
nτ−1∑

i=1

λnτ−izjnτ+i, j ∈ N. (4.12)
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Decoder

At time k = jnτ coder and decoder are synchronized and have common

knowledge of the state estimator x̂jnτ . During times jnτ, . . . , (j + 1)nτ − 1, the

decoder sends to the plant a certainty-equivalent control signal

uk = P x̂k, ∀k ∈ {jnτ, . . . , (j + 1)nτ − 1}, (4.13)

where x̂k is updated as in (4.10). At the end of the each channel block in the j-th

cycle, the decoder receives estimates of the states in the way described above.

At time (j + 1)nτ − 1, once computed qνj (fjnτ/lj) the decoder updates the

estimator x̂(j+1)nτ using (4.9). Synchronism between coder and decoder is ensured

by the fact that the initial value x̂0 is set equal to zero at both coder and decoder,

and by the fact that the digital link is noiseless.

Analysis

In this section it is shown that the coder-decoder pair described above

ensures that the second moment of x̄ is bounded if (4.5) is satisfied.

The analysis is developed in three steps. First, we show that fk is bounded

for all times k = jnτ , j ∈ N, i.e. the beginning of each cycle. Next, the analysis is

extended to all k ∈ N. Finally, the stability of fk for all k ∈ N is shown to imply

that x̄ (and so x) is bounded.

First we show that the coder error fk is bounded in the mean square sense

for all times k = jnτ , j ∈ N. Instead of looking at E[|fjnτ |2], it is more convenient

to consider the functional Mǫ[X,L] defined in (4.6), with X = fjnτ and L = lj .

Thus, let

θj := Mǫ[fjnτ , lj ] ≡ E[l2j + f 2+ǫ
jnτ l

−ǫ
j ].

Equation (4.7) implies that E[f 2
jnτ ] ≤ θj . Therefore, it suffices to show that

supj∈N θj < ∞.

Substituting (4.13) into (4.8), and iterating over the duration of a cycle, we
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have

x̄(j+1)nτ = λnτ x̄jnτ + gj +

(j+1)nτ−1∑

k=jnτ

λ(j+1)nτ−1−k(P x̂k), (4.14)

where gj is defined in (4.12). Subtracting (4.9) from (4.14), we have

f(j+1)nτ = x̄(j+1)nτ − x̂(j+1)nτ

= λnτ [fjnτ − ljqνj(fjnτ/lj)] + gj .

Notice that, by assumption A2., the (2+ ǫ)-th moment of fjnτ is bounded for any

finite j ∈ N. Next, f(j+1)nτ is used to derive an expression for θj+1. From the

inequality (|x|+ |y|)α ≤ 2α−1(|x|α + |y|α) ∀α > 0, we obtain

f 2+ǫ
(j+1)nτ ≤ φ

(
|λnτ |2+ǫ |fjnτ − ljqνj (fjnτ/lj)|2+ǫ

+g2+ǫ
j

)
,

with φ = 21+ǫ. Dividing by lǫj+1, taking expectations and using (4.11), we have

E[f2+ǫ
(j+1)nτ l−ǫ

j+1]

≤ φ

(
|λnτ |2+ǫE

[
|fjnτ − ljqνj(fjnτ/lj)|2+ǫ

lǫj+1

]
+ E

[
g2+ǫ
j

lǫj+1

])

≤ φ

(
|λnτ |2+ǫE

[
|fjnτ − ljqνj(fjnτ/lj)|2+ǫ

[lj |λnτ |κνj (ω(j+1)nτ−n)]ǫ

]
+ E

[
g2+ǫ
j

σǫ

])

= φ

(
λ2nτE

[
|fjnτ − ljqνj(fjnτ/lj)|2+ǫ

[lj κνj (ω(j+1)nτ−n)]ǫ

]
+ E

[
g2+ǫ
j

σǫ

])
. (4.15)

Next, observe that

E[l2j+1] ≤ σ2 + λ2nτE
[
|ljκνj (ω(j+1)nτ−n)|2

]
. (4.16)
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Summing (4.15) and (4.16), using E[g2+ǫ
j ] ≤ σ2+ǫ and the definition of θj , we have

θj+1 ≤ φ
(
2σ2+

+ λ2nτE

[
|fjnτ − ljqνj(fjnτ/lj)|2+ǫ

[ljκνj (ωj)]ǫ
+ |ljκνj (ωj)|2

])

= φ
(
2σ2+

+ λ2nτEνj

[
Mǫ

[
fjnτ − ljqνj

(
fjnτ
lj

)
, ljκνj (ωj)

∣∣∣∣ νj
]])

≤ φ2σ2 + φλ2nτEνj

[
ζ

22νj
Mǫ [fjnτ , lj ]

]

= φ2σ2 + φζ

(
E

[
λ2n

22nR

])τ

θj ,

where the second inequality follows from Lemma (4.4.3), and the last equality

uses the fact that the rate process is i.i.d. and that fjn and lj are independent of

Rjτ , Rjτ+1, ..., R(j+1)τ−1 because of the causality constraint. Therefore, θj evolves

according to the following recursive equation

θj+1 ≤ φ2σ2 + φζ

(
E

[(
λ2

22R

)n])τ

θj .

It follows that if E
[(

λ2

22R

)n]
< 1, then by making τ sufficiently large we can ensure

that the coefficient of θj is strictly less than 1. Thus we have established that θj

remains bounded in the limit of j going to infinity and therefore supj∈N θj < ∞.

Hence, from (4.7) it follows that supj∈N E[f
2
jnτ ] < ∞.

Next, for any k ∈ {0, . . . , n − 1} the triangle inequality implies |fjn+k| ≤
|λ|k|fjn|+

∑k−1
i=0 |λk−1−iP | |zjn+k|, so the error fk is bounded for all k ∈ N. Finally,

by rewriting (4.8) as x̄k+1 = (λ + P )x̄k − Pfk + zk, the fact that fk and zk are

bounded and that |λ+ P | < 1 ensures that E[x̄2
k] < ∞ for all k ∈ N.

4.5 Vector Systems.

In this section, we consider the case of multi-dimensional unstable linear

systems. A necessary condition for stabilizability is derived using an information-
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theoretic approach. It is proved that the stabilizability region is contained inside a

polytope with a polymatroid structure. A sub-optimal coder-decoder construction

is provided and its optimality is shown in some limiting cases. The main difficulty

in stabilizing a multi-dimensional system over time-varying channels consists of al-

locating optimally the bits to each unstable sub-system. The scheme proposed can

be applied to any rate distribution. For some specific rate distributions, however,

it is possible to design more efficient schemes. We illustrate this point at the end

of this section, studying the specific problem of stabilization over a binary erasure

channel, for which a better scheme is proposed.

4.5.1 Real Jordan form

As usual, it is convenient to put A into real Jordan canonical form [10]

so as to decouple its dynamical modes. Denote the system matrix in real Jordan

canonical form as J. The matrices J and A are related via a similarity matrix T

such that T−1JT = A. Let λ1, . . . , λu ∈ C be the distinct unstable eigenvalues

(if λi is non-real, we exclude from this list the complex conjugates λ∗
i ) of A, and

let mi be the algebraic multiplicity of each λi. The real Jordan canonical form

J then has the block diagonal structure J = diag(J1, . . . ,Ju) ∈ Rd×d, where the

block Ji ∈ Rµi×µi and detJi = λµi

i , with

µi =

{
mi if λi ∈ R
2mi otherwise.

As A is uniquely composed by unstable systems, we have that
∑u

i=1 µi = d. Let

U := [1, . . . , u] denote the index set of unstable systems. Then, the dynamical

system equation can be written as

xk+1 = Jxk +TBuk +Tvk ∈ Rd, yk = CT−1xk +wk ∈ Rp, (4.17)

with xk =
[
x
(1)
k , . . . ,x

(u)T
k

]T
∈ Rd, and where each sub-system x

(i)
k evolves accord-

ing to

x
(i)
k+1 = Jix

(i)
k + (TBuk)

(i) + (Tvk)
(i) ∈ Rµi , i ∈ U .
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As the states of (4.17) and (4.2) are related through the transformation

matrix T, in the following we will assume that the system evolves according to

(4.17).

4.5.2 Necessity

Theorem 4.5.1. Under assumptions A0.-A3. above, necessary condition for sta-

bilizability of the system in (4.17) in the mean square sense (4.3) is that (log2 |λ1|,
. . . , log2 |λu|) ∈ Ru

+ satisfy, for all si ∈ {0, . . . , mi} and i ∈ U ,

∑

i∈U
aisi log2 |λi| < −µ′(s)

2n
log2 E

[
2
− 2n

µ′(s)R
]
, (4.18)

wherein µ′(s) ≡∑i∈U aisi, and ai = 1 if λi ∈ R, and ai = 2 otherwise.

The following example highlights the special geometric structure of the

region defined by (4.18):

Example 4.5.1. Consider a two-mode system with two distinct eigenvalues (λ1, λ2),

where λ1 is complex and has dimensionality m1 = 1 (so µ1 = 2) while λ2 is real and

has dimensionality m2 = µ2 = 1. Suppose that the digital channel in the feedback

link is an erasure channel. Computing the bounds in (4.18) we obtain the following

necessary conditions on (log2 |λ1|, log2 |λ2|) for stabilizability:

2 log2 |λ1| < − 1

n
log2

[
p+ (1− p)2−nr

]
,

log2 |λ2| < − 1

2n
log2

[
p+ (1− p)2−2nr

]
, (4.19)

2 log2 |λ1|+ log2 |λ2| < − 3

2n
log2

[
p+ (1− p)2−2n/3r

]
.

In general, these three bounds define a pentagon in the (log2 |λ1|, log2 |λ2|) domain.

In Figure 4.2 the boundaries of this pentagon are plotted as dashed lines in the case

n = 6, r = 1 and p = 1
3
. In some limiting cases, however, the pentagon reduces

to a square or a triangle. On the one hand, in the limit of r going to infinity the

third constraint in (4.19) becomes inactive and the pentagonal region reduces to

the square determined by the first two inequalities. On the other hand, in the limit
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Figure 4.2: Stabilizability region for the system described in Example 4.5.2.

of p going to zero the only active constraint is the third inequality, and the region

determined by (4.19) is triangular.

Proof. Consider the system in (4.17). Notice that each block Ji has an invariant

real subspace of dimension aisi, for any si ∈ {0, . . . , mi}. Consider the subspace

A formed by taking the product of any of the invariant real subspaces for each

real Jordan block. The total dimension of A is µ′(s) =
∑u

i=1 aisi, for some si ∈
{0, . . . , mi}. Denote by S = {e1, . . . , en} ⊆ {1, 2, . . . , d} the index set of the

components of x belonging to A.

Suppose that a genie helps the decoder by stabilizing all the unstable states

that are not in A. Thus, stack the remaining unstable subsystem states to con-

struct a new state xS
k ∈ Rµ′(s).

xS
k =

[
x
(e1)T
k , . . . ,x

(en)T
k

]T
:= Rxk ∈ Rµ′(s).

where R is some transformation matrix. Observe that xS
k evolves as follows

xS
k+1 = JSxS

k +RTuk +Rvk, where detJS =
∏

i∈S
λaisi
i .
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In order to prove the statement, we find a lower bound for E
[
‖ xS

k ‖2
]
, and show

that (4.18) is a necessary condition for the lower bound to be finite. As in Theorem

4.4.1, the lower bound is given by nS
j = 1

2πe
ES̄k−1

0

[
e

2
µ′(s)h(x

S
k |S̄

k−1
0 =s̄k−1

0 )
]
.

Proceeding as in Theorem 4.4.1, one can derive a recursive formula for nS
j

of the form

nS
j+1 ≥ E

[
| detJS|

2n
µ′(s)

2
2n

µ′(s)R

]
nS
j + γS.

for some constant γS < ∞. Therefore,
∣∣∏

i∈S |λi|aisi
∣∣ 2n
µ′(s) E

[
2
− 2n

µS
R
]
≥ 1 implies

that supj∈N n
S
j = ∞.

The region determined in Theorem 4.5.1 has a special combinatorial struc-

ture. The polytope (4.18) is defined by the set function f(S) := − |S|
2n

log2 E[2
−2n/|S|R],

∀S ⊂ E := {1, . . . , d}. It is shown in the following proposition, proved in the Ap-

pendix, that this set function defines a polymatroid.

Proposition 4.5.2. The polytope defined by (4.18) is a polymatroid.

Remarks:

1. When the rate process is constant, the constraints in (4.18) reduce to the

well known condition [16],[21]

∑

|ηi|≥1

log2 |ηi| ≡
∑

i∈U
µi log2 |λi| < R,

and the stabilizability is contained in the region in the positive orthant

strictly inside the hyperplane
∑

i∈U µi log2 |λi| = R.
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2. Notice that the right hand side of (4.18) can be rewritten as

− µ′(s)

2n
log2 2

− 2n
µ′(s) rminE

[
2
− 2n

µ′(s) (R−rmin)
]

= rmin −
µ′(s)

2n
log2 E

[
2
− 2n

µ′(s) (R−rmin)
]

→ rmin

as n → ∞. Thus, in the limit of n going to infinity, (4.18) reduce to

∑

i∈U
µi log2 |λi| < rmin, (4.20)

and the stabilizability region is determined uniquely by rmin. The intuitive

justification of this latter fact is that the digital link supports the same rate

for an arbitrarily long time interval, so stability has to be guaranteed under

the worst possible rate. In the limit, stabilization is not possible for those

channels where rmin = 0 (e.g. erasure channels).

3. In an erasure channel, for a fixed n, as r goes to infinity the stabilizability

reduces to the n-dimensional cube described by

log2 |λi| <
1

2n
log2

1

p
∀i ∈ U . (4.21)

In other words, the system in (4.17) cannot be stabilized if the erasure prob-

ability is such that

p ≥ 1

maxi∈U λ2n
i

,

In the case n = 1, this is the same condition derived in [9] in the context of

the LQG problem with erasures.

4.5.3 Sufficiency

We now present a sufficient condition for mean-square stabilizability of the

multi-dimensional system (4.17). The scheme is based on the adaptive quantizer

introduced in section 4.4.2. We introduce a rate allocation vector which indicates
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what fraction of the available rate is allocated to each unstable sub-system.

Theorem 4.5.3. Under assumptions A0.-A3. above, sufficient condition for sta-

bilizability of the system in (4.17) in the mean square sense (4.3) is that (log2 |λ1|,
. . . , log2 |λu|) ∈ Ru

+ are inside the convex hull of the region determined by

log2 |λi| < − 1

2n
log2 E

[
2
− 2n

µi
αi(R)R

]
, ∀i ∈ U , (4.22)

for some rate allocation vector ααα(R) := [α1(R), . . . , αu(R)]T satisfying





αi(r) ∈ [0, 1]

1
µi

αi(r) nr ∈ N
∑u

i=1 αi(r) ≤ 1

, ∀r ∈ R \ {0}, i ∈ U . (4.23)

Suppose that transmission of r bits per channel use is supported on the

digital link in a given block. The rate allocation vector ααα(r) indicates what fraction

of the total nr bits transmitted in a block is allocated to each sub-system. All µi

modes in the i-th sub-system are quantized using αi(r)nr
µi

bits. Condition (4.23)

requires that αi(r)nr
µi

is an integer number for all i ∈ U , and that the total number

of bits used in each block should not exceed nr. Such conditions define finitely

many rate allocation vectors, and for each allocation vector (4.22) defines a cube

in the space of (log2 |λ1|, · · · , log2 |λu|). By using a time-sharing protocol among

different rate allocation vectors it is possible to stabilize those points inside the

convex hull of the union of such cubes. Before looking at the proof of the Theorem,

consider the following Example:

Example 4.5.2. Consider the system in Example 4.5.1 and assume that n = 6 and

r = 1. Under this channel model, (4.23) defines four allocations vectors, namely

α1(1) = 1− α2(1) =
j
6
, j ∈ {0, 2, 4, 6}. For each allocation vector, (4.22) defines a

cube in the space of (log2 |λ1|, log2 |λ2|), and the stability region defined by Theorem

4.5.3 is the convex hull of the union of such cubes. Figure 4.2 shows the boundaries

of the achievable stabilizability region in the case p = 1
3
: vertexes of the cube defined

by (4.22) are represented as dots, while the solid lines show the convex hull of the
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union of such cubes. Notice that the outer bounds defined by (4.19) are achieved in

three points, two of which lie on the two axis and correspond to the case where only

one of the two sub-systems is unstable. In these cases the optimal rate allocation

consists of allocating all the available bits to the unstable mode. The third optimal

point corresponds to the case where the two eigenvalues have the same magnitude,

i.e. |λ1| = |λ2|, and the optimal allocation in this case is to allocate one bit to

each unstable mode. We will see that a protocol that time-shares among these three

points is optimal in the limit r → ∞.

Proof. The proof is divided into two parts. First it is shown that the linear dynam-

ical system in (4.17) is stabilizable if (4.22) holds for some rate allocation vector

ααα(R) satisfying (4.23). Second it is shown that, by using a time-sharing protocol,

all the points in the convex hull can be stabilized.

The coder computes a minimum variance estimator x̄(i,h) for the h-th com-

ponent of the i-th unstable mode, h ∈ {1, . . . , µi} and i ∈ U . Similarly, coder

and decoder compute an estimator x̂(i,h). Define f
(i,h)
k = x̄

(i,h)
k − x̂

(i,h)
k as the er-

ror between these two estimators at time k. Let the stacked vector of unstable

subsystems errors be fk = x̂k − x̄k.

Suppose that coder and decoder agree, ahead of time, on some rate alloca-

tion ααα(R) satisfying (4.23). As in the case of a scalar system, divide times k ∈ N
into cycles of integer duration nτ , τ ∈ Z+. Let

R
(i)
k :=

αi(Rk)Rk

µi
∈ N, i ∈ U , k ∈ N,

denote the number of bits allocated to the transmission of f
(i,h)
k during the k-th

channel block. By (4.23),
∑

i∈U µinR
(i)
k ≤ nRk ∀k ∈ N.

Therefore, at time k = jnτ , the coder computes, for all h ∈ {1, . . . , µi} and

for all i ∈ U ,
ω̄
nR

(i)
jτ
(ω

(i,h)
jnτ ) = q

nR
(i)
jτ

(
f
(i,h)
jnτ /lj

)
.
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The scaling factor lj is updated at the beginning of each cycle as follows,

lj+1 = max
h∈[1,...,µi]

i∈U

{σ, lj|λi|nτκν
(i)
j
(ω

(i,h)
(j+1)nτ−n)},

where the random variable

ν
(i)
j =

τ−1∑

k=0

nR
(i)
jτ+k

indicates the cumulative number of bits allocated to the i-th sub-system during

the j-th cycle, and where l0 = σ and σ2+ǫ is a uniform bound on the (2 + ǫ)-

moment of gj :=
∑nτ−1

i=0 Jnτ−1−izjnτ+i, j ∈ N. After the first block in the cycle,

the decoder identifies an uncertainty interval I
nR

(i)
jτ
(ω

(i,h)
jnτ ) for each unstable sub-

system. The remaining (n−1)τ transmissions in the cycle are devoted to reducing

the size of the uncertainty interval. After receiving the last R
(i)
(j+1)τ−1 bits, the

decoder can compute the final uncertainty interval I
ν
(i)
j
(ω

(i,h)
(j+1)nτ−n), corresponding

to the uncertainty set formed by the quantizer q
ν
(i)
j
(f

(i,h)/lj
jnτ ). For each unstable

subsystem, the decoder sends to the plant a certainty-equivalent control signal

uk = P x̂k where as in (4.13).

Let θj := Mǫ[‖ fjnτ ‖, lj]. Proceeding along the same lines as in the scalar

case, it can be shown that θj evolves according to the following recursive equation,

θj+1 ≤ 2φσ2 + φ
∑

i∈U
µi|nτµi−1|2+ǫζ

(
E

[
λ2n
i

22nαi(R)R/µi

])τ

θj.

Hence, if (4.22) is satisfied, by choosing a τ sufficiently large, the coefficient of

θj can be made strictly less than 1. Therefore, the recursion above is stable and

yields uniformly bounded θj . The same argument used for the scalar case applies

sic et simpliciter and it is now straightforward to show that the system is second

moment stable.

It remains to show that, by time-sharing, all the points in the convex hull

can be stabilized. Since the union of finite cubes in Ru is a connected compact set,

by the Fenchel-Eggleston theorem [8, Theorem 18] each point in its convex closure

can be represented as a convex combination of at most u points in the union, and

thus each point is in the convex closure of the union of no more than u cubes
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in (4.22). Given u rate allocation vectors ααα(l)(R), l = 1, · · · , u, satisfying (4.23),

and any γl ∈ [0, 1] such that
∑u

l=1 γl = 1, it suffices to construct a scheme that

stabilizes all modes (log2 |λ1|, . . . , log2 |λu|) inside the region

log2 |λi| < −
u∑

l=1

γl
2n

log2 E
[
2−2nα

(l)
i (R)R/µi

]
,∀i ∈ U . (4.24)

Divide times k ∈ N into cycles of duration τn, in such a way that γlτn ∈ N for

l = 1, · · · , u. During a fraction γl of the cycle allocate bits utilizing rate allocation

vector ααα(l)(R). Repeating the analysis above, it can be proved that the crucial

recursion for θj evolves as follows:

θj+1 ≤ 2φσ2 + φ
∑

i∈U
µi|nτµi−1|2+ǫζ×

(
λ2n
i

u∏

l=1

E

[
1

22nα
(l)
i (R)R/µi

]γl)τ

θj .

If (4.24) holds, we can choose τ large enough to make the recursion stable. There-

fore, (4.24) are sufficient conditions for stabilizability.

Remarks:

1. If rn
d
∈ N for all r ∈ R, then the rate allocation αi(r) =

µi

d
∀r ∈ R \ {0} is

optimal when λ := λ1 = . . . = λu. In fact, from (4.22) sufficient condition

for stabilizability is that

log2 |λ| < − 1

2n
log2 E

[
2−

2n
d
R
]
.

On the other hand, this condition is also necessary, as we can see from (4.18)

by letting si = mi for all i ∈ U . For example, in Example 4.5.2 we have that

nr
d
= 2, so the rate allocation ααα = (2/3, 1/3) is optimal (See Figure 4.2).

2. The scheme in Theorem 4.5.3 is optimal in the limit of n going to infinity,

and the optimal coding scheme consists of a time-sharing protocol among

the rate allocations ααα(i)(R) = eeei for all i ∈ U , where {eeei}di=1 are the canonical

basis vectors of Rd .
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3. In an erasure channel, for a fixed n, as r goes to infinity the proposed achiev-

able scheme is asymptotically optimal. The stabilizability region is given

by the cube (4.21), and the optimal coding scheme consists of time-sharing

among the rate distributions ααα(i)(r) = eeei for all i ∈ U and the allocation

given in Remark 1., i.e. α
(u+1)
i (r) = µi

d
.

4. When the rate process is constant, Nair and Evans [16] showed that the

necessary and sufficient conditions coincide. Once again, the optimal cod-

ing scheme consists of a time-sharing protocol among the rate distributions

ααα(i)(R) = eeei for all i ∈ U .

5. A more general scheme is easily derived by allowing the rates allocated to each

component of the same sub-system to be different. For ease of exposition, in

Theorem 4.5.3 we assumed these rates to be equal.

4.5.4 Binary Erasure Channel

The stabilizing scheme proposed in the previous section provides an achiev-

ability result for stabilization over time-varying channels, and is optimal is some

limiting cases. However, the scheme is not optimal in general. In this section, we

improve the stabilizability region defined by Theorem 4.5.3 in the specific case of

stabilization over a binary erasure channel. Before stating the result, we outline

the main difference between the coding scheme used in this section and the con-

struction in Theorem 4.5.3. In Theorem 4.5.3 time is divided into slots of fixed

duration, and system state observations are quantized using a random number of

bits dependent on the realization of the rate process. In this section, instead, we

present a coder/decoder construction which is based on an alternative approach:

state observations are quantized using a fixed number of bits per unstable mode;

in turn, these are transmitted to the decoder over a random number of discrete

time units which depends on the realization of the rate process. Based on this

approach, it is possible to enlarge the set of feasible rate allocation vectors and, as

a consequence, the stabilizability region. In this section, the following simplifying

assumptions are made:
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A4. The decoder has access to state feedback, i.e. in (4.2) we have that C = I

and wk = 0 for all k ∈ N.

A5. ∃W < ∞ such that |v(i)
k | ≤ W uniformly in k ∈ N, and x0 ∈

[
−1

2
; 1
2

]d
.

A6. The feedback digital link is a binary erasure channel, and the block length

is n = 1.

We have the following proposition:

Proposition 4.5.4. Under assumptions A0.-A6. above, sufficient condition for

stabilizability of the system in (4.2) in the mean square sense (4.3) is that (log2 |λ1|,
. . . , log2 |λu|)Ru

+ are inside the convex region determined by

log2 |λi| < −1

2
log2 E

[
2
2
αi
µi

R
]
, i ∈ U , (4.25)

for some rate allocation vector ααα := [α1, . . . , αu] such that,

{
αi ∈ [0, 1] ∩Q, ∀i ∈ U ,
∑u

i=1 αi ≤ 1.
(4.26)

Comparing (4.23) and (4.26), notice that while in Theorem 4.5.3 only a

finite number of rate allocation vectors satisfy (4.23), the region defined by Propo-

sition 4.5.4 is given by the union of a countable number of u-dimensional cubes,

each of which is defined by (4.25) for some rate allocation vector satisfying (4.26).

We also notice that the stabilizability region defined by Proposition 4.5.4 is convex,

so a time-sharing protocol among different rate allocation policies is not required.

Example 4.5.3. Consider a system with two distinct modes of dimensionality

one, having unstable real eigenvalues λ1 and λ2, respectively. Figure 4.3 shows

the achievable stabilizability region under this channel model, assuming p = 2/3.

The boundaries of the region defined by Proposition 4.5.4 are represented as a solid

curve, and each point on this curve is obtained by (4.25) for some choice of the rate

allocation vector. The region in Theorem 4.5.3 is delimited by a dotted line, which
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Figure 4.3: Stabilizability region for the system described in Example 4.5.3.

represents the convex combination of two points (bold dots), obtained by (4.23)

with ααα(1) = [1, 0] and ααα(1) = [0, 1]. Finally, the necessary conditions derived in

Theorem 4.5.1 define a pentagon that is delimited by a dashed line. The region in

Proposition 4.5.4 is optimal at the intersections with the two axis and at one point

on the bisectrix |λ1| = |λ2|.

Proof. Fix an ααα ∈ [0, 1]u satisfying (4.26) andm ∈ Z+ such that αim/µi ∈ N for all

i. A renewal process {tk}∞k=1 determines the times at which the encoder quantizes

the state observations. The random interarrival times of this renewal process are

denoted by the sequence {τk}∞k=1, such that tk = τ1 + · · ·+ τk for all k ∈ N.
The stability in the mean square sense of the system in (4.2) is proved by

showing that for each unstable sub-system x(i,h), h ∈ [0, . . . , µi] and i ∈ U , there
exists a mean square stable sequence {z(i,h)k }∞k=0 such that |x(i,h)

tk
| ≤ z

(i,h)
k , for all

k ∈ N. We define {z(i,h)k }∞k=0 recursively as follows:

{
z
(i,h)
1 = 1 +W

z
(i,h)
k+1 = |λi|τk

2αim/µi
z
(i,h)
k + η,

(4.27)

where η = W
1−|λi| if |λi| > 1 and η = τkW if |λi| = 1. At the random time tk, the

encoder partitions the interval [−z
(i,h)
k ; +z

(i,h)
k ] into 2αim/µi uniform intervals, and
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computes x̂
(i,h)
tk

as the center of the interval containing x
(i,h)
tk

. By construction, the

approximation error satisfies

|x(i,h)
tk

− x̂
(i,h)
tk

| ≤ z
(i,h)
k

2αim/µi
. (4.28)

The time required for transmission of the cumulative m bits describing the quan-

tized source symbols from coder to decoder is denoted by the interarrival time τk.

We define τ := inf
{
k :
∑k

l=1Rl = m
}

as the time of the m-th ‘success’ in the

Bernoulli process {Ri}∞i=1; for any p > 0, we have that Pr(τ < ∞) = 1, and τ has

negative binomial distribution with parameters m and p. The interarrival times

{τk}∞k=1 are independent non-negative random variables, identically distributed as

τ .

At time tk+1 = tk + τk , upon reception of the m binary source symbols the

decoder computes the control signal

u
(i,h)
tk+1

= −λτk
i x̂

(i,h)
tk

. (4.29)

Making use of (4.27), (4.28) and (4.29), we have the following chain of inequalities,

|x(i,h)
tk+1

| ≤ |λτk
i x

(i,h)
tk

+ u
(i,h)
tk+1

|+
τk−1∑

j=0

|λi|τk−1−j|vtk+j|,

≤ |λi|τk |x(i,h)
tk

− x̂
(i,h)
tk

|+ η,

≤ z
(i,h)
k+1 . (4.30)

From (4.30) and proceeding by induction, it follows that |x(i,h)
tk

| ≤ z
(i,h)
k , for all k ∈

N. Next, we show that (4.25) is a sufficient condition for the sequence {z(i,h)k }∞k=0

to be mean square stable, i.e. supk∈N E[|z(i,h)k |2] < ∞, for all h ∈ [0, . . . , µi] and

i ∈ U . From (4.27) and the triangle inequality, it follows that

(
E
[
|z(i,h)k+1 |2

]) 1
2 ≤

(
E

[
λ2τk
i

22αim/µi

]) 1
2 (
E|z(i,h)k |2

) 1
2
+

+
(
E
[
|η|2
]) 1

2 , ∀i ∈ U , (4.31)
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wherein E [|η|2] < ∞ as E [τ 2] = n(1−p)
p2

< ∞ for all p ∈ (0, 1). By writing explicitly

the expectations in (4.25), we obtain that

λ2
i

[ p

22αi/µi
+ (1− p)

]
< 1, ∀i ∈ U . (4.32)

Making use of (4.32) simple algebra shows that

E

[
λ2τk
i

22αim/µi

]
=

(
1

22αi/µi

p|λi|2
1− (1− p)eit

)m

< 1, ∀i ∈ U . (4.33)

From (4.33) it follows that the recursive formula in (4.31) is stable. Therefore,

(4.25) is a sufficient condition to ensure supk E[|z(i,h)k |2] < ∞.

Finally, the convexity of the region described by (4.25) follows from Jensen’s

inequality applied to the concave function φ(x) = −1
2
log2 ((1− p) + p 2−2x).

4.6 Conclusion

Motivated by control problems over time-varying channels, we considered

mean square stabilizability of a discrete-time, linear system with a noise free time-

varying digital communication link. Process and observation disturbances were

allowed to occur over an unbounded support. Necessary conditions were derived

employing information-theoretic techniques, while a stabilization scheme based on

an adaptive successively refinable quantizer was constructed. In the scalar case,

this scheme was shown to be optimal. Furthermore, we have shown that in the

vector case the necessary condition for stabilization has an interesting polyma-

troid structure, and have proposed a stabilization scheme that is optimal in some

limiting regimes. An additional contribution is that we bridged the information-

theoretic results of stabilization over rate limited channels, with the corresponding

network-theoretic ones on critical dropout probabilities in systems with unbounded

disturbances. We have done so by recovering the latter results as a special case of

our analysis.

Chapter 4, in part, is a reprint of the material as it appears in P. Minero,

M. Franceschetti, S. Dey and G. N. Nair, “Data Rate Theorem for Stabilization
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Over Time-Varying Feedback Channels,” IEEE Trans. on Automatic Control, vol

54, no. 2, pp. 243-255, February 2009. The dissertation author was the primary

investigator and author of this paper.

4.7 Appendix

4.7.1 Proof of Lemma 4.4.2

Proof. First, observe that the following chain of inequalities holds:

ES̄j |S̄j−1,Rj
h(xjn|S̄j−1 = s̄j−1, S̄j = s̄j , Rj)

= h(xjn, S̄j|S̄j−1 = s̄j−1, Rj)−H(S̄j|S̄j−1 = s̄j−1, Rj)

≥ h(xjn|S̄j−1 = s̄j−1, Rj)−H(S̄j|S̄j−1 = s̄j−1, Rj)

≥ h(xjn|S̄j−1 = s̄j−1, Rj)− ln 2nRj

= h(xjn|S̄j−1 = s̄j−1)− ln 2nRj , (4.34)

where h(x,A|B) with A discrete denotes −E[ln(pA|Bfx|A,B)]. The last inequality

follows from the fact that, given Rj , the cardinality of {Sjn, . . . , S(j+1)n−1} is 2nRj ,

and where the last equality follows from the fact that xjn → S̄j−1 → Rj is a

Markov chain. Then,

ES̄j |S̄j−1,Rj
e2h(xjn|S̄j=s̄j)

≥ ES̄j |S̄j−1,Rj
e2h(xjn|S̄j−1=s̄j−1,S̄j=s̄j ,Rj)

≥ e
2ES̄j |S̄j−1,Rj

h(xjn|S̄j−1=s̄j−1,S̄j=s̄j ,Rj)

≥ e2[h(xjn|S̄j−1=s̄j−1)−ln 2nRj ]

=
1

22nRj
e2h(xjn|S̄j−1=s̄j−1),

where the first inequality follows from the fact that conditioning reduces the en-

tropy; the second inequality follows from Jensen’s inequality; finally, (4.34) implies

the third inequality.



132

4.7.2 Proof of Proposition 4.5.2

Proof. Let E = {1, . . . , d} and f(S) = − log2
(
E
[
(2−R)2n/|S|

])|S|/2n
1|S|>0 = − log ‖

2−R ‖ 2n
|S|

1|S|>0 .

Following the definition in [6], in order for the polytope

B(f) :=
{
(x1, . . . , xu) :

∑

i∈S
xi ≤ f(S) ∀S ⊂ E, xi ≥ 0 ∀i

}

to be a polymatroid, we need to show the following properties:

1. f(∅) = 0: this is immediate from the definition of f(·).

2. f(S) ≤ f(T ) if S ⊂ T : this follows from the fact that ‖ X ‖ 1
m
≤‖ X ‖ 1

n
if

n ≤ m.

3. f(S) + f(T ) ≥ f(S ∪ T ) + f(S ∩ T ): this can be proved as follows. Note

that f(S) is a function only of |S|, i.e. f(S) := g(|S|). W.l.o.g., assume that

j := |S| ≤ |T | =: k. Let i := |S|−|S∩T | and note that this is never negative.

Further note that |S∪T | = |S|+ |T |−|S∩T | = k+i. The desired property is

then that g(j)−g(j−i) ≥ g(k+i)−g(k) for all integers i ≤ j ≤ k. Now, from

the fundamental theorem of calculus ∃a ∈ [j− i, j]∩R and ∃b ∈ [k, k+ i]∩R
such that g(j)−g(j−i) = g′(a)i and g(k+i)−g(k) = g′(b)i. Thus proving the

desired inequality is equivalent to proving that g′(a) ≥ g′(b) for all 0 < a ≤ b.

On the other hand, this inequality follows from the concavity of the function

g(x) for x > 0.
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