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This book is about random network models and how local connectivity properties give
rise to large-scale properties which emerge as the network grows in size.

The study of emergent properties of evolving, random structures, with the most
prominent being random graphs, has been the focus of many researchers coming from
widely diverse disciplines which include physics, mathematics, computer science as well
as social sciences.

The core idea behind all these studies is that a simple local connectivity rule that
defines how two elements of the structure interact with each other can give rise to
more complex connectivity properties that hold globally on the structure and manifest
themselves (emerge) as the structure’s size increases.

Moreover, it appears that there is some critical point, or threshold value, for the
local connectivity rule such that the properties emerge suddenly from non-existent
to existent, when the rule crosses this point. These emergent properties are, then,
aptly called threshold properties. The book is focused on the study of two elementary
combinatorial structures which are rich in properties and modeling power, the random
tree and the random grid. In the random tree model, we have a tree composed of an
infinite number of vertices each having k children, with k > 0. Also, a probability value
p is fixed and then each edge of the tree appears in the tree, independently of the others,
with probability p. In the random grid model, the nodes are positioned on the points of
Z2.

These models are in contrast with the classical Erdős-Rényi random graph models in
that in these models adjacency between two vertices is defined by “physical proximity”
while in the latter adjacency can be potentially appear between any pair of vertices
(see the excellent book [B. Bollobás, Random graphs, Second edition, Cambridge Univ.
Press, Cambridge, 2001; MR1864966] for a comprehensive, highly rigorous and deep
treatment of the properties of these random graph models).

In Chapter 1 the authors provide concise and very intuitive descriptions of the random
network models that they will study in the book, hinting, at the same time, at possible
application domains for each of them with regard to real network architectures. More
specifically, the authors define the random tree and the discrete random grid models,
describing some of their basic properties. Moreover, the authors define a very important
continuous variant of the discrete random grid model based on a Poisson point process
on the plane. This process first generates the grid’s vertices on the plane. Now the grid
is no longer a regular structure like Z2, on which the discrete random grid is based.
This non-regularity property renders this continuous model a more suitable choice for
modeling, e.g., mobile ad hoc communication networks. Now, given a placement of
points on the plane according to the Poisson process, the connectivity between the
points can be described in a variety of ways, based on the proximity between the points.
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These ways of defining connectivity give rise to various interesting, “geometric” random
networks with different properties and modeling capabilities:

• Nearest Neighbor Networks: Points are first generated according to a Poisson
process on the unit square. Then each point is connected to the k points that are
closest to it according to Euclidean distance. Notice that changing the density
parameter of the Poisson process generating the points does not change the
topology of the network that results from the application of the Nearest Neighbor
rule (only a scaling occurs).
• Poisson random connection model, denoted by (X,λ, g): We are given a Poisson

point process X of density λ > 0 on the plane, and a connectivity function g:R2→
[0, 1] with the property 0 <

∫
R2 g(x)dx <∞. Then two points created by X are

connected with probability g(x−y), independently of all other pairs. The function
g is assumed to be non-increasing and to depend only on the Euclidean norm
|x− y| between the points x and y. Note that, in contrast to the Nearest Neighbor
Network, this model is sensitive to scale changes due to the fact that g actually
depends on the Euclidean distance between two points.
• The Boolean model: Given a real number r > 0, we may define a variant of the

Poisson random connection model by setting g(x) = 1 if |x| ≤ 2r and g(x) = 0
otherwise. In other words, we place discs of radius r centered on the Poisson
process points and then draw an edge between two points if their discs have points
in common.
• Interference limited network: We consider, again, a Poisson process X that gen-

erates the network points. Let xi and xj be two of these points and assume that
xi needs to communicate some information to xj . Ideally, only xi’s signal would
be active, while xi is transmitting the information. However, some of the other
nodes may also be active, creating a cumulative interference signal on the signal
transmitted by xi to xj .

The strength of this interference is proportional to γ
∑

k 6=i,j Pl(xk, xj), with γ >
0 being a weighting factor depending on the anti-interference technology adopted
by the network. Given this interference measure, we may define the Signal to Noise
plus Interference Ratio (SNIR) as

SNIR =
Pl(xi, xj)

N + γ
∑

k 6=i,j Pl(xk, xj)

and assume that xi may reliably relay the information to xj only if SNIR> T , for
a predetermined threshold value T > 0. This fact is denoted by inserting an edge
between xi and xj .
• Information-theoretic networks: The points of this model are, again, generated by

a Poisson process. However, all pairs of points are connected by edges; i.e., they
form a complete graph. On each edge, a weight is computed that is proportional
to the quantity of information that can be transmitted along this edge. According
to Information Theory, this quantity (information rate), in bits, is given by

R= log2

(
1 +

Pl(xi, xj)

N

)
bits per second.

We can also take into account interference from other network nodes, by treating
it as another noise term added to N :

R= log2

(
1 +

Pl(xi, xj)

N +
∑

k 6=i,j Pl(xk, xj)

)
bits per second.



Having provided the definitions and basic properties of random network models
in a well-written and very readable chapter, the authors continue (in the same clear
exposition style) in Chapter 2 with the study of phase transitions. The concept of a phase
transition is central to many scientific disciplines, including physics, mathematics and
theoretical computer science. A phase transition is a phenomenon whereby a property
of a system under observation undergoes an abrupt change, manifested asymptotically
as the system grows (i.e. the number of nodes in a network tends to infinity), whenever
a number of conditions are satisfied (e.g., the probability of existence of an edge lies
within a specific range).

In physics, for instance, we have the sudden appearance of magnetization in idealized
2-dimensional (grid) spin system models whenever the system temperature, starting
from a high value (which implies spin disorder), crosses a critical temperature, called
the Curie temperature, inducing, slowly, spin alignment and thus magnetization.

In the domain of mathematics, we have the transition of the probability of a randomly
generated graph being colourable with three colours (i.e. vertices can be assigned one of
three available colours so that adjacent vertices are coloured differently) from 1 to 0 as
the edge-to-vertex ratio crosses a certain region.

In theoretical computer science, we have the abrupt transition of the probability that
a randomly generated formula in Conjunctive Normal Form (CNF) with clauses of 3
literals (called the 3-SAT formula) is satisfiable from 1 to 0, if the clause-to-variable
ratio crosses a certain region.

In Chapter 2 the authors investigate a similar threshold behaviour of the random
network models they consider with regard to the percolation property. The authors
consider infinite networks on the plane, i.e., networks with infinite number of points,
which are generated by a Poisson process or are fixed to be the Z2 points (regular
grid). The percolation property in such an infinite network refers to the formation of
an infinite cluster of points such that any two pairs of points can find a communication
path between them. In other words, percolation means the emergence of an infinite,
connected, point structure.

It is very reasonable, of course, to assume that the probability of an edge, p, plays a
crucial role in the percolation process. If, for instance, p is close to 0, then we expect
the formation of numerous small clusters (i.e. of finite size). As p is allowed to increase
towards 1, then we expect that these small clusters will start to coalesce and, at some
value of p, form the required infinite cluster, giving rise to the emergence of percolation.
In Chapter 2 the authors also provide, in a clear expository style, the mathematical
analysis that establishes the conditions under which percolation emerges in the random
network models defined in Chapter 1. In all cases, the authors provide conditions for
the defining parameters of each model that mark a threshold point, through which the
phase transition from a non-percolation to a percolation state occurs.

In Chapter 3 the authors shift their attention to finite networks and how their
behaviour evolves when their defining parameters cross the threshold point. The authors
focus on the random grid network, the Boolean random network and the nearest neighbor
network.

They examine the networks with regard to the property of full connectivity, i.e. the
existence of a component joining all points of the network.

In order to study its asymptotic behaviour, they start by defining a finite network
along with a number of random variables of interest that depend on a network size
parameter n. Then n is allowed to tend to infinity and various asymptotic results are
derived for the defined random variables. One of the most important contributions of
this chapter to the reader is the excellent introduction to the important Chen-Stein
method for showing that, asymptotically, a sequence of random variables depending on



an asymptotic parameter (n in our case) has Poisson behaviour. If the random variable
of interest can be written as a sum of n independent low probability indicator random
variables, then convergence to a Poisson random variable is easy to obtain.

If, however, the indicator random variables are dependent, but not to a high extent,
then the Chen-Stein method can still be used to show convergence to a Poisson random
variable in the limit. The authors apply the Chen-Stein method in a detailed way,
with easy-to-understand steps, so its applicability to other, similar settings becomes
evident in the end. The authors conclude this chapter with an interesting extension
of their results for networks whose nodes have lifetime variation, i.e., they cease to
be functional after some time. This variation is modeled as a random variable with
known distribution. This model is important for real-life networks, especially mobile
ad hoc ones, since nodes tend to fail after some time and one needs to ascertain that
the network still has the desired full connectivity property, under some appropriate
conditions on the behaviour of the network as well as the random variable that models
a node’s lifetime.

In Chapter 4 the authors continue along the lines set in Chapter 3, i.e., they study
connectivity properties of finite graph models and investigate the behaviour of random
graph models with regard to the regions where the defining parameter (i.e. probability
that an edge exists) is above the critical value, called the supercritical region, as well as
below this value, called the subcritical region. More specifically, the authors show, rather
surprisingly, that in the supercritical region there is, asymptotically, almost certainly a
single infinite cluster of vertices. Moreover, as the probability of the existence between
two nodes increases above the critical value, many disjoint paths appear between pairs
of nodes. On the contrary, in the subcritical region there is no infinite cluster, almost
certainly, and the network consists of numerous components of finite size.

The authors also consider the property of having many paths that connect pairs of
nodes from opposite sides of a square centered on the origin of the grid.

One of the most important contributions of the chapter, however, lies near its end.
The authors cite an important result, not usually cited in classical random graph books
and technical expositions: Russo’s approximate zero-one law. Zero-one, or 0-1, laws
are a widely studied subject in Mathematics and Theoretical Computer Science. A
landmark result in this area is the important theorem of R. Fagin [see J. Symbolic
Logic 41 (1976), no. 1, 50–58; MR0476480], who showed that in the classical Erdős-
Rényi random graph model with edge probability 0.5 (actually, any constant probability
would do), properties expressible in the first-order language of graphs obey a 0-1 law.

The first-order language of graph uses first-order logic statements to describe graph
properties. It uses the existential and universal quantifiers, the logical connectives and
one predicate symbol to indicate the existence of an edge. It can describe a rich set of
graph properties, but some properties escape its expressive power (see [J. H. Spencer,
The strange logic of random graphs, Springer, Berlin, 2001; MR1847951] for a good
exposition of the details).

If a property is 0-1, then as the graph grows to infinity the property holds either with
probability tending to 1 or with probability tending to 0. No other value is possible.
Fagin’s proof was later generalized to the so-called extension theorem, which provides
a general condition under which a random graph model has a 0-1 law behaviour for
properties expressible in the first-order language of graphs (see [J. H. Spencer, op. cit.]
for an excellent introduction to 0-1 laws and conditions for their existence).

Furthermore, properties that are not expressible in the first order language and require
the use of a higher order logic fragment do not, necessarily, display a 0-1 behaviour.
This depends on the logic fragment into which the property is cast (see [J.-M. Le Bars,
Bull. Symbolic Logic 6 (2000), no. 1, 67–82; MR1791876] for the interesting technical
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details).
All these results are asymptotic in nature, which means that they can be used to show

0-1 behaviour in the limit. Russo’s result, on the other hand, differs from the approach
outlined above in two important respects: (a) it is applicable to finite graphs, and (b)
it does not involve a formal language of graph. A property, in this context, needs to
be written as a sum of a large but finite number of independent random variables, so,
as the property is not significantly affected by the behaviour of a single one of these
random variables, are almost always predictable, i.e., the probability of observing the
property is arbitrarily close either to 1 or close to 0, depending on whether the value of
the edge probability is above or below the critical value respectively.

In Chapter 5, the authors present an important aspect of random networks, that
of information transmission capacity in terms of the network node positions and their
transmission strategies. This chapter expands on the information-theoretic random
network model defined in Chapter 1. With regard to the placement of nodes on the plane,
this is defined by a Poisson point process, as dictated by the model definition. With
regard to the transmission strategies, the authors consider the following: (a) whenever
two nodes wish to establish communication, other nodes behave cooperatively, i.e. they
help the two nodes by routing information item exchanged between them, and (b) all
the nodes attempt, aggressively, to establish communication simultaneously with no
consideration of the other nodes’ communication needs.

The authors first provide a nice exposition of some elementary facts from informa-
tion theory, with emphasis on channel capacity with noise, and they provide upper
bounds on the information communication rate achievable as a function of the noise
characteristics as well as the information item distribution. The noise is assumed to be
additive, Gaussian distributed. The authors consider the transmission of both discrete
and continuous information signals.

In the last chapter of the book, Chapter 6, the authors conclude with some algorithmic
aspects of random communication network models. More specifically, they consider the
problem of locating in a network an existing combinatorial structure (e.g. a path between
two nodes). In many random graph problems there is a vast difference between proving
the existence of and actually locating a structure within a random graph (the “needle
in a haystack” problem). This problem often arises in classical random graph theory:
one can prove that a certain object exists in a random graph but finding the object
may be computationally intractable. There may be, actually, cases where such an object
can be located efficiently using advanced algorithmic techniques, as exemplified by the
important result of Beck in [J. Beck, Random Structures Algorithms 2 (1991), no. 4,
343–365; MR1125954] for the problem of hypergraph colouring (see, e.g., [N. Alon and J.
H. Spencer, The probabilistic method, Second edition, Wiley-Intersci., New York, 2000;
MR1885388] for more on this important technique).

The authors prove that, for a random network created with edge probability in the
supercritical region, there are numerous node disjoint paths linking them in the network
that, in addition, are easy to construct following adjacent nodes until the destination
node is reached. The authors distinguish between short-range and long-range models.
In short-range models (e.g., a random grid model), edges exist between nodes that are
rather close to each other. In long-range nodes, edges may exist between nodes that are
very far apart (e.g., a geometric random graph model).

The authors provide a clear and easy to follow analysis of what happens in both types
of models with regard to establishing routing paths between pairs of nodes. The core
observation is that in short-range (large world) models, as the authors rigorously show,
establishing such a path can be easier than in long-range (small world) random models.

However, in long-range models, there are classes of edge probability functions, defined
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by a power-law decaying (with physical distance) probability distribution, that allow
efficient information routing whereas different distribution functions, differing only in
the exponent of the distribution function, do not allow an easy discovery of routing paths.
This is another very interesting instance of threshold behaviour, with the exponent value
being the critical parameter.

In addition to the theoretical exposition, each chapter is aptly complemented by
exercises that, most often, encourage the reader to finish sketched or incomplete proofs
given in the text. The exercises are carefully designed so as to be tractable, with some
effort, and to increase, at the same time, the intuition and understanding of the reader
of the similarities and differences between the various random graph models. Also, at
the end of the book, the authors provide an appendix with some useful background
material on basic probability theory.

In summary, this book is a clear, readable and highly intuitive introduction to the
properties and applications of random network models that also provides all the rigorous
details or invites the reader to fill them in, in the exercises section. The models tackled
by the authors are characterized by the important property that the geometry of the
nodes has a pivotal role in the formation of the network connections, as opposed to
classical Erdős-Rényi random graph models in which there is no notion of geometry and
edges can be inserted (with some probability) between any pair of nodes.

The balance between intuition and rigor is ideal, in my opinion, and reading the
book is an enjoyable and highly rewarding endeavor. I believe this book will be useful to
physicists, mathematicians, and computer scientists who look at random graph models in
which point locations affect the shape and properties of the resulting network: physicists
will acquaint themselves with complex networks having rich modeling capabilities (e.g.,
models for random interaction particle systems such as spin glasses), mathematicians
may discover connections of the networks with formal systems (much like the connection
of the classical Erdős-Rényi random graph properties with first- and second-order logic),
and computer scientists will greatly appreciate the applicability of the theory given in
the book to the study of realistic, ad hoc mobile networks in which network node
connections change rapidly and unpredictably as a function of the geometry of the
current node positions. Yannis C. Stamatiou
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