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The study of human interaction has taken an unprecedented quantitative and

technological turn, driven by the advent of online social networks, the consequent

availability of massive tracks of human behavior, and advancements in computing and

analytical tools. To provide a rigorous understanding of social networks, this dissertation

proposes theories of human networked interaction, able to explain and predict individual

and global outcomes observable in a population. Populations of heterogeneous, complex

individuals are modeled using homogeneous, simple agents who act according to simple

incentives and local rules. The resulting models are prone to analysis using algorithmic
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complexity, game theory and statistics, enabling the test of predictions about the original

population. Rigorous models and methods are proposed to study several aspects of

human interaction: scenarios of social computation, in which interconnected individuals

cooperate to solve a problem in a distributed fashion; the analysis of online social

networks, to study influence spreading over networks and to test hypothesis of behavioral

interaction; the theoretical analysis of human populations, to understand fundamental

capabilities and limits of social coordination in complex scenarios.
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Chapter 1

Introduction

To what extent can complex interactions between multiple people be predicted?

Can the rigor of mathematics and the insight of engineering bring clarity to the complex

mechanisms underlying social interaction?

The discourse on social behavior is probably as old as societies themselves.

Written records of social reasoning date back to the ancient Greek philosopher Plato

in the 4th Century BC [59], and are common to most cultures and philosophies, from

Confucianism to medieval Islam. The study of society began to gain his modern form

during the 19th Century, when French philosopher August Comte proposed sociological

positivism [56], the application of the scientific method to society, to address and solve

social issues, and first used the expression “social physics”. Since then, scholars have

investigated all facets of social interaction, incorporating methods and techniques ranging

from theory and statistics to surveys and controlled experiments. In the last decades,

this discipline has taken an unprecedented quantitative and technological turn, driven

by the advent of the Internet, the consequent availability of massive tracks of human

behavior and interaction, and advancements in computing and analytical tools [138].

Computational social science and social network analysis flourished at the intersection

of computer science and the social sciences, gaining increasing relevance in academia,

industry and policymaking. The most prestigious universities have founded graduate

1
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programs focused on data science. Social network and data-centered technologies are

disrupting every possible market. In February 2015, President Barak Obama appointed

Doctor DJ Patil as the first U.S. Chief Data Scientist at the White House Office of Science

and Technology Policy.

This dissertation builds knowledge about the networked behavior of individuals

and groups, proposing theories of human networked interaction, capable of explaining and

predicting individual and global outcomes observable in a population. The investigation

herein contained is motivated by questions at the foundation of disciplines such as

economics, social science, health and computation. In order to answer these questions,

given a heterogeneous population of complex individuals who exchange information,

my modeling approach employs a synthetic population of individuals, or agents, who

make decisions according to simple incentives and rules of local interaction. Despite

their simple rules, agents have the descriptive power of the original population, and their

actions are prone to analysis using algorithmic complexity, game theory and statistics.

Such descriptive models allow to make and test predictions about the original population,

including how behaviors may be triggered by events and conditions that would not be

apparent in controlled experiments.

This dissertation covers three areas that I explored through my research: social

network computation, to describe the behavior of groups of individuals cooperating

to perform a task in a distributed fashion (Chapter 2 and Chapter 3); the analysis of

online social networks, to study information and influence spreading over networks, and

to test hypotheses of behavioral interaction (Chapter 4 and Chapter 5); the theoretical

analysis of human populations, to understand fundamental capabilities and limits of

social coordination in complex scenarios (Chapter 6 and Chapter 7).

Regarding the first area, Chapter 2 and Chapter 3 consider scenarios in which a

group of interconnected individuals have to compute the solution to a problem. A single
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individual does not have knowledge of the entire network structure and state, and is

incapable of computing the solution alone. Therefore, the solution must be reached in a

distributed fashion, through local interaction and information exchange. A recent line of

research based on controlled laboratory experiments initiated by Michael Kearns [124]

and followed by others [122, 114, 67, 151] shows that humans can successfully coordinate

in a wide range of tasks and that the network structure and incentives affect this capability

to coordinate. Moving beyond the purely observational approach, and inspired by Nobel

laureate Herbert Simon’s claim that algorithmic processes are at the basis of human

decision [194], my work attempts to discover the fundamental mechanisms enabling

the distributed solutions observed in such networked tasks. In particular, starting from

controlled laboratory experiments on human networks, I propose algorithmic models of

local interaction that match the empirical data and are prone to mathematical analysis,

and I state and test predictions in the form of performance guarantees on any network

– rather than the limited set initially observed in the laboratory. My work shows the

feasibility of this approach, and the possibility of identifying simple rules of interaction

(among the multitude reported in the post-experimental surveys) that can describe and

predict global outcomes in a population, addressing an open question about the possibility

to model human behavior with algorithms [121].

Regarding the second area, Chapter 4 considers the problem of causal inference

from observational data. A fundamental difficulty of observational studies is to distinguish

between causation and correlation [150, 152] – the researcher’s ultimate goal is to perform

causal inference, but the lack of controlled experimental treatments usually hinders its

feasibility. On the other hand, methods based on observational rather than experimental

approaches are desirable in that they avoid the manipulation of user experience, a research

practice which recently became object of criticism and concern. In particular, Chapter 4

proposes a method to detect and quantify the spread of semantic expression in on-line
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social networks using observational data. Successfully applied to the emotional content

of a corpus of billions of Facebook status updates spanning a period of three years, the

method responds to the need of developing rigorous, noninvasive methods for the study of

human interaction. The limitations typical to observational studies are overcome through

mathematical modeling of the influence process and estimation based on instrumental

variables regression [9], a technique introduced in econometrics. In particular, the

method allows to measure the effect of an exogenous variable (for example rainfall) on

the expression of an individual and, consequently, its effect on the expression of others to

whom that individual is socially connected.

Chapter 5 studies the diffusion of infectious processes on real-world complex

networks. The theme is of interest to diverse disciplines as similar models have been

proposed to characterize the spread of information, behaviors, cultural norms, innovation,

as well as the diffusion of computer viruses [180, 170], and is of current importance

in light of events such as the recent ebola epidemics [86, 93]. Considering a data

set of human behavior and social relationships from the online review service Yelp,

and assuming an infection that spreads though physical contact between individuals,

Chapter 5 characterizes how accurately and within which limits said process can be

predicted and approximated if the researcher has only access to explicit relationship

ties between individuals (i.e., friendship ties). At a macroscopic level, friendship is

shown to provide a valid approximation with respect to physical encounter, confirming

the observation that different real-world complex networks present similar structural

properties and are governed by similar rules [5]. At a microscopic level, instead, it is

shown that friendship does not provide accurate prediction of the individuals at risk

if the infection is driven by physical encounter, highlighting the importance of local

connectivity in network dynamics.

Regarding the third area, my work considers complex coordination scenarios that
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can be formalized in terms of cooperation games and network dynamics. In a wide variety

of settings, how to design incentives that guarantee the performance and the outcomes of a

networked population is not known. Yet the potential benefits of such design capabilities

could be far reaching in domains as diverse as crowd sourcing, social mobilization and

habit formation. On the one hand, if the limitations to successful coordination are of a

strategic nature (social behavior), then the designer’s effort should be directed towards

the definition of more efficient strategies. In the context of crowdsourcing, motivated

by the worldwide attention received by the DARPA Network Challenge1, Chapter 6

considers the problem of large-scale, time-critical social mobilization for information

acquisition. Inspired by the winning strategy of the MIT Media Lab [177], it shows

that social mobilization is always efficient if suitable strategies are available, positively

answering to a question posed by Jon Kleinberg and Prabhakar Raghavan [129]. On the

other hand, if there exist provable theoretical limits to coordination (as graph structural

constraints, or complexity constraints) that hold for a variety of strategies, then only

proper market or policy design can overcome such limitations. Such inefficiencies often

occur in games between selfish agents, where the Price of Anarchy [134] encodes the

gap between the equilibria reached by the population and the socially optimal outcome.

Motivated by the observation that stability and social efficiency do not always coexist

in a market of selfish agents [98], Chapter 7 proposes cooperation between agents as a

solution to such misalignment, able to drive the population towards socially desirable

outcomes.

1.1 Summary of contributions

This dissertation is divided into three parts. The first part (Chapter 2 and Chap-

ters 3) proposes the use of simple algorithms to model the behavior of interconnected

1https://networkchallenge.darpa.mil/

https://networkchallenge.darpa.mil/
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individuals. The second part (Chapter 4) proposes a non-invasive, statistical methods to

perform causal inference in social networks, based on observational data. The third part

(Chapter 6 and Chapters 7) proposes game theoretical models to investigate stability and

efficiency in coordination problems.

Chapter 2 considers an experimental scenario in which individuals on a virtual

network can form pairs by means of simple interaction. Individuals receive a monetary

reward if they find a maximum matching of the network (i.e., the maximum possible

number of mutually disjoint pairs) in a timely fashion. Algorithmic modeling is shown

to be a powerful approach to understand and predict the collective dynamics of human

behavior.

Chapter 3 extends the framework of algorithmic behavioral modeling of Chapter 2

to a more complex coordination scenario, in which individuals of one type, the leaders,

have to recruit individuals of a different type, the followers, in order to form groups in a

timely and stable fashion.

Chapter 4 proposes a method to detect and quantify the spread of semantic

expression online, able to perform causal inference from observational data. In particular,

it describes a contagion model and an estimation approach based on instrumental variable

regression, applied to the emotional content of a corpus of billions of Facebook status

updates.

Chapter 5 studies the diffusion of infectious processes on complex networks,

considering a data set of human behavior and social relationships from the online review

service Yelp. In particular, assuming an epidemics that spreads via physical encounter,

it characterizes how accurately said process can be approximated knowing only the

friendship ties between individuals.

Chapter 6 considers a problem of information acquisition in a strategic networked

environment, in which agents receive incentives to recursively recruit each other and to
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take part to the search. A recursive recruitment and payment strategy is defined and its

stability and efficiency are proven.

Chapter 7 considers a market scenario in which selfish agents are interested in

triggering discounts in order to maximize their utilities. Despite stability and social

efficiency do not coexists in general, if cooperation between agents in the form of utility

transfers is allowed, then this misalignment is always resolved, and it is computationally

feasible to determine the amount of cooperation required.



Chapter 2

Human matching behavior in social
networks: an algorithmic perspective

2.1 Introduction

The modeling and prediction of collective human behavior has been one of the

key challenges of social sciences for several decades. As early as 1947, Herbert Simon

argued that information processing constitutes the core of human decision-making [194].

A corollary of his argument is that human decision-making processes can be modeled

algorithmically. However, such algorithmic modeling and prediction is challenging,

considering that collective decision-making processes are driven by both individual

attitudes and collective dynamics, and often involve social interchange and mutual

agreement.

This paper argues that despite the inherent complexity of human social interac-

tions, it is possible to isolate basic behavioral principles, formulate mathematical models,

and predict collective dynamics, using an algorithmic approach. As a simple example of

this approach, in the context of a distributed coordination game on networks (i.e., the

maximum matching game), we present an algorithmic model of human behavior that

is based on simple principles of local interaction and that is able to capture complex

collective coordination.

8
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Our approach is similar in spirit to the one in physics where particle systems and

cellular automata described by simple rules are known to generate complex behaviors,

such as phase transitions and universal computability [141, 36, 211, 57]. However,

our algorithmic modeling approach embeds individual interaction behavior as part of a

distributed computing system and leads to computational complexity analysis.

Our work is influenced by the work of Kearns et al. [124] who studied the effect

of network topology on subjects’ ability to color a graph, and by subsequent work in

the context of distributed coloring and consensus games [122, 151, 114, 67]. However,

our focus is on algorithmic modeling and analysis, rather than on observing the effect of

network topology on performance.

We have conducted over 250 experiments with human subjects on a pool of

over 80 networks with up to 24 nodes each, ranging from simple networks to more

complex stochastic models including preferential attachment [26, 33] and small-world

networks [215]. Our experimental set-up is simple. Subjects are represented by nodes

of a network with edges representing potential matches. In our experiments, human

subjects are connected over a virtual network and interact with their neighbors through

a computer interface, see Figure 2.1. Subjects can form and destroy pairs with their

neighbors, and each subject can be part of a single pair at a time. Subjects are given

only local information about their immediate neighbors, and can only interact with them.

They are able to propose to match with a neighbor and accept a proposal from a neighbor.

While matched, a subject can also make a proposal to or accept a proposal from another

neighbor; in both cases, the existing match would automatically be broken. Moreover, a

subject can only have a single outstanding proposal at a time. Therefore, at any time, a

subject can either be part of a matched pair, or not be matched and have at most a single

outstanding proposal. Subjects are equally incentivized to achieve a maximum matching,

namely to form the maximum number of disjoint mutual pairs, without regard to whom
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is matched with whom. Specifically, they are given an equal monetary reward for each

game where a maximum matching is found within the allotted time.

Figure 2.1. Computer interface. The subject is matched with the node on the right and is
being requested by three unmatched nodes.

To better understand this setup, consider the following metaphor: imagine that

incoming graduate students are pairing up with faculty members. Further imagine that

every member of the department prefers every graduate student to have one adviser and

every adviser to have one graduate student, and only certain faculty and graduate students

share interests. Communication is limited so that individuals can only tell if members

with whom they share an interest are already matched. Each member of the department

is now a node, the edges represent shared interest, and individuals can then propose to

work with members with whom they share an edge.

Our algorithmic model is based on a simple property that we call “prudence” and

that emerges from the analysis of a first set of experimental data. This property states that

individuals do not break existing matched pairs unless they receive an alternative proposal

by an unmatched neighbor. Based on this property, we propose a simple distributed

algorithm, analyze its performance, validate the model with additional experimental

results, and predict outcomes. The prudence property is reminiscent of the notion of risk

aversion, a relevant topic in the economics literature [179, 116].

We now briefly summarize our findings. Throughout the paper we use the graph-
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theoretic terminology, according to which a matching is a set of edges without common

nodes. The size of a matching is the number of edges in it. A maximum matching is a

matching with the largest size. For 0 < c≤ 1, a matching is a c-approximate maximum

matching if its size is within a factor of c from that of a maximum matching. A matching

M is maximal if it is not a proper subset of any other matching, i.e., for any new edge

added to it, it is no longer a matching. Figure 2.2 depicts an approximate and a maximum

matching of a network.

Figure 2.2. Approximate and maximum matching. Left: an approximate maximum
matching of size 5 on a network with 12 nodes (matching edges are represented in
bold red, matched nodes are colored, unmatched nodes are white). Right: a maximum
matching of size 6 on the same network (note that the maximum matching is also a
perfect matching, as all nodes are matched).

We show that the convergence time to the maximum matching in computer

simulations of the prudence algorithm fits well the experimental data (after scaling by a

constant factor), see Figures 3.7 and 2.4. By computer simulations we also predict that

convergence to a maximum matching is slower on preferential attachment networks than

on small-world networks, see Figure 2.5. This prediction is validated by our experiments

with human subjects. It is also in agreement with the experimental results by Kearns et

al. [124] regarding the coloring problem, and with the theoretical results by Montanari

and Saberi [156] regarding the spread of innovation in networks.

On the theoretical side, we analyze the dynamics of the prudence algorithm and

show that for all graphs of bounded degree a 1/2-approximate maximum matching is

reached quickly, on average in O(logn) rounds, where n refers to the number of nodes in
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Figure 2.3. Affinity between humans’ and algorithm’s performance, 16-node networks.
The performance of the human subjects (red points joined by continuous line) and of
the algorithm (blue points) over eight bipartite 16-node networks (triangles) and eight
non-bipartite 16-node networks (circles) are plotted. The experiment was run multiple
times on each network and the average behavior is reported. The x-axis shows the indexes
of the networks sorted by increasing average time required to reach a maximum matching.
Bipartite networks are labeled from 1 to 8, while non-bipartite networks are labeled from
9 to 16. The y-axis shows the average time (in seconds) required to reach a maximum
matching for humans, while the average number of rounds of the algorithm is scaled by a
constant factor.

the network (Theorem 1); and for all graphs a (1−ε)-approximate maximum matching is

reached in polynomially many rounds with high probability (Theorem 2). We also show

that there are instances (called “bad” graphs) for which reaching a maximum matching

requires exponential time with high probability when starting from a set of configurations

(called “bad” matchings) which constitute almost all possible configurations (Theorems 3

and 4). These results show that in the worst case there is an exponential gap between

reaching a good matching (i.e., an approximate maximum matching whose cardinality is

close to a maximum matching) versus the best (i.e., perfect) matching. The experimental

data shows (consistently with the theoretical analysis) that human subjects always find

a “good” matching quickly, while they can take much longer to improve the solution to

a maximum matching, see Figure 2.6. In particular, on the bad graph, human subjects
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Figure 2.4. Affinity between humans’ and algorithm’s performance, 24-node networks.
The performance of the human subjects (red points joined by continuous line) and of
the algorithm (blue points) over different 24-node networks are plotted. In particular,
small-world networks (triangles), a ring network (diamonds), and preferential attachment
networks (circles) were tested. The experiment was run multiple times on each network
and the average behavior is reported. The x-axis shows the indexes of the networks sorted
by increasing average time required to reach a maximum matching. The y-axis shows the
average time (in seconds) required to reach a maximum matching for humans, while the
average number of rounds of the algorithm is scaled by a constant factor.

could not converge to a maximum matching in the allotted time.

2.1.1 Related literature

The experimental study of human strategic behavior over networks is a topic

of great current interest in the literature. The work by Kearns and others on network

coloring and consensus games [124, 122, 151, 114, 67] has been particularly influential.
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BAD GRAPHS OF SEC. 3.2

PREFERENTIAL ATTACHMENT

CONFIGURATION MODEL

SMALL WORLD

Figure 2.5. Algorithm’s asymptotic performance. PRUDENCE algorithm’s performance
with respect to the network’s size for the “bad” graph Gn (black diamonds), for prefer-
ential attachment model (green squares), small-world model (red triangles). For each
generative model and network size we generated 100 networks and run the algorithm
1000 times on each. The average behavior is reported. The x-axis shows the network size,
and the y-axis shows the average number of rounds required by the algorithm to converge
to a maximum matching.

Judd et al. [115] investigated how subjects choose between playing either a dominant or

a submissive role in a network game, documenting the importance of fairness. Kearns

et al. [123] performed experiments on network formation games when there is a cost

for creating links. Suri and Watts [204] conducted experiments in which individuals

connected over networks play local public good games. Wang et al. [212] studied

multi-player prisoner’s dilemma games in which subjects can propose and delete links

to other players, showing that partner selection increases cooperation. Brautbar and

Kearns [38] introduced a network formation game in which players need to maximize

their clustering coefficients. Compared to these previous works, we focus on isolating

behavioral principles of human interaction (in the context of maximum matching games)

and using these principles to formulate algorithmic predictions of outcomes.

As social interaction naturally induces strategic behavior, our work is also closely

related to game theory. Indeed, several authors proposed game theoretical models of
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Figure 2.6. Performance of the experimental subjects on networks of 24 nodes. The plot
shows the time to reach a perfect matching of size 12 (red), an approximate matching
of size 11 (a 0.92–approximate matching, in blue) and a matching of size 6 (a 1/2–
approximate matching, in green). Results for single games are reported. The x-axis
shows the indexes of the games sorted by increasing solving time, while the y-axis shows
the time in seconds. The right-most four games on the red plot did not converge to a
maximum matching and correspond to three instances of the “bad” graph Gn and to one
instance of the preferential attachment network.

human interaction over social networks. Topics vary from diffusion and contagion over

networks [156, 88, 2] to strategic information retrieval [129] (see also Chapter 6), models

of segregation [37] and bargaining over networks [117], to mention a few. The main

element that distinguishes our work from the game theory literature is that we focus

on the algorithmic processes involved in strategic thinking and the ensuing collective

dynamics rather than on equilibria. Moreover, our algorithmic model is motivated and

supported by experimental data.

Finally, matching theory has received notable attention throughout the decades,

both in the context of game theory and economics [186, 77, 96, 17], and in the devel-

opment of algorithms for the maximum matching problem [103, 118, 106, 148, 175].
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We point out that our simplified setup constitutes a simplification of the richness and

heterogeneity of the ties in real social networks, as the subjects have no preference over

each other, all the ties are equivalent, and interaction has no cost. However, such a

simplified model leads to a tractable analysis and to the formulation of a general principle

of collective behavior.

2.2 Methods

The experiments included the interaction of the participants through a computer

interface, and were conducted in accordance with the ethical standards specified in the

1964 declaration of Helsinki. Written consent was granted before participation in the

experiments. Our institutional review boards approved this study (UCSD IRB approval

111213SX, US Army Human Research Protection Office ARO-HRPO Log A-17038).

2.2.1 The Matching Games

Before formulating our algorithmic model, we conducted four sessions of exper-

iments, each with a different pool of sixteen undergraduate students connected over a

virtual network. Subsequently, to validate our model, we ran an additional session of

experiments with a pool of twenty four subjects on a set of networks that included small

world and preferential attachment networks. In each of the first four sessions the subjects

were asked to solve the matching game on a pool of over 70 networks. All networks

admitted a perfect matching, namely a maximum matching with no unmatched nodes. We

considered networks classified into four groups: bipartite networks admitting a unique

perfect matching, bipartite networks admitting multiple perfect matchings, non-bipartite

networks admitting a unique perfect matching, non-bipartite networks admitting multiple

perfect matchings. Within each group, networks were randomly generated. As a remark,

a bipartite network is a network whose nodes can be divided into two disjoint sets V1
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and V2 such that every edge connects a vertex in V1 to one in V2. If this property does

not hold, we say that the network is non-bipartite. Subjects sat in front of workstations

for the entire two-hour duration of the session and had no eye-contact with each other.

For each matching game, a network was chosen, subjects were randomly assigned to its

nodes, and each subject interacted with its neighbors by making or accepting proposals to

form matched pairs using the interface shown in Figure 2.1. Each subject could control

the node in the center of the screen and could only see its neighbors and, among those,

distinguish which of them were currently matched (marked in dark green). A subject

could make proposals or accept proposals by selecting a neighbor with a mouse click,

and could only have one outstanding proposal at a time to form a matched pair (circled in

yellow). While subjects knew whether a neighbor is matched or unmatched, they did not

have direct knowledge of any outstanding requests to their neighbors other than their own.

If two neighbors selected each other, a pair was formed (a bright green link appeared

between them) which could be broken when one of the partners selected another neighbor.

As a remark, since a pair was formed when two subjects selected each other and each

subject could make a single selection at a time, each subject could be part of a single pair

at a time (with one of its neighbors).

If a perfect matching was found within the time limit of five minutes, the game

was declared solved and each participant was rewarded by $.50 or $1 depending on

the session, otherwise the game ended with no reward. The number of games in an

experimental session was not fixed, but games were run for the two-hour duration of

the session. Therefore, the number of games and the cumulative reward in a session

depended on the performance of the participants, providing an additional incentive to

coordinate.

The networks used in this first set of experiments can be divided into four classes:

bipartite, non bipartite, unique perfect matching, multiple perfect matchings. Two one-
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tailed Welch’s t-tests confirmed the hypotheses that it is harder for humans to complete the

matching game on non-bipartite than on bipartite networks (p-value < 0.001); and that

non-bipartite networks with unique perfect matching are more difficult to solve than non-

bipartite networks with multiple perfect matchings (p-value < 0.001). No statistically

significant difference was found between the completion time of bipartite networks with

unique and with multiple perfect matchings. We believe that this depended on the small

network size of sixteen nodes and we did not explore larger bipartite networks further.

2.2.2 The Algorithmic Model

One of the main behavioral properties that emerged from the experimental data is

that matched players may break their current matching only if they have been requested

by an unmatched neighbor. In particular, in 30% of the games no player ever violated

this rule at any time during the game. In the remaining games, over 93% percent of the

moves were in agreement with this rule. Therefore, this property led to the following

modeling assumption:

Assumption 1 (Prudence) A matched node does not break its current matched pair if it

does not receive any request from other neighbors.

Two remarks are in order. First, note that this behavioral rule is peculiar to the matching

problem since each player needs to choose a partner but also needs to be chosen. Second,

notice that a matched subject with unmatched neighbors has some incentive to behave

non-prudently and break the current match, because the subject can infer from the status

of its neighbors that the perfect matching is not reached yet. However, experimental data

shows that this rarely happens.

For each node u, let f (u) indicate u’s current preference. In other words, f (u) is

the unique node to which u has currently proposed to. f (u) will be null if u does not have

a current proposal. If two neighbors u and v currently prefer each other (i.e., u = f (v) and
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v = f (u)), then consider them matched and the edge e = {u,v} as part of the matching.

Assume that each node knows if a neighbor is matched or unmatched.

Given the prudence property, we model the algorithmic behavior of humans

using the PRUDENCE algorithm shown in the algorithm box 1. The algorithm is

specified by the implementation of two functions, called MATCHEDCHOOSE(u) and

UNMATCHEDCHOOSE(u), which are placeholders for the behavior that node u would

follow depending on whether u is matched or unmatched. We consider a synchronous

setting, in which time is divided into rounds, and at the beginning of each round each

node observes its status and the status of its neighborhood and then decides on an action

to take.

ALGORITHM 1: The PRUDENCE algorithm.

if unmatched then
Set f (u)← UNMATCHEDCHOOSE(u)

else
if matched and ∃ neighbor v s.t. f (v) = u then

Set f (u)←MATCHEDCHOOSE(u)
end

end

In the following we provide a canonical implementation of the two functions

UNMATCHEDCHOOSE(u) and MATCHEDCHOOSE(u) which are consistent with the

prudence property. UNMATCHEDCHOOSE(u) does not change the current value of f (u)

with probability p, while with probability 1− p accepts the proposal from a neighbor

uniformly at random from among the neighbors v with f (v) = u if any; if there is no

neighbor v with f (v) = u, then it proposes to a node uniformly at random from among the

unmatched neighbors if any; otherwise it proposes to a node uniformly at random from

among all the matched neighbors. In other words, unmatched nodes prefer neighbors

who requested them over other unmatched neighbors, and unmatched neighbors over

matched neighbors. As for matched nodes, MATCHEDCHOOSE(u) accepts a proposal
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from a neighbor uniformly at random from among the neighbors v with f (v) = u (note

that u’s current partner is one of them). We remark that the simulations’ performance

and the fit with the experimental data was practically insensitive to the value of p chosen

in the run of the algorithm.

2.3 Results

2.3.1 Mathematical Results

In this section we present our analytical results regarding the convergence be-

havior of the PRUDENCE algorithm. In particular, our results describe how well the

algorithm performs in finding a large matching and the time it takes in terms of the

number of rounds required. Due to space constraints, we only present proof sketches

here. Complete details of the proofs are deferred to the SI.

We define a matching at round t as the set of matched edges at the beginning of

round t of the algorithm. We first claim that the prudence property implies that the size

of the matching does not decrease with time. The proof is immediate and it is omitted.

Claim 1 The size of the matching at round t is non-decreasing as t increases.

We then observe that the behavior of the PRUDENCE algorithm can be described

by a Markov chain over matchings. A transition from a matching M to a matching M′ is

made by selecting an edge e = {u,v} such that at least one among u and v is unmatched,

and setting M′ = M+ e if u,v are both unmatched, and M′ = M+ e− e′ if exactly one of

u and v is matched in M and e′ is the matching edge. This Markov chain is reversible

when restricted to matchings of the same size. Since the Markov chain is memory-less

and has positive probability of reaching a maximum matching, we conclude that the

PRUDENCE algorithm enjoys self-stabilization.

Claim 2 The PRUDENCE algorithm is a self-stabilizing algorithm.
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Our first theorem says that a 1/2-approximate matching will be reached quickly

in networks with bounded degree.

Theorem 1 In any bounded-degree graph on n nodes, the expected number of rounds

for the PRUDENCE algorithm to reach a 1/2-approximate matching is O(logn).

The proof of Theorem 1 is in Section 2.5. The key idea of the proof is to show that,

in expectation, the “distance” in terms of number of matched pairs to the smallest maximal

matching shrinks by a constant factor in each round of the PRUDENCE algorithm. Since

it is well known that any maximal matching is a 1/2-approximation of the maximum

matching, the result then follows.

We remark that the assumption of having bounded degrees is necessary as there

are unbounded degree graphs in which a polynomial number of rounds is required with

high probability to achieve a 1/2-approximation. However, in this case, a polynomial

number of rounds is also enough to achieve any constant approximation: indeed, as

the next theorem states, the PRUDENCE algorithm provides a PTAS (polynomial time

approximation scheme) for the maximum matching problem. Given a graph G, ∆ denotes

its maximum degree.

Theorem 2 For any graph G of n nodes, ε > 0 and c≥ 1/2, the PRUDENCE algorithm

reaches a (1− ε)-approximate matching in c
ε
n∆2/ε rounds with probability at least

1− exp(−cε2n/2).

The theorem implies that, for any constant ε > 0, a matching whose size is within

a (1− ε) fraction of the size of the maximum matching is reached in polynomial time.

For bounded-degree graphs, this result also holds for ε = Ω(1/ logn), implying that in

this case a maximum matching can be reached in polynomial time.

The proof of Theorem 2 is in Section 2.6. To prove the theorem, we track the

progress of the algorithm towards an approximate maximum matching, using the concept
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of an augmenting path. An augmenting path is a path of odd length which alternates

between matched and unmatched edges and whose extreme edges are unmatched. It turns

out that there is a close connection between the size of a shortest augmenting path in a

matching and how close the matching size is to the size of a maximum matching. More

specifically, we use the following lemma due to Hopcroft and Karp [103].

Lemma 1 Consider any matching M that does not admit augmenting paths of odd length

k or smaller. Then, the size of M is at least a fraction k+1
k+3 of the size of a maximum

matching.

Hence, to prove Theorem 2, we need to show that short augmenting paths (for a

suitably chosen k) are solved in a short amount of time. It is useful to consider a particle

analogy to understand the process that eliminates short augmenting paths. We consider

each unmatched node as a particle. Particles move around the graph from node to node as

nodes change their status between matched and unmatched states dictated by the random

choices in the algorithm. There are exactly two particles along an augmenting path,

situated at the extreme nodes. To understand how an augmenting path gets shorter and

eventually vanishes, we consider how the two particles move closer to each other along

the path.

Let u0,u1,u2, · · · ,u` denote a shortest augmenting path. If the extreme unmatched

node u0 proposes to u1 and u1 accepts the proposal breaking the current match with u2,

then the particle moves from u0 to u2. A similar argument applies to the other end of the

path. Also, the minimality of the path guarantees that the internal nodes do not change

their current matching as they have no unmatched neighbor. It follows that the particles

become closer to each other and the augmenting path gets shorter. Using this approach,

we can prove that with suitable probability the length of the shortest augmenting path

shrinks after each round. When an augmenting path becomes an edge (that is, a path



23

of length one), and if the extreme unmatched nodes select each other as partners, the

particles and the path vanish, yielding an increment to the size of the matching. Hence, a

key step of our proof is to lower bound the probability that an augmenting path of length

k vanishes, and then to apply Lemma 1 to relate the existing augmenting paths and the

matching size.

We remark that the random process governing the movement of the particles

in the network is not a classical random walk over the nodes of the graph. Indeed, if

that were the case, a maximum matching would always be reached in polynomial time

by a simple cat-and-mouse argument. Instead, a random move of a particle depends

on the current matching, which in turn changes when the particle moves. This modest

difference can lead to an exponential time gap between convergence to an approximate

matching and convergence to a maximum matching. Indeed, exploiting the dependence

of the particles’ movements on the current matching, we show that there is a family of

graphs for which the PRUDENCE algorithm takes exponentially many rounds with high

probability to reach a maximum matching starting from a set of configurations that cover

almost all possible cases. This family of “bad” graphs is defined as follows (see also

Figure 2.7).

Definition 1 (Bad graph Gn) The bipartite graph Gn = (A∪B,E) has 4n nodes A =

{a1, . . . ,a2n} and B = {b1, . . . ,b2n}, and its edges are (an+1,bn), (ai,b j) for all 1≤ i≤ n

and 1≤ j ≤ i, and (ai,b j) for all n+1≤ i≤ 2n and n+1≤ j ≤ i.

Note that the set of “horizontal” edges (ai,bi), for 1 ≤ i ≤ 2n is the unique perfect

matching for Gn.

Theorem 3 The PRUDENCE algorithm requires 2Ω(n/ log2 n) many rounds with high prob-

ability to reach the perfect matching when starting from any (2n−1)-matching in which

the two unmatched nodes are in opposite sides of Gn.
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Figure 2.7. The bad graph. The “bad” graph Gn for n = 3. One of the “bad” matchings
of Theorem 3 is highlighted in red.

The proof of Theorem 3 is in Section 2.7. The main idea of the proof is to track the

positions of the unmatched nodes throughout the course of the algorithm and to lower

bound the number of rounds needed before they meet as an adjacent pair.

We first prove a one-to-one correspondence between the Markov process of the

state evolution between matchings and a classical random walk on a tree (represented

in Figure 2.8) whose size is exponential in n. We show that this classical random walk

takes exponential time to reach the root of the tree starting at any one of its nodes, thus

providing a lower bound on the convergence time of the PRUDENCE algorithm.

We say that a matching M of Gn of size 2n−1 is bad if the PRUDENCE algorithm

requires exponentially many rounds with high probability to converge to the perfect

matching when starting from M. Observe that all matchings considered by Theorem 3

are bad. The following theorem states that almost all matchings of size 2n−1 are bad.

Theorem 4 The ratio between the number of “bad” matchings and the number of all

(2n−1)-matchings of Gn is 1−O(2−n).

Theorems 3 and 4 show that the PRUDENCE algorithm requires exponentially

many rounds to converge to the perfect matching of Gn when starting from a set of
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configurations (the bad matchings) constituting almost all possible cases (the matchings

of size 2n−1).

2.3.2 Validation

Figure 3.7 compares the performance of the human subjects (red) with that of

simulations (blue) on a set of 16-node networks (8 bipartite networks and 8 non-bipartite

networks) with unique perfect matchings. The networks are sorted by increasing average

completion time, and as a result bipartite networks are labeled from 1 to 8, while non-

bipartite networks are labeled from 9 to 16. Each of these networks was tested at least

6 times over all sessions. The vertical axis represents the time (in seconds), and the

numerical values of the convergence time of the algorithm are scaled by a constant factor

to best match the experimental data.

In an additional experimental session, we tested twenty four subjects connected

over small-world, preferential attachment and ring networks as well as over the “bad”

graph Gn. The games on the bad graph were never solved, consistent with the prediction

of exponentially slow convergence. Furthermore, we found that preferential attachment

networks were more difficult to solve than small-world networks (one-tailed Welch’s t-

test, p-value < 0.01). Figure 2.4 shows the affinity between humans’ (red) and algorithm’s

(blue) performance, on this set of 24-node networks: small-world networks (triangles),

ring network (diamonds), preferential attachment networks (circles). The x-axis shows

the indices of the networks sorted by increasing average time to find the perfect matching,

and the y-axis shows the average time.

Figure 2.5 shows, by simulation, that the algorithm scales linearly in the size

of the network in the case of small-world networks [215], while it scales polynomially

for preferential attachment networks [26, 33], and exponentially on the “bad” graph Gn.

These results closely resemble the experimental data of the coloring games performed
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by Kearns et al. [124], where preferential attachment networks resulted in the worst

performance among all tested networks, while small-worlds networks appeared to be

much easier to solve.

Figure 2.6 shows the performance of the experimental subjects on networks of 24

nodes, each admitting a perfect matching. In particular, it reports results for single games,

and it compares the time to reach a perfect matching of size 12 (red), an approximate

matching of size 11 (a 0.92-approximate matching, in blue) and a matching of size 6 (a

1/2-approximate matching, in green) in each game. The x-axis shows the indexes of the

games sorted by increasing solution time, while the y-axis shows time in seconds. The

plot shows (consistent with the theoretical analysis) that a 1/2-approximate matching

is reached almost immediately in all games, an almost maximum matching is reached

quickly, while reaching a perfect matching can take a large amount of time.

2.4 Discussion

While it is challenging to characterize the strategies used by humans in perform-

ing even simple social tasks, as they may depend on diverse individual cognitive and

psychological attitudes, we argue that it is possible to isolate simple behavioral invariants

of individual behavior, which are useful for algorithmic modeling, analysis and prediction

of collective dynamics of coordination.

To illustrate our approach, we have focused on a simple matching game over

networks and presented a combination of theoretical, experimental, and simulation results.

From the experiments, we identified the prudence property as a common behavioral

invariant of human subjects when they coordinate to find a maximum matching. We

proposed an algorithm as model of human behavior and showed that it can successfully

predict dynamics of coordination.

We have shown that our approach is able to uncover basic behavioral properties
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that may not be apparent from off-line surveys. Indeed, when subjects were asked to

report on their strategies in post-experimental surveys, we obtained a list of diverse

strategies, including: choose a partner and never disengage from it, always accept

proposals from neighbors, try to change partner if the game is not solved for a while.

Moreover, our results demonstrate that algorithmic modeling and the mathematical

analysis of algorithms can be useful in systematically predicting the aggregate behavior

and in deriving results that hold for any graph, or for a large family of graphs. This

general conclusions cannot be derived rigorously form experimental observations and

computer simulations.

Our work suggests further research in several directions. A natural question

is whether non-prudent behavior by a subset of the nodes can help. In a preliminary

investigation, we have evaluated the performance of a variant of our algorithm where

a subset of nodes behave non-prudently with a positive probability. In our simulations,

these populations do not offer significant improvement in terms of finding a maximum

matching. Furthermore, populations entirely composed of non-prudent nodes seem to

perform poorly. In other words, a group of aggressive and risk-taking individuals might

not achieve coordination easily.

Our PRUDENCE algorithm is memoryless. It is an interesting question as to

what extent human subjects use memory in distributed games, and how memory could

be incorporated in modeling human strategies. In an initial attempt to study this, we

implemented a variant of the PRUDENCE algorithm in which a node remembers its recent

history and gives less preference to neighbors who recently rejected it. In simulations on

preferential attachment and small world networks, memory did not result in significant

improvement over the memoryless case. Furthermore, simulations show that making

decisions based on events in a distant past (that is, tracking events that happened in a

distant past) might hurt performance. A careful investigation of the role of memory in
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human strategies in distributed games is of fundamental interest.

Regarding the incentives, in our matching games each subject obtains the same

reward when a maximum matching is reached, regardless of the chosen partner. How

does the introduction of preferences affect the overall coordination? Preferences could

be “enforced” for example by rewarding subjects based on the partners they match

with. There is likely to be a trade-off between the collective task of finding a maximum

matching and the individual profit maximization.

As a final remark, the proposed PRUDENCE algorithm constitutes a possible

reasonable explanation of human coordination behavior in the distributed matching

game. Apart from the simple variations mentioned above, we did not test how well other

alternative algorithmic models could fit the experimental data.

2.5 Proof of Theorem 1

For ease of presentation, we assume p = 0, and remark that this result holds for

all choices of 0 ≤ p < 1. Let G be a graph of n nodes and maximum degree ∆. Let

m be the number of matched nodes in the smallest maximal matching of G. For t ≥ 0,

denote by Wt the set of nodes of G which are unmatched and have at least an unmatched

neighbor at the beginning of round t, and let |Wt | be the cardinality of Wt . Also, let Mt be

the matching of G obtained by the PRUDENCE algorithm at the beginning of round t and

Nt be the number of nodes matched by Mt . For t ≥ 0, define the random variable

Dt = m−Nt .

We devote the rest of the proof to showing that

E[Dt ]≤ (1− (∆+1)−3)tE[D0] (2.1)
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The theorem then follows by the observations that E[D0] ≤ n and that any maximal

matching is at least a 1/2-approximation of the maximum matching.

To prove (2.1), we will first show that E[Bt(Wt)|Wt ] ≥ (∆+ 1)−3|Wt |, where

Bt(Wt) is the number of nodes in Wt that match with nodes in Wt during round t (here the

expectation is taken over the randomness of the algorithm during round t). For u ∈Wt ,

let Zt(u) be the indicator random variable that takes value 1 if and only if u gets matched

with a node in Wt during round t. By linearity of expectation, we have that

E[Bt(Wt)|Wt ] = ∑
u∈Wt

E[Zt(u)] = ∑
u∈Wt

Pr(Zt(u) = 1).

Let At be the set of nodes u ∈Wt such that (i) u has no incoming or outgoing request to

nodes in Wt , and (ii) all neighbors v ∈Wt of u have an incoming request. Let Āt =Wt \At .

For u ∈ At , we have that Pr(Zt(u) = 1) = 0, as unmatched nodes prefer neighbors who

requested them over other unmatched neighbors. On the other hand, for u ∈ Āt , we have

Pr(Zt(u) = 1)≥ ∆−2. To see this, note that a pending request involving u (if any) will

be honored with probability at least ∆−2; if no such request exists, the co-occurrence

of the event of u requesting a neighbor with no incoming request and of that neighbor

requesting u happens with probability at least ∆−2. By definition of At , no two nodes

in At can be neighbors. Also, by definition of Wt , every node u ∈Wt has at least one

neighbor in Wt . These two facts imply that |Āt | ≥ (∆+1)−1Wt . We can conclude that

E[Bt(Wt)|Wt ]≥ (∆+1)−3|Wt |.

We now relate Dt+1 to Bt(Wt). First, note that Dt+1 ≤ Dt −Bt(Wt). By itself,

this bound is not strong as Wt can be small. However, when Wt is small, the current

matching must be close to a maximal matching. Indeed, by considering the union of

Mt and any maximal matching of Wt , we have that m ≤ Nt + |Wt |. This implies that
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Dt = m−Nt ≤ |Wt | and hence Dt+1 ≤ Dt−Bt(Wt)≤ |Wt |−Bt(Wt). Therefore, we have

Dt+1 ≤ Dt−Bt(Wt),

Dt+1 ≤ |Wt |−Bt(Wt).

By taking the expectations with respect to the randomness of the algorithm during round

t, we get

E[Dt+1|Wt ,Dt ]≤ Dt−E[Bt(Wt)|Wt ]≤ Dt− (∆+1)−3|Wt |,

E[Dt+1|Wt ,Dt ]≤ |Wt |−E[Bt(Wt)|Wt ]≤ |Wt |− (∆+1)−3|Wt |= (1− (∆+1)−3)|Wt |.

Now, by taking the expectation with respect to the randomness of the algorithm during

rounds up to t, we obtain

E[Dt+1]≤ E[Dt ]− (∆+1)−3E[|Wt |],

E[Dt+1]≤ (1− (∆+1)−3)E[|Wt |].

Letting dt = E[Dt ], wt = E[|Wt |], and α = (∆+1)−3, the bounds above can be rewritten

as

dt+1 ≤min{dt−αwt ,(1−α)wt} .

To conclude the proof of (2.1), we show by induction that dt ≤ d0(1−α)t . For t = 0,

as d0 ≤ w0, we have d1 ≤ d0−αw0 ≤ (1−α)w0. Now, let us consider any t ≥ 1 and

distinguish between the cases of wt ≤ d0(1−α)t and wt > d0(1−α)t . If wt ≤ d0(1−α)t ,

we have dt+1 ≤ (1−α)wt ≤ d0(1−α)t+1. Otherwise, if wt > d0(1−α)t , using the
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induction hypothesis, we have that

dt+1 ≤ dt−αwt ≤ d0(1−α)t−αwt ≤ d0(1−α)t−d0α(1−α)t = d0(1−α)t+1,

which completes the proof.

2.6 Proof of Theorem 2

For ease of presentation, we assume p = 0, and remark that this result holds for

all choices of 0≤ p < 1. Let G be a graph of n nodes, maximum degree ∆, and maximum

matching of size OPT. We will consider the unmatched nodes as particles randomly

moving on the nodes of the network as per the algorithm choices. To see how the particle

move, consider the particle positioned at any unmatched node u. If u requests a matched

neighbor v and v accepts the requests, then the particle will move to v’s old partner (which

is left unmatched). If u requests an unmatched neighbor z and z accepts the request, then

both the particles at u and z will dissolve. Note that when two particles dissolve the size

of the matching increases by one.

An augmenting path is a path of odd length which alternates matched and un-

matched edges and whose extreme edges are unmatched. Observe that by switching each

unmatched edge of an augmenting path into a matched edge, and viceversa, the size of

the matching increases by one.

We split the rounds into epochs of b1/εc rounds each. We claim that if at the

beginning of any epoch the size of the matching is less than a (1− ε)OPT, then the size

of the matching increases by at least one by the end of that epoch with probability at least

∆−2/ε . To prove the claim, consider the first round of any epoch and let u0,u1, . . . ,u`

be any shortest augmenting path at the beginning of that round. It must be that ` <

2(ε−1−1), otherwise Lemma 1 would imply that the size of the matching is at least a
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`+1
`+3 ≥ 1− ε fraction of OPT. For `= 1, u0 and u1 will match with each other during the

first round with probability at least ∆−2, hence the claim is true. For ` = 3, u0 and u3

will request respectively u1 and u2 with probability at least ∆−2 during the first round

of the epoch, and these requests will be accepted in the second round with probability

at least ∆−2 — hence, the size of the matching increases by one within 2 rounds with

probability at least ∆−4. Now consider 5≤ ` < 2(ε−1−1). We have that two particles

occupy the nodes u0 and u` at the extremes of the augmenting path. With probability at

least ∆−2, u0 requests to match with u1 during the first round and u1 accepts in the second

round, making the corresponding particle move from u0 to u2. A similar argument yields

that the particle at u` moves to u`−2 within two rounds with probability at least ∆−2.

Moreover, as the augmenting path under consideration is a shortest augmenting path,

nodes u2, . . . ,u`−2 have no unmatched neighbors at the beginning of the first round and

hence do not receive any matching request during that round. Therefore, with probability

at least ∆−4, at the end of the second round the nodes u2 and u`−2 are unmatched whereas

nodes u3, . . . ,u`−3 did not change their partner. That is, the length of the shortest path at

the beginning of the third round of the epoch is at most `−4 with probability at least

∆−4. By means of the same argument, we can conclude that with probability at least

(∆−4)`/4 > ∆−2/ε , all nodes in an augmenting path are matched within `/2 ≤ b1/εc

rounds, which proves the claim.

For any epoch i, we now associate a binary random variable Xi which takes on

value 1 with probability p = ∆−2/ε . The claim guarantees that the size of the matching

after T epochs is at least min{(1− ε)OPT,∑T
i=1 Xi}. Also, as successive rounds of the

algorithm are independent, the Xi’s are independent random variables. For any 0 < δ ≤ 1,

the Chernoff bound states that

Pr

[
T

∑
i=1

Xi < (1−δ )T p

]
< exp(−T pδ

2/2).
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For any c≥ 1/2, by setting T := cn∆−2/ε and δ := ε , the above yields that the size of

the matching after T epochs (i.e., after Tb1/εc ≤ c
ε
n∆2/ε rounds) is at least min{(1−

ε)OPT,(1− ε)cn}= (1− ε)OPT with probability at least 1− exp(−cε2n/2).

2.7 Proof Theorem 3

2.7.1 Analysis

For ease of presentation, we assume p = 0, and remark that this result holds

for all choices of 0 ≤ p < 1. We say that the nodes {ai : 1 ≤ i ≤ n}∪{bi : 1 ≤ i ≤ n}

constitute the upper half of Gn, and the remaining ones constitute the lower half of Gn.

Let M = M1∪M2 be the set of all matchings of Gn of size 2n−1, where M1 is the set

of matchings of size 2n−1 in which the two unmatched nodes are in opposite halves of

Gn, and M2 = M \M1 are the remaining ones.

Our goal is to show that the PRUDENCE algorithm requires 2Ω(n/ log2 n) rounds

with high probability to reach the perfect matching of Gn when starting from any matching

in M1. We first prove certain properties for the matchings in M1. We then establish a

correspondence between the Markov chain over matchings induced by the PRUDENCE

algorithm and a classical random walk on the tree T ∗n . In particular, we show that the

hitting time of the root of T ∗n is a lower bound on the number of rounds to reach the

perfect matching of Gn.

2.7.2 Properties of matchings in M1

We begin by characterizing the matchings in M1.

Lemma 2 Consider any matching M ∈M1, and let ak, b` be the unmatched nodes in

the upper and lower half of Gn, respectively. Then, the following properties hold:

1. For all i < k and i > `, the matching M contains the edges (ai,bi).
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2. If k < n, M contains the edge (an,b j) for some 1≤ j < n. Similarly, if ` > n+1,

M contains the edge (ai,bn+1) for some n+1 < i≤ 2n. That is, the nodes an and

bn+1 can be matched only through non-horizontal edges.

3. If in its upper half M contains a pair of edges (ai1,b j1),(ai2,b j2) with i1 6= j1,

i2 6= j2, and 1 ≤ i1 < i2 ≤ n, then 1 ≤ k ≤ j1 < i1 ≤ j2 < i2 ≤ n. Similarly, if in

its lower half M contains a pair of edges (ai1,b j1),(ai2,b j2) with i1 6= j1, i2 6= j2,

and n+ 1 ≤ j1 < j2 ≤ 2n, then n+ 1 ≤ j1 < i1 ≤ j2 < i2 ≤ ` ≤ 2n. That is,

non-horizontal matching edges do not cross.

Proof. To prove the first property, we show that (ai,bi) ∈ M for all i < k (the

claim for i > ` can be proven in the same way). We show by induction on 1≤ j ≤ k−1

that (ai,bi) ∈ M for all i ≤ j. For j = 1, we have that a1 must be matched to b1 (its

only neighbor), and therefore the claim holds true. Suppose the claim holds true for

some j < k−1. By the inductive assumption we have that (ai,bi) ∈M for all i≤ j. As

(a j+1,bi) ∈ E if and only if i≤ j+1, a j+1 must be matched to b j+1, and therefore the

claim holds for j+1.

The second property follows by observing that M ∈M1 implies that the bridge

edge (an+1,bn) is in M, and therefore an cannot be matched to bn, and an+1 cannot be

matched to bn+1 in M. To see this, suppose by contradiction that (an+1,bn) /∈M. Then,

bn must be matched to an (its only neighbor besides an+1), and a node in {a1, . . . ,an−1}

is unmatched. Then, each of the n−1 nodes in {b1, . . . ,bn+1} must be matched with one

of the n−2 matched nodes in {a1, . . . ,an−1}, generating a contradiction. This implies

that (an+1,bn) ∈M.

To prove the third property, assume that, in its upper half, M contains edges

(ai1,b j1),(ai2,b j2) with i1 6= j1, i2 6= j2, and 1≤ i1 < i2 ≤ n. Then, it must be that j1 < i1

and j2 < i2. Moreover, Property 1 implies that k ≤ j1. Therefore, it only remains to
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show that i1 ≤ j2. Suppose by contradiction that i1 > j2. As i1 > j1 ≥ k and j1 6= j2, it

must be that i1 ≥ k+2. As b j2 is matched to ai2 and i2 > i1, we have that each of the

i1− k ≥ 2 nodes in {ak+1, . . . ,ai1} must be matched to one of the i1− k− 1 nodes in

{bk, . . . ,bi1−1}\{b j2}, generating a contradiction. This implies that i1 ≤ j2 and therefore

1≤ k ≤ j1 < i1 ≤ j2 < i2 ≤ n. The claim in Property 3 regarding the lower half of M is

similarly proved. �

It follows from Lemma 2 that a matching M ∈M1 can be uniquely reconstructed

by specifying the two unmatched nodes and the nodes in {a1, . . . ,an}∪{bn+1, . . . ,b2n}

whose matching edges are non-horizontal. To see this, consider the upper half of Gn:

assume a j0 6= an is the unmatched node and S = { j1, . . . , jm}, with 1≤ j0 < j1 < j2 <

.. . < jm = n, is the set of indexes of the left nodes whose matching edges are non-

horizontal. (Note that n ∈ S by Lemma 2.) Then, j0 < j1 and (ai,bi) ∈M for all i such

that i /∈ S∪{ j0} and 1 ≤ i ≤ n. Hence, it necessarily holds that (a ji,b ji−1) ∈M for all

1 ≤ i ≤ m. This completes the construction of the matching in the upper half of Gn.

A similar argument can be applied to the lower half. These two arguments imply the

following lemma.

Lemma 3 There exists a bijection ψ between matchings in M1 and elements of P×P ′,

where

P =
{
(x,S) : x ∈ {1, . . . ,n−1},{n} ⊆ S⊆ {x+1, . . . ,n}

}
∪{(n, /0)},

P ′ =
{
(y,S′) : y ∈ {n+1, . . . ,2n},{n+1} ⊆ S′ ⊆ {n+1, . . . ,y−1}

}
∪{(n+1, /0)}.

2.7.3 The tree T ∗n

Definition 2 Let T1 be a labelled rooted tree with a singleton node with label 1. Induc-

tively, for 2≤ i≤ n−1, let Ti be the labelled rooted tree whose root is labelled with i and

its children are T1, . . . ,Ti−1. We define T ∗n to be the tree with an unlabelled root whose
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Figure 2.8. Tree T ∗n . Tree T ∗n with labels, for n = 6.

only child is Tn (also see Figure 2.8). Let r∗ denote the root of T ∗n .

We show that the hitting time of r∗ when starting at any node u 6= r∗ is exponential

with high probability. For a node 6= r∗, we call the edge that connects u to its parent u’s

exit edge. For any subtree Ti ⊂ T ∗n , let Zi be the random variable denoting the number of

steps that it takes for a walk starting at the root of Ti to “exit” Ti. The following lemma

provides an exponential lower bound on Zi

Lemma 4 There exist positive constants α,γ > 0 such that, for all i≥ 2,

Pr[Zi ≥ γ ·2i/(α log2 i)]≥ 1− 1
log i

.

Proof. We proceed by induction on i. For convenience, define g(i) = α log2 i and

f (i) = γ ·2i/g(i) for some α,γ > 0. For any constant α > 0, there exists a small enough

constant γ > 0 such that f (i)≤ 1; therefore, as Zi ≥ 1 with probability 1, the claim holds

trivially for any i≤ i∗, where i∗ is a suitable large constant.

Now consider any i ≥ i∗ and suppose the claim holds up to i− 1. Every time

the walk is on the root of Ti, it exits Ti with probability 1/i. Therefore, letting Et be
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the event that the first t times the walk is on the root of Ti it does not exit Ti, we have

Pr[Et ] ≥ 1− t/i. Let t = i/(2log i), and let D j, 1 ≤ j ≤ t, be the event that, when it is

on the root of Ti for the j-th time, the walk moves to the root of one of the subtrees

Ti−g(i), . . . ,Ti−1 and takes at least f (i−g(i)) steps to exit that subtree. For 1≤ j ≤ t, we

have

Pr[D j | Et ]≥
g(i)

i
·Pr[Zi−g(i) ≥ f (i−g(i))]

≥ g(i)
i
·
(

1− 1
log(i−g(i))

)
,

by the induction hypothesis on Zi−g(i). Letting χ j be the indicator function of the event

D j for 1≤ j ≤ t, the probability that at least two of the events D j happen, given Et , is

lower bounded by:

Pr

[
t

∑
j=1

χ j ≥ 2

∣∣∣∣∣ Et

]
≥ Pr

[
t/2

∑
j=1

χ j ≥ 1,
t

∑
j=t/2+1

χ j ≥ 1

∣∣∣∣∣ Et

]
= Pr

[
t/2

∑
j=1

χ j ≥ 1

∣∣∣∣∣ Et

]2

.

By union bound, we can write

Pr

[
t/2

∑
j=1

χ j ≥ 1

∣∣∣∣∣ Et

]
≥ 1−

t/2

∏
i=1

(
1−Pr[D j|Et ]

)
≥ 1−

(
1− g(i)

i

(
1− 1

log(i−g(i))

))t/2

≥ 1− exp
[
−α log i

4

(
1− 1

log(i−g(i))

)]
≥ 1− 1

iα/8 ,

where the last step holds for i sufficiently large so that log(i−g(i))≥ 2. This implies that

Pr

[
t

∑
j=1

χ j ≥ 2

∣∣∣∣∣ Et

]
≥
(

1− 1
iα/8

)2

≥ 1− 2
iα/8 .
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Therefore, we conclude that

Pr[Zi ≥ 2 · f (i−g(i))]≥ Pr

[
t

∑
j=1

χ j ≥ 2

]
≥ Pr

[
t

∑
j=1

χ j ≥ 2

∣∣∣∣∣ Et

]
Pr[Et ]

≥
(

1− 2
iα/8

)(
1− t

i

)
≥ 1− 1

log i
,

where the last step holds by choosing α sufficiently large. The claim now follows since

2 · f (i−g(i))≥ f (i). �

Note that any random walk starting at any node u 6= r∗ has to exit Tn before hitting

r∗. Therefore, an application of Lemma 4 to Tn yields a lower bound to the hitting time

of r∗ when starting at any node u 6= r∗.

Corollary 1 The hitting time of r∗ of a random walk starting at any node u 6= r∗ is

2Ω(n/ log2 n) with high probability.

2.7.4 Completing the proof of of Theorem 3

For t ≥ 0, let M (t) be the matching at the beginning of round t and assume

M (0) ∈M1. To analyze the convergence to a perfect matching, we will consider on

the event that M (t) /∈M1. Note that in order for this event to happen, the bridge edge

(an+1,bn) of Gn will have to swap out of the matching. Let E(t) be the event that an

requests bn during round t. Similarly, let E ′(t) be the event that bn+1 requests an+1 during

round t. Define the random variables

τn = min{t : E(t) happens},

τ
′
n = min{t : E ′(t) happens},

τ
∗
n = min{τn,τ

′
n}.
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Then τ∗n is a lower bound on the number of rounds to reach the perfect matching. Lemma 5

below states that, for some c > 0,

Pr
[
τn ≤ 2cn/ log2 n

∣∣∣ τn ≤ τ
′
n

]
= o(1)

and

Pr
[
τ
′
n ≤ 2cn/ log2 n

∣∣∣ τ
′
n ≤ τn

]
= o(1).

Then the main theorem follows as

Pr
[
τ
∗
n ≤ 2cn/ log2 n

]
= Pr

[
τ
∗
n ≤ 2cn/ log2 n

∣∣∣ τn ≤ τ
′
n

]
Pr
[
τn ≤ τ

′
n
]

+Pr
[
τ
∗
n ≤ 2cn/ log2 n

∣∣∣ τ
′
n < τn

]
Pr
[
τ
′
n < τn

]
= Pr

[
τn ≤ 2cn/ log2 n

∣∣∣ τn ≤ τ
′
n

]
Pr
[
τn ≤ τ

′
n
]

+Pr
[
τ
′
n ≤ 2cn/ log2 n

∣∣∣ τ
′
n < τn

]
Pr
[
τ
′
n < τn

]
= o(1).

Lemma 5

Pr
[
τn ≤ 2cn/ log2 n

∣∣∣ τn ≤ τ
′
n

]
= o(1)

and

Pr
[
τ
′
n ≤ 2cn/ log2 n

∣∣∣ τ
′
n ≤ τn

]
= o(1).

Proof. We will prove the first bound. The second one follows by symmetry.

Conditioning on the event that τn ≤ τ ′n, we will analyze the matching in the upper half

of Gn induced by M (t). Since τn ≤ τ ′n, M (t) ∈M1 as long as E(t) does not happen.

By Lemma 3, it is equivalent to study the Markov process {(X(t),S (t)), t ≥ 0} over

P ∪{(⊥, /0)}, where (X(t),S (t)) is defined as the first marginal of ψ(M (t)), and the

additional state (⊥, /0) is reached when the event E(t) happens. That is, conditioning on
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the event τn ≤ τ ′n, it follows that

τn = min{t : (X(t),S (t)) = (⊥, /0)}. (2.2)

If τn ≤ τ ′n and (X(t),S (t)) 6= (⊥, /0), all the neighbors of the unmatched node

in the upper half of Gn are matched at the beginning of round t, and hence are equally

likely to be requested during round t. Therefore, the Markov process (X(t),S (t)) has

the following transition probabilities.

Pr
[
(X(t +1),S (t +1)) = (x′,S′)

∣∣∣ (X(t),S (t)) = (x,S) 6= (⊥, /0),τn ≤ τ
′
n

]
=

1
x
,

for any

(x′,S′) ∈


{
(x′′,S∪ x) : x′′ < x}∪

{
(min(S),S\min(S))

}
, if x < n (and S 6= /0)

{
(x′′,S∪ x) : x′′ < x}∪

{
(⊥, /0)

}
, if x = n (and S = /0)

The case (x′,S′) ∈ {(x′′,S∪ x) : x′′ < x} represents the scenario in which the unmatched

node ax requests a node through a non-horizontal edge: in this case, no progress is

made as the unmatched node in the next round will be further away from an. If the

unmatched node ax requests the node on its horizontal edge, the next unmatched node

will be closer to an. In the special case (x,S) = (n, /0), if the unmatched node requests the

neighbor on its horizontal edge, then the bridge edge is swapped out of the matching and

M (t +1) /∈M1.

We will now show that the Markov chain {(X(t),S (t)), t ≥ 0} is equivalent to

the random walk on T ∗n . For a node v of T ∗n , let xv be its label and Sv be the set of labels
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of its ancestors. Define the function φ from nodes of T ∗n to states of the chain as follows:

φ(v) =

 (⊥, /0), v = r∗

(xv,Sv), v 6= r∗

It is easy to verify that φ is a bijection. Two nodes u and v are adjacent in T ∗n if and only

if there is a nonzero transition probability between the states φ(u) and φ(v). To see this,

suppose there is a nonzero transition probability from (xu,Su) to (xv,Sv) in the Markov

chain. Let u = φ−1(xu,Su) and v = φ−1(xv,Sv) be the corresponding nodes in T ∗n . There

are two cases: (a) if xv < xu then Sv = Su∪ xu, and v is a child of u; (b) if xv > xu then

xv = min(Su), Sv = Su\min(Su), and v is the parent of u. The other direction is analogous.

Therefore, conditioning on τn ≤ τ ′n and (X(0),S (0)) 6= (⊥, /0), we can conclude that

min{t : (X(t),S (t)) = (⊥, /0)} equals the hitting time of r∗ for a random walk on T ∗n

starting at the node φ−1(X(0),S (0)) 6= r∗. The lemma follows by equation (2.2) and

Corollary 3.

2.8 Proof of Theorem 4

As in the proof of Theorem 3, we let M =M1∪M2 be the set of all matchings of

Gn of size 2n−1, where M1 and M2 contain all matchings in which the two unmatched

nodes are in opposite sides of Gn and in the same side of Gn, respectively. By Theorem 3

we know that starting from any matching in M1 requires exponentially many steps to

reach the perfect matching of Gn with high probability. We will show that these matchings

substantially make up for the whole M . Indeed, we prove that

|M1|= 22n−2, and |M2|= 2n+1−2.
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To compute the size of M1, using Corollary 3 we have that

|M1|=

(
1+

n−1

∑
i=1

2n−i−1

)2

=

(
1+

n−2

∑
j=0

2 j

)2

=
(
1+(2n−1−1)

)2
= 22n−2.

To compute the size of M2, let M ′
2 contain the matchings of M2 in which the two

unmatched nodes are in the upper half of Gn. Observe that by symmetry |M2|= 2 · |M ′
2|.

To determine the size of M ′
2, note first that every matching in M ′

2 is such that the

nodes in the lower half of Gn are matched through parallel edges, i.e. a j is matched

with b j for every n+1 ≤ j ≤ 2n. Now consider all matchings in M ′
2 where ak, b` are

the two unmatched nodes, and observe that it must be that 1 ≤ k ≤ ` ≤ n (if not, we

would have at least another unmatched node at with t < `). Also, note that for every

1 ≤ j ≤ k− 1 and every `+ 1 ≤ j ≤ n, it must be that a j is matched with b j. Hence,

for k = `, there is a single matching. For k < `, we show that the remaining nodes can

be matched in 2`−k−1 ways. To prove this, first observe that ak+1 can be matched to

either bk+1 or bk. Then, given the choice for ak+1, ak+2 can be matched to either bk+2

or the node in {bk+1,bk} which is not matched to ak+1. Similarly, for i+1≤ j ≤ `−1,

there are two possible choices for a j given the choice for {ak+1, . . . ,a j−1}. Finally, given

the choices for {ak+1, . . . ,a`−1} there is only one possible match for a`, thus obtaining

2`−k−1 matchings with ak, b` unmatched, 1≤ k < `≤ n. We can conclude that

|M ′
2|=

n

∑
k=1

(
1+

n

∑
`=k+1

2`−k−1

)
= n+

n−1

∑
k=1

2−k
n

∑
`=k+1

2`−1

= n+
n−1

∑
k=1

2−k(2n−2k) = 1+
n−1

∑
k=1

2n−k = 1+(2n−2) = 2n−1.
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Chapter 3

An instance of distributed social com-
putation: the multi-agent group mem-
bership problem

3.1 Introduction

We consider a distributed computation scenario in which there are agents of two

types, leaders and followers. Each leader is equipped with the task to form a group of

followers of a certain cardinality, by sending them requests. Followers can either accept

or reject incoming leaders’ requests. Each follower can be part of a single group at

any time but can change group over time. Multiple followers can be part of a leader’s

group, but each leader can only recruit followers with whom it shares a communication

link. These communication links are described by an arbitrary bipartite network, and we

assume that each agent has knowledge of, and can interact with its neighbors over the

network. In practice, the structure of the network can be dictated by physical or social

constraints, see Figure 3.1. Leaders and followers share the common goal of reaching

a state in which each leader formed a group of the right size, and we call stable such a

state of “social welfare.” We refer to this scenario as the group membership problem.

The contribution of the present work is twofold. First, we show that simple local

rules of interaction lead to stable, or close to stable, group membership in reasonable
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Figure 3.1. Example of a bipartite network between leaders and followers determined
by physical constraints. Left: each leader can recruit the followers in its visibility range
(dotted circle), arrows represent group membership, the set of arrows defines a partition
of the followers into groups. Right: the resulting bipartite network. An edge between
leader ` and follower f exists if and only if f is in `’s visibility range. Matching edges
are highlighted.

time, where by “close to stable” we mean that the total number of additional followers

required to satisfy all group size constraints is an arbitrary small fraction of the entire

population. Then, we show that such rules predict the performance of a group of human

subjects solving the same group membership task in a laboratory setting, suggesting that

multi-agent systems are useful to describe complex heterogeneous systems as human

populations.

Regarding the first contribution, we propose a simple, distributed, memoryless

algorithm in which leaders only pursue local stability, and we show that, in any network

of size n, any constant approximation of a globally stable outcome (or of a suitably

defined best outcome if a stable one does not exist) is reached in time polynomial in n

with high probability. In other words, within an acceptable approximation, our algorithm

is able to find a solution in feasible time on any instance of the problem. In contrast, we

show that there exist networks requiring an exponential gap between the time needed

to reach stability and that needed to reach approximate stability, that is, to find the best
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solution compared to a good solution. In order to characterize what types of solution

can be reached in feasible (i.e., polynomial) time, we do not restrict our attention to a

subclass of problem instances to provide guarantees on the convergence to the optimal

solution. Instead, we consider approximate solutions and derive a result that holds for

any instance of the problem.

Regarding the second contribution, we created an artificial environment in which

human subjects have to solve a group membership task on virtual networks of leaders and

followers. We conducted 36 experiments of group membership on a pool of 10 different

networks with 16 nodes each. In each experiment, participants controlled the nodes of

a virtual network and interacted with their neighbors via the point-and-click interface

shown in Fig. 3.2. In order to elicit the common goal of reaching stability, they received

a monetary reward if they reached a stable state within a maximum time of 5 minutes.

We observe a good fit between experimental data and the algorithm’s predictions. On the

one hand, the algorithm was able to predict which networks where the most difficult to

solve by the human subjects. On the other hand, the human subjects always found good

solutions quickly and spent most of the time attempting to improve to the optimum. These

results suggest that, at least in the specific context of the group membership problem

considered here, simple local rules of interaction are able to simulate complex global

dynamics, and therefore tools from traditional computation theory can be used to study

distributed social computation.

We point out that the idea of using simple interactions to predict global outcomes

resulting from possibly complex and diverse microscopic effects is not new. The theme is

recurrent in statistical physics and cellular automata [57, 141, 36, 211], but has yet to gain

popularity in the context of social computation. Our reduction of social interaction to

algorithmic modeling is also reminiscent of the work of Herbert Simon, who claimed that

information processing is at the basis of human decision-making [194]. Finally, we refer
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Figure 3.2. Computer interface of a participant playing the role of a leader. The
participant controls the node in the middle (with the label “you”) and has to match with 3
followers (neighboring nodes). The green line indicates a matched pair with the follower
on the right. Followers marked in green (on the bottom) are currently matched with other
leaders. Blue arrows represent outgoing matching requests (to the followers on top). The
bar on top shows the remaining time (out of the 5 minutes allowed).

to the influential work of Kearns and his collaborators [124, 113, 122, 114, 123, 121],

who pointed out the need to study the principal mechanisms of social computation

and strategic interaction over networks. Our experimental approach, based on a highly

constrained laboratory setting, where language and other natural forms of communication

are eliminated in favor of enforcing simple actions, follows closely this line of work.

In addition, we advocate for simple computational models of individual behavior for

predictive and explanatory purposes.

3.2 Related work

The study of distributed multi-agent coordination has received a great deal of

attention by the control and computer science communities, particularly in settings

where the agents perform simple local updates, do not have complete knowledge of the

entire population, and communication between them is limited. On the other hand, in

computational social science similar coordination problems have been considered with
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the goal of providing a model of distributed dynamics of human networks.

Within the first group of studies, one of the main issues is whether distributed

multi-agent coordination dynamics converge in finite time to a set of desirable config-

urations defined by notions of stability and optimality. For example, Roth and Vande

Vate [187] considered two-sided marriage markets and showed that better- and best-

response dynamics always reach stability in finite time. Bertsekas and Castanon [29, 30,

31] studied distributed dynamics for the assignment problem and proved their converge

with probability one to optimal assignments. In our work, convergence to the set of

optimal solutions always occurs in any instance of the problem. In particular, we define a

potential function for our algorithm (that we call deficit) and a structural result guarantees

that this decreases in a finite number of iterations (see Lemma 6).

Beside convergence in finite time, another important issue is convergence in

feasible time. In this case, results are based on computer simulation [31, 22], or require

specific modeling assumptions. For example, in the context of two-sided matching, best-

or better-response dynamics are shown to converge to stability in polynomial time in the

cases of global rankings [1], correlated markets [3] and geometric preferences [16], but

might require exponential time in the general case (see for example [3]). In the context

of distributed network coloring, Vattani et al. [107] proposed simple local dynamics that

converge in polynomial time on any bipartite network. These works provide relevant

insights about certain classes of problems, but their analysis is restricted by the specific

assumptions they make to provide convergence guarantees.

An alternative approach, that allows to obtain results in more general scenarios,

is to introduce a notion of approximate solution and to quantify the tradeoff between the

quality of a solution and the time needed to reach it. The objective is to provide provable

performance guarantees that hold for any instance of the problem, and to understand

what types of configuration can be reached in practical time. In this context, Nedic
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and Ozdaglar [160] studied the distributed optimization of sums of convex functions by

agents who optimize their local objectives and exchange information locally, focusing on

the tradeoff between solution accuracy and time. In the same spirit, our work considers a

setup in which a globally stable solution is approximated by agents concerned by their

local stability. In the context of bargaining over social exchange networks, Kanoria et

al. [117] showed that ε-approximate Nash bargaining solutions are reached by a simple

distributed algorithm in time polynomial in ε−1 and in the network size. In Chapter 2,

we considered the problem of maximum matching and showed that a ε-approximate

maximum matching is reached by simple local interaction in time increasing in ε−1 and

polynomial in the network size. In the context of distributed consensus and averaging,

Olshevsky and Tsitsiklis [165] showed that the number of iterations to convergence is

polynomial in the number of agents and increases only logarithmically in the target

accuracy ε−1 (where ε is the maximum allowed distance of an agent’s opinion from

consensus). Nax et al. [159] considered a formulation of the assignment problem in

which limited information is available and can be exchanged between the agents, and

proposed a simple distributed scheme for the agents’ local updates. While the proposed

algorithm is shown to always converges to optimal and stable allocations, the authors do

not study its rate of convergence.

A different aspect of our work is the proposal of a simple distributed dynamical

model to describe and predict the outcomes of groups of humans who have to coordinate

over networks.

In computer science, human coordination has been studied under the premise that

coordination constitutes the basis for social computing [205]. Following this approach,

distributed collections of humans are tried to collectively solve traditional algorithmic

tasks, such as coloring, consensus, and various forms of matching. For example, in the

work of Kearns et al. [124], human subjects positioned at the vertices of a virtual network
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were shown to be able to collectively reach a coloring of the network, given only local

information about their neighbors. Other works further investigated human coordination

in the case of coloring [67, 114, 151], consensus [114, 122], matching (see Chapter 2),

bargaining and trade [117, 46, 113], and network formation [123]. Quoting Kearns [121],

the main findings of research on experimental social computation up to date are the

ability of humans to solve a wide range of tasks in a distributed fashion, the effect of the

network structure on performance, with opposite effects for different tasks [114], and the

emergence of behavioral characteristics of individuals [122]. However, the effectiveness

of mathematical models of social computation to predict performance still needs to be

assessed.

In this work, we address the question posed in [121] regarding the possibility

of using simple models of social computation to predict the performance of humans on

specific computation tasks over networks. Within an extremely wide design space, we

focus on the distributed task of group membership, and use computational complexity

and equilibrium concepts as the rigorous language to express these predictions.

3.3 The group membership task

We consider a bipartite network G = (L∪F,E) whose nodes are the disjoint

sets L of leaders and F of followers, and where there exists an edge ( f , `) ∈ E between

follower f and leader ` if and only if f and ` can communicate between each other (see

Figure 3.1). Let N` = { f ∈ F : ( f , `) ∈ E} be the neighborhood of ` ∈ L. For each ` ∈ L,

leader ` has to form a group of c` followers from N`, where c` ≥ 1.

Definition 3 (Matching) A subset M ⊆ E is a matching of G if for each f ∈ F there

exists at most a single ` ∈ L such that (`, f ) ∈M.
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The definition of matching permits multiple followers to be part of a leader’s

group. There is a one-to-one correspondence between matchings M of G and groups

{T`(M) : ` ∈ L}, where T`(M) denotes the group of leader ` under the matching M. We

have that T`(M) = { f ∈ F : (`, f ) ∈M} ⊆ N` for every matching M. Agents in L∪F

are rewarded if each leader ` controls a team of c` followers, therefore we consider the

following notion of stability.

Definition 4 (Stable matching) Given constraints c` for each ` ∈ L, a matching M of

G is stable if and only if |T`(M)|= c` for each ` ∈ L.

Having a local view of the network, each leader ` can only assess if “local

stability” holds (i.e., if it is matched with c` followers), in contrast with the notion of

“global stability” defined above.

Given the constraints c`, a network G might not admit a stable matching. Nonethe-

less, given a matching of G, we are interested in assessing its quality. Our main result

builds on the following definitions of deficit of a leader and a matching.

Definition 5 (Deficit) Let ` be a leader with constraint c`, and M be a matching of G.

The deficit of ` under M is

d`(M) = c`−|T`(M)|.

The deficit of M is

d(M) = ∑
`∈L

d`(M) = ∑
`∈L

(c`−|T`(M)|) .

In words, d`(M) is the number of additional followers leader ` needs to satisfy its size

constraint. Similarly, d(M) sums the numbers of additional followers all leaders need

to satisfy their size constraints. Given a matching M, we say that a leader ` is poor if

d`(M) > 0 (that is, |T`(M)| < c`) and stable if |T`(M)| = c` (we exclude |T`(M)| > c`

assuming that matching with additional followers is costly). Observe that only poor
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leaders contribute to d(M), and that M is stable if and only if d(M) = 0. Given G, two

matchings can be compared with respect to their deficit, and the best matching of G can

be defined as one minimizing the deficit.

Definition 6 (Best matching) A matching M of G is a best matching if d(M)≤ d(M′)

for every matching M′ of G.

Observe that a stable matching is also a best matching, and that a best matching

always exists for any network G and constraints c`. Moreover, if G admits a stable

matching, d(M) quantifies how much M differs from a stable matching of G. In general,

if M∗ is a best matching of G with d(M∗) = d∗, then, d(M)−d∗ tells how much M differs

from a best matching of G. Given a matching M of G, the following definitions provide a

measure of how well M approximates a best matching of G, or a stable matching (if one

exists).

Definition 7 (Approximate best matching) Fix ε ∈ [0,1], and let m be the number of

followers in G. Let M∗ be a best matching of G. Then, a matching M is a (1− ε)-

approximate best matching of G if d(M)−d(M∗)< εm.

Definition 8 (Approximate stable matching) Let G admit a stable matching. Fix ε ∈

[0,1], and let m be the number of followers in G. Then, a matching M is a (1− ε)-

approximate stable matching of G if d(M)< εm.

3.4 The group membership algorithm

For ease of presentation, we assume that agents are synchronized. However,

our results continue to hold also in the case of asynchronous agents (see discussion in

Section 3.7). We assume that time is divided into rounds and each round is composed of

two stages. In the first stage, each leader acts according to the algorithm in algorithm
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box 2, and in the second stage each follower acts according to the algorithm in algorithm

box 3.

First consider a leader `, and let M be the matching at the beginning of a given

round. If ` is poor (that is, |T`(M)| < c`) and |T`(M)| < |N`| (that is, ` is not already

matched with all followers in N`) then, with probability p (where p ∈ (0,1] is a fixed

constant), ` attempts to match with an additional follower. We assume that leaders always

prefer followers that are currently unmatched over matched ones. Note that a leader first

checks if local stability holds (i.e., its group size is c`).

Consider now a follower f . During each round, if f has incoming requests then

each is rejected independently of the others with probability 1−q (where q ∈ (0,1] is

a fixed constant). If all incoming requests are rejected, then f does not change group

(if currently matched) or it remains unmatched (if currently unmatched). Otherwise,

one among the active requests is chosen uniformly at random, f matches with the

corresponding leader, and all the other requests are discarded. For ease of presentation,

we assume that a follower is equally likely to accept a request when unmatched or

matched, and that p and q are the same for all agents. Our results hold for more general

choices of the parameters, that can vary between agents, as long as they remain bounded

away from zero1.

The proposed algorithm has the following desirable features aimed at modeling

distributed social computation: agents have no memory of the past, decision are based

only on local information, it is self-stabilizing (i.e. it stops when a stable matching is

reached), the exchanged messages can be represented by a single bit2, and each leader

1 If each leader ` has a parameter p` and each follower f has a parameter q f , our main result in
Theorem 5 holds with p = min` p` and q = min f q f as long as these lower bounds are bounded away from
zero.

2 For example, when a follower accepts a matching request by leader `, she might communicate it by
sending a bit ‘1’ to leader ` and a bit ‘0’ to all other neighboring leaders. Our main result (Theorem 5) does
not consider the total number of bits exchanged to reach a given approximation of the optimal solution.
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only pursues local stability. The single invariant of the algorithm is that leaders prefer

unmatched followers and pursue local stability. Followers, on the other hand, act in a

randomized fashion and ensure exploration of the state space. Despite their simplicity,

these simple rules allow to reach a good approximate solution and capture the collective

behavior of the real human network. In practice, preferring unmatched followers appears

to be a natural strategy, pursuing local stability is an inherent characteristic of human

behavior –although subjects might not admit it explicitly in a survey– while randomization

captures the diversity of the actions of the population as evidenced in the exit pools. As a

remark, we consider an algorithm in which agents have no memory of the past for ease of

analysis. We believe that allowing agents’ decisions to depend on the past actions (made

by them and their neighbors) would not change our results.

ALGORITHM 2: Algorithm for leader ` ∈ L.

if |T`(M)|< min{c`, |N`|} then
with probability p do the following;
if ∃ unmatched f ∈ N` then

choose an unmatched follower f ′ ∈ N` u.a.r.
else

choose a follower f ′ ∈ N`\T`(M) u.a.r.
end

end
send a matching request to f ′;

ALGORITHM 3: Algorithm for follower f ∈ F .

if f has incoming requests then
for each leader ` requesting f do

with probability 1−q reject `’s request
end
if there are active requests then

select one u.a.r. and join corresponding team;
reject all other requests;

end
end
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3.5 Complexity results

For ease of presentation, we only consider networks admitting stable matchings

and show that, given any network and any constant ε ∈ (0,1), a (1− ε)-approximate

stable matching is reached in a number of rounds that is polynomial in the network

size with high probability (Theorem 5). Then, we show through a counterexample that

improving from approximate stability to stability might require time exponentially large

in the network size (Theorem 6). Our results hold in general for reaching approximate

best matchings.

Theorem 5 Let G be a network with m followers and which admits a stable matching.

Let ∆ = max`∈L |N`| be the maximum degree of the leaders. Fix 0 < ε < 1, and let

c ≥ 1+ 1
m(1−ε) . Then, a (1− ε)-approximate stable matching of G is reached within

cb1/εc(∆/pq)b1/εcm rounds of the algorithm with probability at least 1− e−cmε2/2.

As an example, if ∆ is constant in the network size, then one can choose ε =

1/ logm, and Theorem 5 implies that a (1− 1/ logm)-approximate stable matching is

reached in at most O(m2 logm) rounds with probability that goes to one as m→ ∞.

In order to prove Theorem 5 (see Section 3.8) we introduce the notion of deficit-

decreasing path, that in our setup plays the role of the augmenting path in the context of

one-to-one matching. Since we consider bipartite networks, a path alternates leaders and

followers.

Definition 9 (Deficit-decreasing path) Given a matching M of G, a cycle-free path

P = `0, f1, `1, . . . , fk−1, `k−1, fk (of odd length 2k-1) is a deficit-decreasing path relative

to M if (`i, fi) ∈ M for all 1 ≤ i ≤ k− 1, `0 is a poor leader, and fk is an unmatched

follower.
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Figure 3.3. Deficit-decreasing path. Top: a deficit-decreasing path of length 5: `0 is a
poor leader, f3 is an unmatched follower, and matching edges are highlighted. Bottom:
the path is “solved” by turning each matched edge into an unmatched edge and vice
versa; `0 obtains an additional follower (and its deficit decreases by one), `1 and `2 do
not change their numbers of followers.

In words, a deficit-decreasing path starts at a poor leader with an edge not in M, ends at a

follower that is not matched, and alternates edges in M and edges not in M. Observe that

a new matching M′ such that d(M′) = d(M)−1 is obtained by flipping each unmatched

edge of a deficit-decreasing path P into a matched edge, and vice versa. This is shown in

Figure 3.3. The proof of Theorem 5 is based on a technical lemma (see Section 3.9) that

extends a previous combinatorial result by Hopcroft and Karp [103, Theorem 1]. Given

a matching M with d(M)≥ εm, we guarantee the existence of a deficit-decreasing path

of length at most 2b1/εc. Such a “short” path allows us to bound the number of rounds

needed for a one-unit reduction of the deficit. The symmetric difference of two sets A

and B is A⊕B = (A\B)∪ (B\A). Two paths are follower-disjoint if they do not share any

follower (even though they might share some leader).

Lemma 6 Let G admit a stable matching N. Let M be a matching of G with deficit

d(M)> 0. Then, in M⊕N there are at least d(M) follower-disjoint deficit-decreasing

paths relative to M.

We make use of Lemma 6 through the following corollary, which holds as the

lengths of a set of follower-disjoint paths sum to at most 2m.

Corollary 2 Let G be a network with m followers, admitting a stable matching N. Let M

be a matching of G with deficit d(M)≥ εm, for some ε > 0. Then, in M⊕N there exists
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a deficit-decreasing path relative to M of length at most 2b1/εc−1.

As a remark, Corollary 2 and the observation that the deficit is non-increasing guarantee

that our algorithm always convergences to the set of optimal solutions in finite time in

any instance of the problem3.

Theorem 5 gives a polynomial bound for reaching a (1− ε)-approximate stable

matching for any constant 0 < ε < 1 and any network. However, a polynomial guarantee

cannot be derived for the case of a stable matching (that is, for ε = 1/m). To show this,

we define a sequence of networks in which the number of rounds required to converge

from an approximate matching M with d(M) = 1 to the stable matching is exponentially

large in the network’s size with high probability from an overwhelming fraction of the

approximate matchings M such that d(M) = 1.

For n≥ 1, let Gn = (Ln∪Fn,En) be the network with leaders Ln = {`1, . . . , `n},

followers Fn = { f1, . . . , fn}, edges En = {(`i, f j) : 1 ≤ i ≤ n, j ≤ i}, and group size

constraints c` = 1 for all ` ∈ Ln, see Figure 3.4. Gn has a unique stable matching given

by M∗n = {(`i, fi) : 1≤ i≤ n}.

Theorem 6 For any matching M of Gn, let τ∗(M) denote the number of rounds to

converge to the perfect matching when starting from M. Then, for any fixed constant

0< γ < 1, τ∗(M) is exponentially large in γn with high probability for a 1−O(n2−(1−γ)n)

fraction of all the matchings M such that d(M) = 1.

3The deficit never increases over time as a leader never voluntarily disengages from a follower (see
algorithm box 2), and a follower disengages from a leader only when she accepts a new matching request
(see algorithm box 3). Convergence follows by considering the Markov chain whose state space is the set
of all matchings. For each matching M, only matchings M′ with d(M′)≤ d(M) can be reached from M,
and Corollary 2 guarantees the existence of a finite sequence of transitions that lead from M to M′ such
that d(M′)< d(M) with finite probability.
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Figure 3.4. The network Gn for n = 6.
The matching M′n is highlighted.

Here we only provide the idea of the proof, whose details are presented in Section 3.10.

To get an understanding of the algorithm’s dynamics, consider the matching

M′n = {(`i, fi−1) : 2≤ i≤ n},

highlighted in Figure 3.4 for the case of n = 6. Observe that d(M′n) = 1 and `1 is poor.

According to the algorithm, `1 tries to match with f1. If f1 accepts, then `2 becomes

poor (and tries to match with f1 or f2). After each round, there exists a unique poor

leader until the stable matching is reached. The stable matching is reached when `n−1

(`5 in Figure 3.4) becomes poor and matches with fn−1 ( f5 in Figure 3.4), and finally

`n matches with fn. The stochastic process tracking the position of the poor leader is

not a classical random walk and its transition probabilities at each time depend on the

current matching. We show that convergence to stability requires a number of rounds that

is exponential in n with high probability, and this holds for an overwhelming fraction of

all matchings with d(M) = 1.

Fig. 3.5 shows the algorithm’s average convergence time on the sequence of

networks Gn (in logarithmic scale). The average number of rounds to reach a 0.9-

approximate stable matching is upper bounded by a polynomial of small degree (bottom,
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Figure 3.5. Algorithm’s performance on the hard networks Gn. The x-axis reports n, the
y-axis reports the average time over 1000 simulations (in base-10 logarithm). The red
line (top) shows the time to reach the stable matching; the blue line (bottom) shows the
time to reach a (1− ε)-approximate matching for ε = 0.1.

blue line), consistently with Theorem 5, while convergence to the stable matching requires

an average number of rounds that grows exponentially in n (top, red line), as predicted

by Theorem 6.

Fig. 3.6 shows the algorithm’s performance in reaching successively finer approx-

imations of the best matching on random networks G(n,m,ρ). Here, G(n,m,ρ) refers to

a random bipartite network with n leaders and m followers, in which each edge exists

independently of the others with probability ρ (we fixed ρ = 0.04), and with constraint

c` = min{m/n, |N`|} for each leader `. For each choice of n and m that we considered,

100 random G(n,m,ρ) were generated, and the algorithm was run 100 times on each.

We observe that, consistently with Theorem 5, τ(ε) increases both when ε decreases (i.e.,

a finer approximation is desired) and when the number m of followers increases. The

plot shows that a good solution is reached quickly, while most of the time is spent in the

attempt of improving it to the best solution.
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Figure 3.6. Algorithm’s performance to reach a (1− ε)-approximate best matching on
random bipartite networks G(n,m,ρ), for ρ = 0.04 and different choices of n and m. For
each choice of n and m, 100 random networks where generated, and each was simulated
100 times.

3.6 Experiments of human social computation

We conducted 36 experiments on a pool of 10 networks of 16 nodes each (each

network was tested 3 or 4 times). Each of sixteen participants controls a node in

the network via a computer interface which shows only its immediate neighbors (see

Figure 3.2). During each experiment, a network is chosen and subjects are randomly

assigned to nodes and informed whether they are playing the role of followers or leaders

(in the latter case, the target number of followers is also specified). In order to elicit

the common goal of reaching stability, each subject is paid a reward of $1 if stability

is reached within the maximum time of 5 minutes. Subjects can only interact via the

computer interface: leaders can send matching requests to followers and break them with

clicks of the mouse (for each leader, the number of concurrent outgoing requests plus

matched followers can be at most equal to its group target size); followers can accept or

reject leaders’ requests and break their own existing matched pairs, with clicks of the

mouse.
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Figure 3.7. Algorithm performance versus human subjects performance. The x-axis
shows the NetworkID for the 10 different networks tested in the experiments, sorted
by increasing average solving time in the experiments. The red line shows the average
solving time (in seconds) for each network in the experiments (each tested three of four
times); the blue triangles show the average number of rounds needed by the algorithm to
solve the same networks (over 1000 simulations). The correlation between experiments’
average time and algorithm’s average number of rounds is 0.64 (p-value=0.04).

The networks range from simple random topologies to topologies similar to

the network Gn defined above (and are not shown due to space constraints). After the

experiments, each network was assigned a networkID such that higher IDs correspond

to higher average solving time (if an experiment is not solved within the 5 minutes

maximum time, a time of 5 minutes is considered). Figure 3.7 compares the performance

of the human subjects (average number of seconds for each network, sorted by increasing

solving time) and of the algorithm (average number of rounds over 10000 simulations on

each network). Networks that required more time to be solved during the experiments

also required more rounds of the algorithm (correlation 0.64 between number of seconds

in the experiments and average number of rounds for the algorithm, p-value=0.04).

Moreover, the networks with NetworkID from 8 to 10 (the most difficult to solve for the

human subjects) are the topologies similar to the network Gn and were solved 6 times

out 11 (all other experiments were solved). Our results do not seem to be determined by
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Figure 3.8. Human subjects performance: approximation versus stability. The x-axis
shows the experimentID (sorted by increasing solving time). The red line shows the time
spend by the human subjects to solve each experiment (300 seconds if the experiment was
not solved), the green line shows the corresponding time spent to reach an approximate
matching in which only a single leader needs an additional follower.

participants learning or getting tired (i.e., improving or worsening over time).4

Figure 3.8 compares the time needed by the human subjects to reach a stable

matching versus an approximate solution in which only a single leader needs an addi-

tional follower (that is, with deficit equal to 1, according to the definition given above).

Experiments are sorted by increasing solving time and we observe that a good solution

is reached quickly while most of the time is spent improving it to the optimum, in

agreement with the algorithm predictions. The time to reach an approximate solution

with deficit equal to 1 and a stable solution are correlated (0.55, p-value 0.0004), and

on average reaching the approximate solution requires about 7% of the total time (least

squares regression, 0.065 p-value 0.0005 without controlling for NetworkID, 0.073 p-

value 0.005 controlling for NetworkID). At the end of the experimental session, subjects

were asked to complete an exit survey about their strategies. A wide range of strategies

was reported. As for the leaders, participants reported to favor unmatched followers

4Difference between the solution time of subsequent experiments not significant (least squares re-
gression, average additional 1.44sec. for each subsequent experiment, p-value 0.35), also controlling for
NetworkID (0.51sec. less for each subsequent experiment on the same network, p-value 0.70).
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(7 surveys, notice how this criterion agrees with our algorithm), blink (that is, quickly

sending and canceling requests) in order to capture the attention of a follower (3 surveys),

only request followers who did not break the matching earlier (2 surveys), try to match

with new followers if the game is not solved for a while (3 surveys), and many other

criteria. As for the followers, participants reported to always accept new requests (5

surveys), match with the leaders who are more persistent (4 surveys), match with leaders

that are blinking (2 surveys), and so on. Clearly, trying to take all reported strategies

into account (that might not correspond to the real strategies employed) would result in a

complex and mathematically intractable model, and prevent us from deriving the clean

trade-off between time and quality of the solution as stated in Theorem 5.

In practice, preferring unmatched followers appears to be a natural strategy,

pursuing local stability is an inherent characteristic of human behavior – although subjects

might not admit it explicitly – while randomization captures the diversity of the actions

of the population as evidenced in the exit pools.

3.7 Discussion

The algorithmic model we proposed presents a set of desirable features aimed at

modeling distributed social computation, and is simple enough to be prone to rigorous

mathematical analysis. Despite its simplicity, it is able to predict human performance

and fits the experimental data, showing that the global dynamics of complex agents with

possibly diverse strategies can be well described by simple synthetic agents with uniform

strategies. We advocate the usage of similarly simple algorithmic models to capture the

essence of social interaction and to investigate a wider variety of social computation

tasks.

In order to evaluate the proposed algorithmic model as a possible description of

human behavior, we created an artificial environment in which human subjects solve
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the group membership task on virtual networks. In these experiments, participants have

the possibility to send, accept or decline matching requests as long as a solution is not

reached and they are given a monetary reward upon successful and timely completion of

each task. Two important features of the experiments are absent from the algorithmic

model – the monetary reward and the time threshold. The monetary reward provides an

incentive to solve each experiment and, as such, it appears necessary in the experimental

design. On the other hand, in the algorithmic model, agents act until a stable solution is

reached. The five-minute time threshold on each experiment guarantees that the entire

experimental session has a constrained duration even in the presence of hard-to-solve

networks. For such networks, we can compare the time to reach approximate solutions

and a lower bound for the time to reach a stable solution. Despite these differences and

the fact that participants can follow arbitrary strategies, the proposed algorithmic model

is able to qualitatively capture the dynamics of the human subjects.

For ease of presentation, we assumed that agents are synchronized. We can

consider an asynchronous setting where each of the m leaders has a clock that activates

at random times. When a leader’s clock rings, the leader acts according to the algorithm

in Table 1. Followers are activated by incoming requests from leaders and act according

to the algorithm in Table 2. Our results would continue to hold substantially unchanged.

For example, if we consider independent Poisson processes with inter-point times that are

exponentially distributed with parameter λ = 1, a total of m events occur on average in a

unit of time. This is comparable to the synchronous scenario in which all m leaders have

the possibility to act during each time interval. The argument in the proof Theorem 5

would follow similarly by considering time intervals of fixed duration δ and replacing p

by p(1− e−δ ), where the term between parentheses is a lower bound for the probability

that a given clock rings within δ . The upper bound for the time to reach a (1− ε)-

approximate stable matching would present a multiplicative factor that depends on δ .
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The best choice of δ depends on ε and for constant ε the multiplicative factor is constant

in m.

In practical scenarios, the constraints c` can be lower bounds rather than exact

targets. In this case, we assume that leader ` sends matching requests as long as her

team’s size is smaller than c` or there are unmatched followers in her neighborhood, and

our main result in Theorem 5 continues to hold. In addition, if ∑` c` < n, where n is

the number of followers, some followers will be unmatched in any configuration, and

particularly in the first stable matching that is reached (if a stable matching exists), unless

the constraints c` are lower bounds.

In the present paper, a fixed network topology is assumed. Multi-agent systems

are often characterized by time-changing topologies, which result from either agents

mobility or unreliable communication and whose effect on the system dynamics depends

on the particular scenario. For example, Sarwate and Dimakis [190] showed that evolving

topologies might help the diffusion of information in the context of averaging, Xiao

and Wang [218] showed that they can harm convergence to consensus unless certain

connectivity conditions hold. If the network topology is allowed to vary arbitrarily,

our main result (Theorem 1) gives a performance guarantee in terms of the time since

the most recent change in the network topology. We observe that a change in network

topology that affects only few edges might in general result in a significant change in the

optimal solution, and we leave the rigorous analysis of time-varying topologies to future

investigation.

Finally, in the present work, we defined the quality of a solution in terms of the

additional number of followers needed by all leaders in order to satisfy all size constraints

(and we called this quantity the deficit of a matching). We proved that our algorithm

constitutes a Polynomial Time Approximation Scheme (PTAS) for the minimization of

this quantity, that is, any constant approximation of the optimal solution is reached in
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polynomial time in any instance of the problem. Different quantities might be better

suited to express the quality of an approximate solution in different applications. However,

provable performance guarantees might in general be derived only for a subclass of the

problem instances, and the analysis depends on the particular definition of approximation

that is considered.

3.8 Proof of Theorem 5

Fix 0 < ε < 1. Observe that d(M(t)) is non-increasing in t, as leaders do not

voluntarily disengage from the followers in their groups (and therefore the deficit of a

leader increases of one unit only if the deficit of another leader decreases by one unit).

Moreover, since c` ≥ 1 for every leader `, and G admits a stable matching, d(M(t))≤ m

for every t.

For every 0 < x≤ 1, let

τ(x) = min
{

t ≥ 0 : d(M(t))< xm
}

be the first round at whose beginning the deficit is strictly smaller than xm. We want to

find an upper bound for τ(ε).

Consider any round t ≥ 0. Since d(M(t))≤ m, there exists 0 < ε ′ ≤ 1 such that

d(M(t)) = ε ′m (we assume ε ′ > 0, as the case of ε ′ = 0 is trivial). The following lemma

bounds the number of rounds τ(ε ′)− t needed for a one-unit reduction of the deficit. Let

∆ = max`∈L |N`|.

Lemma 7 Let d(M(t)) = ε ′m for some 0 < ε ′ ≤ 1. Then

Pr
(

τ(ε ′)− t ≤ b1/ε
′c
)
≥
( pq

∆

)b1/ε ′c
.
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Proof: Let h(t) ≥ 1 be the odd length of each shortest deficit-decreasing path

relative to M(t). By Corollary 1, h(t)≤ 2b1/ε ′c−1. We distinguish the cases of h(t) = 1

and h(t)≥ 3. First consider h(t) = 1. With probability at least pq/∆ the deficit decreases

by at least one unit during the next round of the algorithm. Too see this, consider a

deficit-decreasing path `, f . With probability at least p/∆, ` tries to match with f and,

conditional on this, f considers `’s proposal with probability q, resulting in the lower

bound pq/∆.

Now consider h(t)≥ 3, and let P be a shortest deficit-decreasing path of length

h(t) ending at an unmatched follower f . The length of P decreases by one in the next

round with probability at least pq/∆ ( f is unmatched after round t as P is a shortest

deficit decreasing path and h(t)> 1).

By independence of successive rounds of the algorithm and the bound h(t) ≤

2b1/ε ′c− 1, with probability at least (pq/∆)b1/ε ′c, a sequence of b1/ε ′c− 1 rounds

reduces the length of P to 1 and then in one additional round P is “solved” and the deficit

decreases by one unit. �

Consider consecutive phases of b1/εc rounds each. For phases i = 0,1,2, . . ., let

Xi be iid Bernoulli random variables with Pr(Xi = 1) = (pq/∆)b1/εc. By Lemma 7, after

T phases (i.e., at the beginning of round t∗ = Tb1/εc), the deficit of the matching is

upper bounded by

d(M(t∗))< max{εm,m+1−
T

∑
i=1

Xi},

as the matching at the beginning of round 0 has deficit d(M(0))≤ m. By independence

of the phases, a Chernoff bound implies that for any 0 < δ ≤ 1

Pr
( T

∑
i=1

Xi < (1−δ )T (pq/∆)b1/εc
)
< e−T (pq/∆)b1/εcδ 2/2.

Setting δ = ε and T = cm(∆/pq)b1/εc (where c is a constant to be specified later),
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Figure 3.9. The leader ` in the proof of Lemma 3.9, matched edges are highlighted.

the deficit of the matching at the beginning of round t∗ = b1/εccm(∆/pq)b1/εc is

d(M(t∗))< max{εm,m+1− (1− ε)cm}

with probability at least 1− e−cmε2/2. To conclude the proof of the theorem we need that

εm≥ m+1− (1− ε)cm, which is true for any c≥ 1+ 1
m(1−ε) .

3.9 Proof of Lemma 6

Given the matching M and the stable matching N, for brevity we write deficit-

decreasing path instead of deficit-decreasing path in M⊕N relative to M.

The proof is divided in two parts. First, we show that for each leader ` with deficit

d`(M)> 0 there are at least d`(M) follower-disjoint deficit-decreasing paths starting at

`. Then, we argue that d(M) follower-disjoint deficit-decreasing paths can be chosen,

d`(M) of which start at each leader ` with deficit d`(M)> 0, and the claim of the lemma

follows.

Consider a leader ` with d`(M)> 0. Assume by contradiction that there are strictly

less then d`(M) follower-disjoint deficit-decreasing paths starting at ` (see Figure 3.9).

Since ` has a team size constraint c` > 0, there are exactly c`− d`(M) followers that

are matched to `. Observe that no follower matched to ` can be the first follower of a

deficit-decreasing path starting at ` (because the first edge must be in N\M).

Since G admits a stable matching, the neighborhood N` of ` has size |N`| ≥ c`.
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Therefore, there are k ≥ d`(M) followers in N` that are not matched to `. Assume that

h < d`(M) of the followers in N` are the first followers of h follower-disjoint deficit-

decreasing paths starting at ` (P1, . . . ,Ph in Figure 3.9). Denote the remaining k−h > 0

followers by f1, . . . , fk−h, and assume by contradiction that none among them is the first

follower of a deficit-decreasing path starting at ` (i.e., there are strictly less than d`(M)

follower-disjoint deficit-decreasing paths starting at `).

Observe that, in order to become stable, ` needs to match with at least one

additional follower among { f1, . . . , fk−h}. We show that, under the assumption above, a

one-unit reduction in the deficit of ` would eventually result in a one-unit increase of the

deficit of another leader, implying that G does not admit a stable matching, generating a

contradiction.

Consider any follower f ′ ∈ { f1, . . . , fk−h}, and observe that f ′ is matched in M

since otherwise ` f ′ would be a deficit-decreasing path starting at `. Let `′ be the leader

such that (`′, f ′)∈M, and observe that if `′ is matched to all followers in N`′ then ` cannot

match to f ′ without causing a one-unit increase of the deficit of `′. Therefore assume

that in N`′ there is a follower f ′′ such that (`′′, f ′′) ∈M for some leader `′′ 6= `′ ( f ′′ is

matched in M since otherwise `, f ′, `′, f ′′ is a deficit-decreasing path). In the following

two cases ` cannot match to f ′ without eventually increasing the deficit of another leader:

(i) `′′ = `, and `, f ′, `′, f ′′, ` is a cycle; (ii) `′′ 6= ` and `′′ is matched to all followers in N`′′

other than f ′.

Therefore assume that in N`′′ there is a follower f ′′′ such that (`′′′, f ′′′) ∈ M

for some leader `′′′ 6= `′′ ( f ′′′ is matched in M). Again, ` cannot match to f ′ without

eventually increasing the deficit of another leader if either `′′′ = ` or `′′′ = `′ (each

similar to the case (i) above), or if `′′′ is matched to all followers in N`′′ other than

f ′, f ′′ (similar to the case (ii) above). By iteration, it follows that ` cannot match to any

follower f ′ ∈ { f1, . . . , fk−h} without eventually increasing the deficit of another leader,
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contradicting with the existence of the stable matching N. Hence, there are at least d`(M)

follower-disjoint deficit-decreasing paths starting at `.

To complete the proof of the lemma, we show that we can choose d(M) follower-

disjoint deficit-decreasing paths, d`(M) of which start at each leader ` with d`(M)> 0.

We proceed by contradiction, and make the following assumption. For any set P of

d(M) deficit-decreasing paths, d`(M) of which start at each leader ` with d`(M) > 0

(denote by P` the elements of P starting at `), there are leaders `, `′ and paths P ∈P`,

P′ ∈P`′ that are not follower-disjoint. In order to reach the stable matching N starting

from M, a set of d(M) deficit-decreasing paths must be solved. However, if P is solved

(by “flipping” matched edges into unmatched edges, and vice versa) then P′ is not solved,

and if P′ is solved then P is not solved. It follows that N cannot be reached from M by

solving the d(M) deficit-decreasing paths in P .

By the assumption above, the last argument holds for any choice of P , and this

generates a contradiction on the reachability of N starting from M (observe that N can be

reached from M in finite time, e.g. by a cat-and-mouse argument on the space of all the

matchings of G). The lemma is proven.

3.10 Proof of Theorem 6

Let Mn be the set of all the matchings of Gn such that d(M) = 1. We proceed as

follows. First, we show that each M ∈Mn is uniquely identified by the set of the leaders

that are not matched with “horizontal” edges (that is, leaders `i such that (`i, fi) /∈M).

Second, we define trees T ∗m , m≥ 1 such that a random walk on T ∗m starting at any node

different than the root hits the root after a number of steps that is exponentially large in m

with high probability. Third, for each matching M ∈Mn we define a quantity h(M) that

we call the height of M and we argue that, when initialized at M, the algorithm’s dynamics

is equivalent to a random walk on the tree T ∗h(M) and reaching the stable matching of Gn
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corresponds to reaching the root of T ∗h(M) (and therefore requires a number of rounds that

is exponentially large in h(M) with high probability). Finally, by a counting argument,

we show that for any constant 0 < γ < 1 a 1−O(n2−(1−γ)n) fraction of all the matchings

in Mn have height at least γn, completing the proof of the theorem.

3.10.1 Properties of the matchings in Mn

Matchings in Mn enjoy the following structural properties.

Lemma 8 Let M ∈Mn. The following properties hold.

(1) There are a single poor leader `i∗(M) and a single unmatched follower ` j∗(M) in M.

(2) 1≤ i∗(M)≤ j∗(M)≤ n.

(3) (`k, fk) ∈M for all k < i∗(M) and all k > j∗(M).

(4) Let I (M) = { j0, j1, . . . , jK} be the sorted set of indexes j such that (` j, f j) /∈M.

Then

(a) j1 = i∗(M) and jK = j∗(M).

(b) (` jk+1, f jk) ∈M for all k ∈ {0, . . . ,K−1}.

Proof: Property (1). Since d(M) = ∑`∈L d`(M) = 1, there is a single poor leader

`i∗(M) in M. Since c` = 1 for all ` ∈ L, each leader ` 6= `i∗(M) is matched to a single

follower. It follows that there is a unique unmatched follower f j∗(M).

Property (2). Suppose by contradiction that i∗(M) > j∗(M). Since N` j∗(M)
=

{ f1, . . . , f j∗(M)} and f j∗(M) is unmatched, leader ` j∗(M) is matched to one of the followers

in { f1, . . . , f j∗(M)−1}. Hence, the j∗(M)− 1 leaders `1, . . . , ` j∗(M)−1 are matched to at

most j∗(M)− 2 out of the j∗(M)− 1 followers f1, . . . , f j∗(M)−1, and one of them is

necessarily poor, contradicting Property (1).
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Figure 3.10. An example of a matching M of G6 with d(M) = 1. M is uniquely
determined by the set I (M) = {2,4,6}, encoding the following: `2 is not matched, `4 is
matched with f2, `6 is matched with f4, f6 is not matched. P(M) = `2, f2, `4, f4, `6, f6 is
the unique deficit-decreasing path.

Property (3). We proceed by induction. If i∗(M) > 1, then (`1, f1) ∈ M since

N`1 = { f1} and `1 is matched with a follower. Assume that if i∗(M)> j then (`k, fk) ∈M

for all k ≤ j. If i∗(M) > j + 1, then, by the inductive assumption, ` j+1 can only be

matched to f j+1 since N` j+1 = { f1, . . . , f j+1}. This shows that (`k, fk) ∈M for all k <

i∗(M). k > j∗(M) is shown similarly.

Property (4). If K = 0 then M = {(`i, fi) : i 6= i∗(M)}, j∗(M) = i∗(M), and

properties (4a) and (4b) trivially hold. Now consider K ≥ 1. Let I (M) = { j0, j1, . . . , jK}

be the sorted set of indexes j such that (` j, f j) /∈ M. By property (3), we have that

j0 = i∗(M) and jK = j∗(M), therefore property (4a) follows. Hence, (` j2, f j1) ∈ M

since (`k, fk) ∈ M for all k ∈ { j1 + 1, . . . , j2− 1} by definition of I (M), and N` j2
=

{ f1, . . . , f j2}. Property (4b) follows by induction. �

Lemma 8 states that non-horizontal matching edges do not intersect. In particular,

given a matching M ∈Mn, the set I (M) represents the set of (the sorted indexes of)

the leaders that are not matched with horizontal edges (see Figure 3.10 for an example),

`i∗(M) for i∗(M) = minI (M) is the unique unmatched leader, and f j∗(M) for j∗(M) =

maxI (M) is the unique unmatched follower. Recall that M∗n = {(`k, fk) : 1 ≤ k ≤ n}

is the unique stable matching of Gn, and let I (M∗n) = /0. Lemma 8 implies that every

matching M ∈Mn∪{M∗n} is uniquely identified by the set I (M).
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Figure 3.11. The three T ∗m for m = 5.

Lemma 9 The mapping I (·) from Mn∪{M∗n} to S =
{

A : A⊆ {1, . . . ,n}
}

defined by

M 7→I (M) is a bijection.

Proof: I (·) is injective as if M,M′ ∈Mn and M 6= M′ then I (M) 6= I (M′). I (·) is

surjective, as for K ≤ n−1 and A = {i0, . . . , iK} ∈S such that 1≤ i0 < .. . < iK ≤ n, the

matching M ∈Mn such that I (M) = A is M =
{
(`ik+1, fik) : 0≤ k≤ K−1

}
∪
{
(`k, fk) :

k /∈ A
}
.�

3.10.2 The tree T ∗m

Let T1 be a labeled rooted tree with a singleton node with label 1. Inductively, for

i≤ 2, let Ti be the labeled rooted tree whose root is labeled with i and its i−1 children

are the roots of copies of T1, . . . ,Ti−1. Define T ∗m to be the tree with a root with label

m+1 whose only child is the root of a copy of Tm (see Figure 3.11). Let r∗ be the root

of T ∗m . We show that the hitting time of r∗ for a random walk on T ∗m starting at any node

u 6= r∗ is exponential in m with high probability. For a node u 6= r∗, we call the edge

that connects u to its parent u’s exit edge. For any subtree Ti ⊂ T ∗m , let Zi be the random

variable denoting the number of steps that it takes for a walk starting at the root of Ti to

exit Ti (that is, to hit the parent of the root of Ti). The following bound holds for Zi.
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Lemma 10 There exist α,γ > 0 such that, for all i≥ 2,

Pr[Zi ≥ γ ·2i/(α log2 i)]≥ 1− 1
log i

.

Proof: The proof is the same as Lemma 4 of Chapter 2 and is reported here for complete-

ness. We proceed by induction on i. Let g(i) = α log2 i and f (i) = γ · 2i/g(i) for some

α,γ > 0. For any α > 0 and i≥ 2, we can choose γ > 0 such that f (i)≤ 1; therefore, as

Zi ≥ 1 with probability 1, the claim holds trivially for any i≤ i∗, where i∗ is a suitably

large constant. Now consider any i≥ i∗ and suppose the claim holds up to i−1. Every

time the walk is on the root of Ti, it exits Ti with probability 1/i (since the root of Ti one

parent and i−1 children). Therefore, letting Et be the event that the first t times the walk

is on the root of Ti it does not exit Ti, we have Pr[Et ]≥ 1− t/i. Let t = i/(2log i), and let

D j, 1 ≤ j ≤ t, be the event that, when it is on the root of Ti for the j-th time, the walk

moves to the root of one of the subtrees Ti−g(i), . . . ,Ti−1 and takes at least f (i− g(i))

steps to exit that subtree. For 1≤ j ≤ t,

Pr[D j | Et ]≥ g(i)/i ·Pr[Zi−g(i) ≥ f (i−g(i))]

≥ g(i)/i ·
(
1− [log(i−g(i))]−1) ,
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by the induction hypothesis on Zi−g(i). Let χ j be the indicator function of D j for 1≤ j≤ t.

The probability that at least two of the events D j happen, given Et , is lower bounded by:

Pr

[
t

∑
j=1

χ j ≥ 2

∣∣∣∣∣ Et

]
≥ Pr

[
t/2

∑
j=1

χ j ≥ 1,
t

∑
j=t/2+1

χ j ≥ 1

∣∣∣∣∣ Et

]

= Pr

[
t/2

∑
j=1

χ j ≥ 1

∣∣∣∣∣ Et

]2

≥

(
1−

t/2

∏
i=1

(1−Pr[D j|Et ])

)2

≥
[
1−
(
1−g(i)/i

(
1− [log(i−g(i))]−1))t/2

]2

≥
[

1− exp
[
−α log i

4

(
1− 1

log(i−g(i))

)]]2

≥ (1− 1
iα/8 )

2

where we applied union bound in the third line, and the last step holds for i sufficiently

large so that log(i−g(i))≥ 2. This implies that

Pr

[
t

∑
j=1

χ j ≥ 2

∣∣∣∣∣ Et

]
≥
(

1− 1
iα/8

)2

≥ 1− 2
iα/8 ,

and we conclude that

Pr[Zi ≥ 2 · f (i−g(i))]≥ Pr

[
t

∑
j=1

χ j ≥ 2

]

≥ Pr

[
t

∑
j=1

χ j ≥ 2

∣∣∣∣∣ Et

]
Pr[Et ]≥

(
1− 2

iα/8

)(
1− t

i

)
,

which is greater than 1− 1/ log i for α sufficiently large. The claim follows since

2 · f (i−g(i))≥ f (i). �

Corollary 3 The hitting time of r∗ of a random walk starting at any node u 6= r∗ is

2Ω(n/ log2 n) with high probability.
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3.10.3 The dynamics of the algorithm starting from M ∈Mn

For ease of presentation, we set the parameters of the algorithms to p = q = 1

(our result holds in general).

Definition 10 (The height of a matching) Let M ∈ Mn, I (M) = {i0, . . . , iK}. The

height of M is h(M) = 0 if K = 0, and h(M) = iK−1 ∈ {1 . . . ,n−1} if K ≥ 1.

For M ∈Mn, h(M)> 0, I (M) = {i0, . . . ,h(M), iK}. For t ≥ 0, let M(t) be the

matching at the beginning of round t. For ease of notation let I (t) = I (M(t)). For

M ∈Mn let

τ
∗(M) = min

{
t : M(t) = M∗n |M(0) = M

}
be the number of steps that the algorithm needs to reach the stable matching starting from

M.

Note that, with p = q = 1, t∗(M) = 1 for every M ∈Mn such that h(M) = 0 (that

is, |I (M)|= 1), since according to the algorithm leaders prefer unmatched followers.

We are interested in relating τ∗(m) and h(M) for every matching M ∈Mn such that

h(M)> 0 (that is, |I (M)|> 1).

We study how the matching evolves over time through the Markov process

{I (t) : 0 ≤ t ≤ τ∗(M)}. Since I (M∗n) = /0, τ∗(M) = min{t : I (t) = /0}. The state

space of the Markov process is given by the set S defined in Lemma 9. The transition

probabilities are as follows.

Lemma 11 Conditional on I (t) = I ∈S , |I|> 1, the transition probabilities at time t

are given by

Pr
(
I (t +1) = I′

∣∣I (t) = I
)
= 1/min I.
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if I′ ∈ {I ∪{k} : k < min I}∪{I\{min I}} and 0 otherwise. Moreover Pr(I (t + 1) =

/0|I (t) = /0) = 1, and Pr(I (t +1) = /0|I (t) = I) = 1 for every I sich that |I|= 1.

Proof: The case of I (t) = /0 corresponds to the stable matching M∗n , which is an

absorbing state for the Markov process. In the case of |I (t)|= 1, we have that h(M) = 0,

and p = q = 1 implies that that I (t +1) = /0.

Consider now |I|> 1. Conditional on I (t) = I, the poor leader is `min I and has

degree min I and neighborhood Nmin I = { f1, . . . , fmin I}, and chooses one of the followers

in Nmin I uniformly at random. If `min I chooses follower fk for some k < min I then the

leader `k becomes poor, since by property (3) of Lemma 8 `k was matched to fk in M(t),

and we have that I (t +1) = I∪{k}. If instead `min I chooses follower fmin I (matched to

`min(I\min I) in M(t) by property (4) of Lemma 8), then I (t +1) = I\{min I}. �

For every M ∈Mn such that h(M) > 0 and I (M) = {i0, . . . , iK}, define the

matching

L (M) = {(` j, f j) : j 6= iK},

and let

τ(M) = min{t : M(t) = L (M)}.

Note that h(L (M)) = 0 and τ∗(M) > τ(M) (in particular, τ∗(M) = 1+ τ(M) for p =

q = 1).

For every matching M such that |I (M)|> 1, let R(M) be the set of the matchings

in Mn that can be reached from M (after one or multiple steps). By the transition

probabilities of Lemma 11,

R(M) = {M′ ∈Mn : I(M′) = A∪{h(M), iK},A ∈A }∪{L (M)},
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where A = {A ⊆ {1, . . . ,h(M)− 1}}. Observe that every M′ ∈ R(M)\{L (M)} has

height h(M′) = h(M). The following lemma characterizes the one-to-one correspondence

between matchings in R(M) and nodes of the tree T ∗h(M).

Lemma 12 Consider the mapping ω(·) from R(M) to T ∗h(M) defined as follows. Let

ω(L (M)) = r, where r is the root of T ∗h(M). For M′ ∈R(M)\{L (M)} and I (M′) = I,

let ω(M′) be the node of T ∗h(M) with label min I and connected to the root with the path

of nodes labeled by the sorted indexes in I\{min I}. Then ω(·) is a bijection.

The proof follows from the construction of T ∗h(M) and I (·).

Lemma 13 The process {I (t) : 0 ≤ t ≤ τ(M)|M(0) = M} is equivalent to a random

walk on T ∗h(M) starting at ω(M).

Proof: It suffices to show that the transition probabilities between two matchings

M1,M2 ∈R(M) are nonzero if and only if the nodes ω(M1) and ω(M2) are adjacent

in T ∗h(M). To prove the “only if” direction, assume that M1,M2 ∈R(M) are such that

there is a nonzero transition probability from M1 to M2 (and therefore from M2 to M1).

Let I (M1) = I1 and I (M2) = I2. According to the transition probabilities given above,

there are two possible cases. In the first case, I2 = I1 ∪{k} for some k < min I1, and

ω(M1) is a child of ω(M1). In the second case I2 = I1\{min I1} and ω(M2) is the parent

of ω(M1). The other direction is similar. �

To summarize, the number of steps to reach the stable matching of Gn starting

from M ∈Mn with h(M)> 0 is upper bounded by the time τ(M) to reach the matching

L (M), and reaching L (M) is equivalent to reaching the root of T ∗h(M) starting from the

node ω(M). By Corollary 3, τ(M) is exponentially large in h(M) with high probability.
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3.10.4 The fraction of matchings M ∈Mn such that h(M)≥ γn

Let N be the number of matchings in Mn. Fixed a constant 0 < γ < 1, let

Mγ = {M ∈Mn : h(M)< γn}

and let Nγ = |Mγ |. For j = 0, . . . ,n−1, let N( j) be the number of matchings M ∈Mn

such that h(M) = j. It follows that

N =
n−1

∑
j=0

N( j), Nγ ≤
dγne−1

∑
j=0

N( j).

Lemma 14 N(0) = n and N( j) = (n− j)2 j−1 for all j = 1, . . . ,n−1.

Proof: N(0) = n since there are n matchings M with h(M) = 0 ({(` j, f j) : j 6= k} for

1≤ k≤ n). Fix j ∈ {1, . . . ,n−1}. By Lemma 9, any M ∈Mn with h(M) = j is uniquely

identified by I (M) = {i0, . . . , iK−1, iK} for some 1 ≤ K ≤ n− 1 and iK−1 = j. Since

I (·) is a bijection, to determine N( j) we need to count all subsets of {1 . . . ,n} of the

form {i0, . . . , j, iK}, thus N( j) = (n− j)2 j−1. �

For any constant 0 < γ < 1, the fraction of M ∈Mn such that h(M)< γn goes to

zero exponentially fast in n

Lemma 15 Fix 0 < γ < 1. Then, Nγ/N = O(n2−(1−γ)n).

Proof: We first compute N.

N =
n−1

∑
i=0

N(i) = n+
n−1

∑
i=1

(n− i)2i−1 = n+n
n−2

∑
i=0

2i−
n−1

∑
i=1

i2i−1.

The second sum can be shown (e.g. by induction) to be equal to (n−1)+(n−2)(2n−1−

1). Therefore, N = Ω(2n), and for k = dγne, Nγ = O(n2dγne), and Nγ/N = O(n2−(1−γ)n).
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Chapter 4

Non-invasive detection of emotional
contagion in on-line social networks

4.1 Introduction

In the last decade, the challenge of understanding the spreading and synchrony

of human behavior over social networks has attracted the attention of the research

community at large. The problem originally arises in the context of the social sciences,

but due to the expanding usage of online social networks, it has also attracted the

interest of the engineering community with the aim of quantifying these effects using

the massive amount of data that these networks generate. Studies have included the

diffusion of news and “memes” [140]; cascades in communication platforms, networked

games, microblogging services [83]; health-related phenomena such as obesity and

smoking [51, 52]; emotional states like happiness and depression [74, 183]; purchase of

online products [14, 158]; clicking online advertisements, and joining online recreational

leagues and store purchases [82].

Studies based on observational data pose an inherent difficulty for causal inference

because social contacts may have similar behavior as a result of at least two processes:

homophily (the tendency of similar individuals to group together) or influence [150, 152].

Controlled experiments allow us to disentangle influence effects from homophily both in

81
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the laboratory [75] and online [43, 44, 91, 34], but they are often limited in scale and lack

external validity. Large scale experiments have been shown to be feasible in the context

of political participation [34], product adoption [14, 158] and emotional influence [135],

but are often impractical or require very close collaboration with private companies.

Moreover, the experimental change in the users’ experience required by some

of these studies recently came under scrutiny because of questions about the ethics

involved. Some people criticized [84] a large-scale study [135] of emotional contagion

on Facebook in which the researchers changed the content shown to some users in order

to study their reaction. Similar criticisms were directed at the online dating website

OkCupid for experimenting with their platform in order to understand how individuals

react to each other [216]. These recent events call for the development of alternative,

non-experimental methods to study human behavior at large scale,

Our work is an attempt to compensate for the shortcomings of existing experi-

mental and observational approaches, using a method to detect and quantify influence via

instrumental variable regression. We studied text-based expression in massive social net-

works, developed a model of emotional contagion of semantic expression, and validated

it on the content posted by a large sample of Facebook users over a period of three years.

In this paper, we show how our model can also be applied to different and possibly

heterogeneous data from other social networking platforms, and to contexts other than

emotional expression. Our approach is fully non-experimental: it is based only on

observational data and, as a result, it does not alter users’ experience. It also guarantees

respect for user privacy: for our study, individuals’ information and posts were never

visible to researchers and resided on secure servers where Facebook stores user data,

and were analyzed only at an aggregate level. The study was reviewed for ethics and

approved in advance by the Institutional Review Board at the University of California,

San Diego.
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Focusing on the mathematical model and on the engineering methodology em-

ployed, this paper reviews and complements our previous work. Our individual-level

model assumes that a person’s usage of words in a semantic category is a linear func-

tion of temporal and individual baseline effects, exogenous variables like news, the

stock market, or the weather, and endogenous variables – corresponding to the usage

of given semantic categories in posts written by the person’s social contacts, referred to

as “friends”. The reciprocal causality between the endogenous variables of the model

makes it difficult to obtain consistent and unbiased estimates of social influence. We

therefore proceed in two steps. First, we aggregate the model on a geographical basis by

averaging over all people who are in the same city, obtaining a model based on the same

coefficients as the individual-level model but with a much smaller number of observations.

Second, we deal with the problem of reciprocal causality by estimating the model using

instrumental variable regression, a method pioneered in economics [9]. This method

relies on the availability of an exogenous variable – called an instrument – that affects

the endogenous variables (friends’ posts) but does not directly induce a change in the

subject’s posts, called the dependent variable. In general, valid instruments might be

unavailable, or they might lack sufficient power to predict changes in the endogenous

variable. In our work, we considered rainfall experienced by friends as the instrument,

using data made available by the National Climatic Data Center1, which proved to be a

robust predictor of emotional expression. Upon finding a relationship between friend’s

rainfall and their expression, we can assume the former affects the latter as the opposite

direction is unlikely. Our method first computes the effect that friends’ rainfall (the

instrument) has on friends’ posts (the endogenous variables). Then, it evaluates the

corresponding effect of the rainfall-induced change in friends’ expression on the person’s

posts (the dependent variable).

1NCDC, http://www.ncdc.noaa.gov
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In order to obtain consistent estimates, the instrument must satisfy the exclusion

restriction [9]. This posits that, controlling for all other variables, the instrument (friends’

rainfall) must not directly affect the dependent variable. An implication of this restriction

is that the instrument must also be uncorrelated with the exogenous variable experienced

by the subject (subject’s rainfall), otherwise the model might only be estimating how a

subject’s rainfall affects her own expression. Therefore, to break any correlation between

a subject’s rainfall and friends’ rainfall, we restricted our analysis to observations for

which it did not rain in the subject’s city. Once this is applied, the subject’s rainfall is

constant in the dataset and therefore it does not correlate with friends’ rainfall. Moreover,

breaking the correlation between user’ and friends’ rainfall solves the potential issue of

the geographic similarity of the weather in close-by cities. As a result, we must also focus

exclusively on social ties between individuals in different cities. Note that individuals

in different cities likely do not interact face-to-face, but they can reach each other via

multiple communication media, such as the telephone, email, and social networking

websites. Therefore, any influence detected between them is unlikely to be caused by

physical interaction and would suggest that remote communication plays an important

role in spreading semantic expression.

Our method allows us to determine what semantic categories are susceptible to

influence between social contacts by estimating how an individual’s usage of a semantic

category is affected by her friends’ usage of the same category. We can then use the

estimates for each semantic category to rank them from the most to the least likely to

spread.

Moreover, our method allows us to determine the relationship between different

semantic categories, by estimating how an individual’s usage of one category is altered

by her friends’ usage of a different category. This will help us to understand whether

the usage of a semantic category fosters or inhibits the usage of other categories. We
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also show that expression of positive affect inhibits expression of negative affect and vice

versa.

Finally, our model allows us to compute the cumulative effect a person has on her

friends. Although the effect on any one social contact will be small, each person typically

has many social contacts, so the total expected effect of a single act of expression may

alter the expression of several other people. Here, we show how to use our model to

quantify this multiplier effect on posts within the same semantic category and on posts in

different categories.

4.1.1 Related work

Our work is related to a growing body of literature on influence and diffusion

in networks, whose goal is to characterize how behaviors and information spread from

person to person. Online social networks are becoming increasingly popular as research

environments and sources of data for these investigations. For example, the content

posted by people online has been used to identify which people or topics are influential

in social networking websites [20] and in the blogosphere [4]. It has also been used to

study which network attributes and sharing behaviors make people influential [45], which

topics (e.g., represented by hasthtags) diffuse in a more persistent way [182], and even

to study the structure of diffusion cascades on different communication platforms [83].

Large-scale experimental studies have isolated the role of the network in the diffusion

of information [21], emotional expression [135] and behaviors [14, 34]. However,

homophily has been shown to play a similarly important role, and scholars have devoted

their attention to distinguishing between the two phenomena and to comparing the size

of their effects [152, 44, 11, 12].

Our work is related to the econometric literature on instrumental variables. In-

strumental variables have been proposed as a tool to infer causal effects from observa-
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tional data [9]. This approach has been applied to a variety of contexts, such as labor

economics [10], the study of the causal effect of education on earning [40], program

evaluation [105], the characterization of neighborhood effects [131], and the impact of

microfinance [157]. However, valid instruments can be difficult to find [35], and scholars

have warned against the risks of using “weak” instruments that do not predict variation

in the endogenous variable with sufficient precision [198].

A large body of research studies text meaning by analyzing patterns of words

or grammar [201, 58, 68]. However, the performance of most traditional classification

methods relies on sufficient text length, as in the case of bag-of-words or kernel-based

methods [112, 144]. The analysis of short text from microblogging services (such as

Twitter or Facebook) requires new approaches [197, 176, 111], which in some cases

leverage metadata (e.g., user’s information) or the content of related posts.

Although we mainly focus on the engineering aspects of the detection and mea-

surement of peer influence in semantic expression, our work is also related to sociolin-

guistics. The full understanding of language in a society requires us to consider the social

network in which the language is embedded, intended as the set of relationships and in-

teractions between its individuals [213]. Scholars have argued that speech patterns might

depend on the looseness and tightness of the social network [64]. Our model formulation

allows us to take tie-strength between individuals into account. Different approaches

have been proposed to quantify tie-strength in online social networks [80, 217], and

future research should investigate whether strong ties play a major role in the spread of

semantic expression.

4.2 Variables of the model

We consider a set T of distinct days. For each day t ∈ T , let S(t) be the population

on day t, and let n(t) = |S(t)| be their number. To apply our method, we assume that
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individuals can be geolocated at the level of cities. For each city g let Sg(t) be the set

of individuals in city g on day t and let ng(t) = |Sg(t)|. In general, one might consider

different time and geographic resolution. We assume resolution at the level of days and

cities.

4.2.1 Quantifying the semantic of text-based expression

Several methods can be used to quantify semantic expression of the content

posted by individuals (see discussion in Section 4.9). We referred to the semantic

categories defined by the Linguistic Inquiry and Word Count (LIWC) 2007 [171], a word

classification tool widely used in the social sciences and in psychology research [172,

207, 153, 173, 89]. The LIWC contains several classes of processes, each of which

contains one or more semantic categories, pertaining to affective processes, perceptual

processes, biological processes, social processes, and personal concerns. We consider

the categories for positive and negative affective processes. In general, a larger set C of

semantic categories can be considered by our method.

For user i and day t, let Ui(t) be the set of status updates posted by i on day t, and

let ui(t) = |Ui(t)| be its cardinality. Let u(p)
i (t) be the number of status updates in Ui(t)

that contain at least one word from the “positive emotion” category defined by LIWC

2007 [171]. Similarly, let u(n)i (t) be the number of status updates in Ui(t) that contain at

least one word from the “negative emotion” category.

Note that a single status update might contain both a negative word and a positive

word, therefore contributing to both u(p)
i (t) and u(n)i (t). Moreover, our analysis simply

considers raw matching of positive and negative words, without making any attempt to

identify expressions like negations or sarcasm.

We measure emotion in two ways based on these definitions: (i) the rate of status

updates that contain words, (ii) the rate of status updates that contain negative words.
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Consider a user i and a day t such that ui(t) 6= 0. The positive rate of user i on

day t is defined as

y(p)
i (t) =

u(p)
i (t)
ui(t)

,

that is, the fraction of status updates with at least one positive word. Note that 0 ≤

y(p)
i (t)≤ 1.

Similarly, the negative rate of user i on day t is defined as

y(n)i (t) =
u(n)i (t)
ui(t)

,

that is, the fraction of status updates with at least one negative word. Note that 0 ≤

y(n)i (t)≤ 1.

By averaging these quantities over all users in city g, we obtain the average

positive rate and negative rate of that city. Let Sg be the set of ng users i in city g such

that ui(t) 6= 0. That is,

ȳ(p)
g (t) =

1
ng

∑
i∈Sg

y(p)
i (t),

ȳ(n)g (t) =
1
ng

∑
i∈Sg

y(n)i (t),

Table 4.1 shows mean values for each of these emotion variables, and Table 4.2

shows the aggregates by city.

The variables Ȳ (p)
g (t) and Ȳ (n)

g (t) of the model in equation (4.4) are given by

Ȳ (p)
g (t) = ∑

i
y(p)

i (t)
1
ng

∑
j∈Sg

1
δ j(t)

ai j(t),

Ȳ (n)
g (t) = ∑

i
y(n)i (t)

1
ng

∑
j∈Sg

1
δ j(t)

ai j(t).
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Table 4.1. Summary statistics for each emotional and meteorological variable, computed
considering one observation for each city-day pair.

Summary of Emotion and Meteorological Variables

Mean Standard Deviation Minimum Maximum

Positive rate 0.407 0.0445 0.116 0.614
Negative rate 0.213 0.0329 0.0388 0.440
Weather posts 0.0653 0.0347 0 0.527

Rainfall indicator 0.257 0.437 0 1

4.2.2 Exogenous control variable

Our method relies on the availability of an exogenous variable that affects the

semantic expression of a person’s friends but not (directly) the semantic expression of

the person. We call this variable the “instrument.” Our model characterizes how a change

in the instrument induces a change in friends’ semantic expression, and how the induced

change predicts a change in the person’s semantic expression.

There are many sources of exogenous variation in the world, but we chose rainfall

as the instrument, relying on data from the National Climatic Data Center (NCDC,

http://www.ncdc.noaa.gov). For each city g we consider the NCDC station closest to

it, and let x̄g(t) = 1 if that station recorded rainfall on day t, and zero otherwise. For

each subject i ∈ Sg(t), let xi(t) = x̄g(t), that is, a binary indicator variable of rainfall in

city g. We focus on rainfall as the instrument for several reasons. First, its geographical

resolution lends itself to the analysis of our geographically aggregated model. Second

individuals in the same city tend to experience the same weather on a given day. We show

it is a robust instrument in the sense that it captures enough variation of the endogenous

explanatory variable (friends’ emotional expression). Other meteorological variables

would have been a valid alternative. The identification of valid instruments is challenging

and finding a systematic way to characterize them is key to apply our method to more
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Table 4.2. Number of rainy days and number of total observed days for each of the 100
cities in the dataset.

Summary of Rainfall in each City

City Num Rainy City Num Rainy City Num Rainy City Num Rainy
Code Days Days Code Days Days Code Days Days Code Days Days

ABQ 120 1180 CVG 379 1180 LEX 236 1180 PIT 378 1180
ANA 424 1180 DAL 257 1180 LGB 404 1180 PLA 386 1180
ANC 278 1180 DEN 217 1180 LNK 274 1180 RAL 94 1180
ATL 139 1180 DFW 350 1180 LRD 358 1180 RDU 241 1180
AUR 236 1180 DTT 566 1180 MCI 280 1180 RIV 84 1180
AUS 243 1180 ELP 132 1180 MEM 131 1180 RNO 377 1180
AWO 94 1180 EWR 217 1180 MES 303 1180 ROC 113 1180
BFL 438 1180 FAT 137 1180 MGM 102 1180 SAN 357 1180
BHM 303 1180 FWA 148 1180 MIA 446 1180 SAT 384 1180
BNA 207 1180 GAR 341 1180 MKE 558 1180 SBD 402 1180
BOI 344 1180 GEU 132 1180 MOD 132 1180 SCK 116 1180
BOS 460 1180 GKY 389 1180 MSN 408 1180 SDL 213 1180
BTR 420 1180 GSP 347 1180 MSP 257 1180 SEA 519 1180
BUF 226 1180 HIA 214 1180 MSY 450 1180 SFO 461 1180
BWI 207 1180 HND 519 1180 NHE 341 1180 SJC 370 1180
CAK 372 1180 HNL 84 1180 NYC 523 1180 SMF 443 1180
CHD 342 1180 HOU 373 1180 OAK 382 1180 SNA 183 1180
CHI 243 1180 HTS 323 1180 OKC 243 1180 SNP 177 1180
CHU 407 1180 ICT 153 1180 OMA 444 1180 STL 536 1180
CLE 131 1180 IND 256 1180 ORF 299 1180 TOL 196 1180
CLT 397 1180 JAX 267 1180 ORL 296 1180 TPA 305 1180
CMH 390 1180 JCY 414 1180 PDX 369 1180 TUL 334 1180
COS 388 1180 LAS 283 1180 PHL 92 1180 TUS 400 1180
CPK 365 1180 LAX 362 1180 PHX 311 1180 VIB 320 1180
CRP 562 1180 LBB 134 1180 PIE 154 1180 WAS 388 1180

general contexts.

For the instrumental variable regression described below we will make use of the

variable

X̄g(t) = ∑
i

xi(t)
1
ng

∑
j∈Sg

1
δ j(t)

ai j(t). (4.1)

In particular, if user i is in city h then xi(t) = x̄h(t) (the user’s own weather is the same as

the average weather of all users in the same city).

4.2.3 Social network information

For each day t ∈ T , and subjects i, j ∈ S(t), let ai, j(t) ∈ [0,1] be the strength of

the relationship from i to j on day t, which need not be symmetric. Also, let δi(t) =

∑ j∈S(t) ai, j(t). We let ai, j(t) ∈ {0,1}, where ai, j(t) = 1 denotes that i and j were friends

on day t. In this case δi(t) is the degree of subject i on day t (that is, the total number of

friends of the subject). Allowing ai, j(t) to have any value between zero and one would

allow to asses the role of tie-strength.
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4.3 Data

Our period of observation starts on January 1st 2009 and ends on March 31st 2012,

for a total of 1185 consecutive days. Data for five days of 2009 (March 4th, June 24th,

August 15th, September 13th, November 11th) was not available at the time of analysis,

so we consider the remaining 1180 days.

Data were collected from the Facebook online social network, and data were

analyzed in aggregate within Facebook’s data centers. Researchers did not access any

personal information.

For each day in the period of observation, we consider all Facebook users in the

100 most populous US cites, and their status updates. Table 4.3 reports the list of the

cities, each paired with the corresponding three-letter code used in the figures (airport

codes in most cases). In particular, the subpopulation of Facebook users in a given city

contains all users that (i) chose English as the language in which they view the website,

(ii) selected United States as Country in their profile settings, (iii) can be matched to

city g by IP-based geographic location. We build separate user pools for different days

to allow us to take user mobility into account, since on any particular day a user might

travel or move to a new city.

For each Facebook user, we measured emotion using all status updates as ex-

plained above. We also measured social contacts for each day in the observation period,

letting ai j(t) = 1 for all pairs of users i and j who were “friends” with one another on

day t, and 0 otherwise.

Table 4.4 summarizes our sample size by showing mean and standard deviation

of the daily number of users, number of status updates, and friendship ties.

Figure 4.1 shows temporal and geographical variation in emotions expressed by

Facebook users in 2011, and a representation of between-city friendship ties.
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Table 4.3. List of the 100 cities in the dataset.

List of US cities and codes

Code City Code City Code City

ABQ Albuquerque, NM GAR Garland, TX OKC Oklahoma City, OK
ANA Anaheim, CA GEU Glendale, AZ OMA Omaha, NE
ANC Anchorage, AK GKY Arlington, TX ORF Norfolk, VA
ATL Atlanta, GA GSP Greensboro, NC ORL Orlando, FL
AUR Aurora, CO HIA Hialeah, FL PDX Portland, OR
AUS Austin, TX HND Henderson, NV PHL Philadelphia, PA
AWO Arlington, VA HNL Honolulu, HI PHX Phoenix, TX
BFL Bakersfield, CA HOU Houston, TX PIE St Petersburg, FL
BHM Birmingham, AL HTS Huntington, WV PIT Pittsburgh, PA
BNA Nashville, TN ICT Wichita, KS PLA Plano, TX
BOI Boise, ID IND Indianapolis, IN RAL Raleigh, NC
BOS Boston, MA JAX Jacksonville, FL RDU Durham, NC
BTR Baton Rouge, LA JCY Jersey City, NJ RIV Riverside, CA
BUF Buffalo, NY LAS Las Vegas, NV RNO Reno, NV
BWI Baltimore, MD LAX Los Angeles, CA ROC Rochester, NY
CAK Akron, OH LBB Lubbock, TX SAN San Diego, CA
CHD Chandler, AZ LEX Lexington, KY SAT San Antonio, TX
CHI Chicago, IL LGB Long Beach, CA SBD San Bernardino, CA
CHU Chula Vista, CA LNK Lincoln, NB SCK Stockton, CA
CLE Cleveland, OH LRD Laredo, TX SDL Scottsdale, AZ
CLT Charlotte, NC MCI Kansas City, MO SEA Seattle, WA
CMH Columbus, OH MEM Memphis, TN SFO San Francisco, CA
COS Colorado Springs, CO MES Mesa, CA SJC San Jose, CA
CPK Chesapeake, VA MGM Montgomery, AL SMF Sacramento, CA
CRP Corpus Christi, TX MIA Miami, FL SNA Santa Ana, CA
CVG Cincinnati, OH MKE Milwaukee, WI SNP St Paul, MN
DAL Dallas, TX MOD Modesto, CA STL St Louis, MO
DEN Denver, CO MSN Madison, WI TOL Toledo, OH
DFW Fort Worth, TX MSP Minneapolis, MN TPA Tampa, FL
DTT Detroit, MI MSY New Orleans, LA TUL Tulsa, OK
ELP El Paso, TX NHE North Hempstead, NY TUS Tucson, AZ
EWR Newark, NJ NYC New York, NY VIB Virginia Beach, VA
FAT Fresno, CA OAK Oakland, CA WAS Washington, DC
FWA Fort Wayne, IN

Table 4.4. Summary statistics of the dataset. For each day in the period of observation
(a set of 1180 days from January 2009 to March 2012) all Facebook users that are
English-speakers and geolocated within the 100 most populous US cities are included.
Assuming that each user posts either one or zero status updates on a day, the average
number of status updates per user per day is α = 0.206.

Quantity Mean Standard Dev.

Number of users (daily) 9,903,993 3,447,776
Number of users who updated (daily) 2,042,996 775,162
Number of friendships (daily) 52,787,239 25,118,462



93

Figure 4.1. Temporal and geographical variation in emotions expressed by Facebook
users in 2011 as measured by (a) the fraction of status updates containing positive emotion
words; (b) the fraction of status updates containing negative emotion words. Extreme
values are noted for holidays. (c) A map of the U.S. with approximate locations of the
100 most populous cities (represented by airport code) and their average fraction of posts
with positive emotions (blue is less and green is more). (d) Network of between-city ties
for all pairs of cities with at least 50,000 friendships. Darker, thicker lines indicate more
friendship ties (maximum = 1,210,769).

4.4 A model of emotional contagion

Let yi(t) be the emotional expression of individual i at time t. Let ai j(t) be the

strength of the relationship from individual i to individual j at time t. Note that ai j(t)

need not be symmetric (i may perceive a stronger relationship with j than j does with i),

and it allows for temporal variations. Let δi(t) = ∑ j ai j(t) be the degree of individual i at

time t.

In the simplest case, ai j(t) can take binary values, 1 designating that a relationship



94

between i and j exists at time t, 0 designating that it does not. Under this assumption,

δi(t) is simply the number of her social contacts of i at time t.

Suppose there are three kinds of exogenous factors that affect emotion. First,

there are factors that are time-varying and affect everyone equally (like holidays, for

example). We denote these with a fixed effect θ(t) for each time period t. Second, there

are factors that are time-invariant and specific to an individual (such as a person’s baseline

personality). We denote these with a fixed effect f j for each individual j. Third, some

factors are both time-varying and specific to an individual (like the weather). We denote

these by x j(t) for each individual j and time period t.

In addition, suppose there is an endogenous factor that affects the emotion of

each individual in proportion to the strength of the relationship between j and her social

contacts. That is, each individual j is affected by the specific emotion on day t of each

individual i to whom she is connected.

Assuming a memoryless model where individuals influence each other only

within a time period t and not across time periods, we can specify a linear model for the

emotion y of individual j on day t:

y j(t) = θ(t)+ f j +βx j(t)+ γ
1

δ j(t)
∑

i
ai j(t)yi(t)+ ε j(t), (4.2)

where β indicates the strength and direction of influence of the time-varying exogenous

factor, γ indicates the strength and direction of social influence, and ε j(t) includes

unobserved variables and noise.

Observe that the model in equation (4.2) assumes that influence is averaged over

all social contacts and therefore inversely proportional to the cumulative weight δ j(t)

of all j’s relationships. If ai j(t) takes binary values, then this implies that the influence

from i to j is inversely proportional to the number of j’s social contacts. This assumption
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is based on the idea that an individual with many social contacts is less likely to be

influenced by each single contact i than an individual with few social contacts.

We are interested in estimating the value of the influence factor γ , which is

difficult due to the inherent feedback present in the process of emotional contagion.

Correlation in emotions may not only the result from pairwise mutual influence, but

also from cycles in the social network. For example, i might influence k’s emotional

expression, which in turns affects j’s emotional expression, and so on. We address

the inherent endogeneity of contagion in Section 4.6 by using instrumental variable

regression [9].

A second difficulty here is the large size of our data set. We would like to apply

our model to the longitudinal content generated by millions of users with billions of

friends over hundreds of days. We address this difficulty in Section 4.5, where we propose

a method to estimate the individual-level parameter γ using aggregated data. A key to

this method is to identify a unit of analysis in which many individuals within the same

subpopulation are affected by the same exogenous variables. For example, individuals

i and j may be in the same city g and therefore experience the same weather, traffic

conditions, sporting event outcomes, and so on. Or they may be in different cities g and

h, in which case their different exposures to exogenous factors may help us to identify

how one person affects another. In our aggregated model, we leverage these between-unit

social ties to consider how a factor in city g affects individual i, which in turn affects

individual j who was not exposed directly to that factor because she is in city h. In other

words, if it rains on you in New York, does it make your friends in San Diego less happy?

4.5 Aggregating the model

The model in equation (4.2) can be computationally demanding in big data sets,

since there is one observation for each individual-time pair. We therefore simplify the
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model further by averaging equation (4.2) over all ng individuals in a given subpopulation

Sg who are in city g.

1
ng

∑
j∈Sg

y j(t) =
1
ng

∑
j∈Sg

(
θ(t)+ f j +βx j(t)+ γ

1
δ j(t)

∑
i

ai j(t)yi(t)+ ε j(t)

)
. (4.3)

We can change the notation to make things clearer.

Let ȳg(t) = 1
ng

∑ j∈Sg y j(t) be the average emotion at time t for all individuals in

subpopulation Sg.

Let f̄g(t) = 1
ng

∑ j∈Sg f j be the average individual fixed effects for all individuals

in subpopulation Sg (this is therefore a city-level fixed effect).

Let x̄g(t) = 1
ng

∑ j∈Sg x j(t) be the average exogenous variable at time t for all

individuals in subpopulation Sg (this is therefore a city-level exogenous variable).

Let Ȳg(t) = 1
ng

∑ j∈Sg
1

δ j(t) ∑i ai j(t)yi(t). We can exchange the ordering of the

summations and write

Ȳg(t) = ∑
i

yi(t)
1
ng

∑
j∈Sg

1
δ j(t)

ai j(t)

Observe that the term 1
ng

∑ j∈Sg
1

δ j(t)
ai j(t) represents the average strength of the rela-

tionship between i and an individual in city g. Therefore, Ȳg(t) represents the average

emotional influence at time t on an individual in city g.

The model in equation (4.3) can now be written as

ȳg(t) = θ(t)+ f̄g +β x̄g(t)+ γȲg(t)+ ε̄g(t) (4.4)

where ε̄g(t) = 1
ng

∑ j∈Sg ε j(t) is a city-specific error for all individuals j who are in city g.

Assuming ε j(t) independent normally distributed with zero mean and variance σ2, ε̄g(t)
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will also be normally distributed with mean 0, but it will have a city-specific variance

σ2/ng. Notice that this indicates the variance is inversely proportional to the number

of individuals in a city. As we describe below, we can use the equation for the variance

explicitly to weight each observation in the model.

4.6 Model estimation

We are interested in estimating the parameters of the model in equation (4.4),

which is simply an aggregated restatement of the individual-level model in equation (4.2).

To recap, this model is:

ȳg(t) = θ(t)+ f̄g +β x̄g(t)+ γȲg(t)+ ε̄g(t),

and we are primarily interested in estimating the effect of emotional contagion (γ).

The dependent variable ȳg(t) is the average emotion of users in city g on day t, the

independent variable Ȳg(t) is the average emotion of the friends of these users, x̄g(t) is a

binary indicator variable for rainfall in city g, and θ(t) and f̄g are fixed effects for each

day and each city.

Note that we can estimate γ for contagion of either positive and negative emotion,

and we can also see if these two emotions tend to inhibit one another by estimating the

effect of friends’ positive emotion on users’ negative emotion and vice versa.

An observation period of 1180 days and a set of 100 cities results in a model with

118,000 observations, each corresponding to a city-day pair. The parameters that need to

be estimated are the coefficients β and γ , 1180 fixed effects for the days, and 100 fixed

effects for the cities.

Since one of the explanatory variables of the model in equation (4.4), Ȳg(t), is

an endogenous variable (i.e. it is correlated both to the dependent variable ȳg(t) and to
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the error term ε̄g(t)), ordinary least squares regression would yield biased coefficient

estimates. We therefore use instrumental variable regression [9].

Instrumental variable regression is an estimation method that can produce consis-

tent and unbiased estimates when one of the explanatory variables is correlated with the

error terms in the model equation. This is the case when there is reciprocal causality from

the dependent variable to an explanatory variable (in our case, users affect their friends

and vice versa), when one or more relevant explanatory variables are omitted from the

model, or when the covariates are affected by measurement errors. If an instrument is

available that predicts the endogenous variable, then consistent and unbiased estimates

can be obtained. In a linear model, an instrument for an endogenous explanatory variable

v is a variable z that does not appear in the model equation, is correlated with v (condi-

tional on all the exogenous explanatory variables) and is not correlated with the error

term [9].

In our model, an instrument for the endogenous explanatory variable Ȳg(t) is

an exogenous variable z that is not correlated to the error term in equation (4.4), that

is Cov(z, ε̂g(t)) = 0, and is partially correlated to Ȳg(t) when controlling for the other

exogenous explanatory variables. In the context of our model, we can write:

Ȳg(t) = θ
′(t)+ f̄ ′g +β2x̄g(t)+β1z+νg(t), (4.5)

where νg(t) is an error term not correlated to any regressors and θ ′(t) and f̄ ′g are separately

estimated time and subpopulation fixed effects.

Equation (4.5) can be seen as the linear projection of Ȳg(t) on the space of all the

exogenous variables. Substituting equation (4.5) into equation (4.4) yields:

ȳg(t) = (θ(t)+ γθ
′(t))+( f̄g + γ f̄ ′g)+(β + γβ2)x̄g(t)+ γβ1z+ ε̄

′
g(t), (4.6)
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where the error term is uncorrelated with all the explanatory variables.

We use the variable X̄g(t) defined in equation (4.1) as the instrument (z) for Ȳg(t),

as it is uncorrelated with the error term in equation (4.4) and it is partially correlated

to Ȳg(t) (see Tables 4.5 to 4.8 for details). Specifically, we utilize rainfall experienced

by the friends of users in city g to predict the emotion of those friends since it directly

affects their mood.

The procedure above is equivalent to estimating the model in equation (4.4) using

two stage least-squares (2SLS) regression. The first stage regression estimates a model

of the form

Ȳg(t) = θ
′(t)+ f̄ ′g +β1X̄g(t)+β2x̄g(t)+ ε

′
g(t). (4.7)

The second stage regression uses the predicted values Ȳ pred
g (t) from the first stage to

estimate the model

ȳg(t) = θ(t)+ f̄g +β x̄g(t)+ γȲ pred
g (t)+ ε̄g(t). (4.8)

Finally, recall that the variance of the ε̄g(t) error term is proportional to 1
ng

where

ng is the number of individuals in a city. We therefore weight each observation by the

corresponding value of ng.

A key assumption of instrumental variables regression is the exclusion restriction

– the instrument must not directly influence the dependent variable. In our case, some of

the users’ friends are experiencing the same weather as the users because they are in the

same city. Therefore, in order to break any possible correlation between friends’ rainfall

X̄g(t) and users’ rainfall x̄g(t), we only consider observations for city-day pairs (g, t) such

that x̄g(t) = 0 (that is, it did not rain in city g on day t). This results in dropping 30,300
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observations, for a total of 87,700 remaining observations. Conditional on x̄g(t) = 0,

equations (4.7) and (4.8) can be respectively written as

Ȳg(t) = θ
′(t)+ f̄ ′g +β1X̄g(t)+ ε

′
g(t), (4.9)

ȳg(t) = θ(t)+ f̄g + γȲ pred
g (t)+ ε̄g(t). (4.10)

Note that since x̄g(t) = 0, there is no rainfall for either the user or the user’s friends who

are in the same city. This means that the instrument X̄g(t) now depends only on friends

who are in different cities (not in city g).

Results of the first and second stage regressions are shown in Figure 4.2.

Tables 4.5 to 4.8 report the estimates (with standard errors, t-statistics, 95%

confidence intervals, and diagnostic statistics) for the first and second stage of the 2SLS

regression for the model in equation (4.4) (fixed effects estimates are not reported due

to their number). The estimates of the emotional transmission parameter γ from the

second stage regression are always significantly different than zero, and the two positive

coefficients support the hypothesis of contagion. When users’ friends post positive status

updates, it increases their own positive updates. When users’ friends post negative status

updates, it increases their own negative updates. At the same time, the two negative

coefficients for γ support the idea that opposite moods have an inhibitory effect. When

users’ friends post positive status updates, it decreases their own negative updates. When

users’ friends post negative status updates, it decreases their own positive updates.

In order to assess the quality of the estimates obtained via instrumental variable

regression, we also compute diagnostic statistics.

First, we need to verify that the model is not underidentified. The Kleinbergen-

Paap rk LM statistic allows to test the null hypothesis of underidentification [128], and

all of our tests reject the null (test statistics are reported in the caption underneath each
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table).

Second, we need to verify that the instruments are good predictors of the endoge-

nous explanatory variable in the first-stage regression (otherwise the instruments are

considered weak). Weak instruments would cause poor predicted values in the first-stage

regression (for example, little variation) and presumably poor estimation in the second-

stage regression. To ensure the instruments are not weak, the Cragg-Donald Wald F

statistic must exceed the critical threshold suggested by Stock and Yogo [200].

For robustness, we also tested a version of the model in equation (4.4) that only

considers observations for city-day pairs (g, t) such that x̄g(t) = 1 (that is, it rained in city

g on day t). This results in dropping 87,700 observations, for a total of 30,300 remaining

observations. Tables 4.9 to 4.12 report the estimates (with standard errors, t-statistics,

95% confidence intervals, and diagnostic statistics) for the first and second stage of the

2SLS regression, which are substantially the same as the ones in Tables 4.5 to 4.8, with

overlapping 95% CI. These results suggest that the users’ own experience of rainfall does

not affect emotional contagion online.

4.6.1 Placebo test

If our procedure is correctly estimating social influence, we would not expect to

be able to predict users’ emotion using future friends’ weather and emotion. Here, we

test a placebo model by using the same instrumental variables procedure described above

to estimate the effect of future friends’ rainfall on users’ emotion today. We arbitrarily

choose t +30 as a point in time far enough in the future that friends’ rainfall then will

not be correlated with friends’ rainfall at time t. We then modify the equation in (4.4) to

shift the independent variable forward by 30 days:

ȳg(t) = θ(t)+ f̄g +β x̄g(t)+ γȲg,t+30 + ε̄g(t), (4.11)
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Table 4.5. Instrumental variable regression estimates: effect of friends positive emotion
on user positive emotion. Observations such that x̄g(t) = 0 are considered (87,700 total
observations). The Kleibergen-Paap rk LM statistic is 25.507 (p = 0.0000) suggesting
the regression is not underidentified [128]. The Cragg-Donald Wald F statistic is 324.053,
which exceeds the critical thresholds suggested by Stock and Yogo [200] to ensure the
instruments are not weak. All statistics are robust to heteroskedasticity, autocorrelation,
and clustering.

Emotion measure: positive rate (non rainy days)
Instrument: binary indicator of rainfall

FIRST STAGE Standard 95% Confidence Interval
Friends’ emotion Ȳ (p) Coefficient Error t P > |t| Low High

Friends’ rainfall X̄ -0.0119 0.00207 -5.75 0.000 -0.0160 -.00781

SECOND STAGE Standard 95% Confidence Interval
Users’ emotion ȳ(p) Coefficient Error t P > |t| Low High

Friends’ emotion Ȳ (p) 1.752 0.122 14.39 0.000 1.514 1.991

Table 4.6. Instrumental variable regression estimates: effect of friends negative emotion
on user negative emotion. Observations such that x̄g(t) = 0 are considered (87,700 total
observations). The Kleibergen-Paap rk LM statistic is 24.598 (p = 0.0000) suggesting
the regression is not underidentified [128]. The Cragg-Donald Wald F statistic is 505.398,
which exceeds the critical thresholds suggested by Stock and Yogo [200] to ensure the
instruments are not weak. All statistics are robust to heteroskedasticity, autocorrelation,
and clustering.

Emotion measure: negative rate (non rainy days)
Instrument: binary indicator of rainfall

FIRST STAGE Standard 95% Confidence Interval
Friends’ emotion Ȳ (n) Coefficient Error t P > |t| Low High

Friends’ rainfall X̄ 0.0116 0.00195 5.97 0.000 0.00776 0.0155

SECOND STAGE Standard 95% Confidence Interval
Users’ emotion ȳ(n) Coefficient Error t P > |t| Low High

Friends’ emotion Ȳ (n) 1.288 0.0486 26.53 0.000 1.193 1.383
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Table 4.7. Instrumental variable regression estimates: effect of friends positive emotion
on user negative emotion. Observations such that x̄g(t) = 0 are considered (87,700 total
observations). The Kleibergen-Paap rk LM statistic is 25.507 (p = 0.0000) suggesting
the regression is not underidentified [128]. The Cragg-Donald Wald F statistic is 324.053,
which exceeds the critical thresholds suggested by Stock and Yogo [200] to ensure the
instruments are not weak. All statistics are robust to heteroskedasticity, autocorrelation,
and clustering.

How friends’ positive rate affects users’ negative rate (non rainy days)
Instrument: binary indicator of rainfall

FIRST STAGE Standard 95% Confidence Interval
Friends’ emotion Ȳ (p) Coefficient Error t P > |t| Low High

Friends’ rainfall X̄ -0.0119 0.00207 -5.75 0.000 -0.0160 -0.00781

SECOND STAGE Standard 95% Confidence Interval
User’ emotion ȳ(n) Coefficient Error t P > |t| Low High

Friends’ emotion Ȳ (p) -1.255 0.227 -5.52 0.000 -1.701 -0.809

Table 4.8. Instrumental variable regression estimates: effect of friends negative emotion
on user positive emotion. Observations such that x̄g(t) = 0 are considered (87,700 total
observations). The Kleibergen-Paap rk LM statistic is 24.598 (p = 0.0000) suggesting
the regression is not underidentified [128]. The Cragg-Donald Wald F statistic is 505.398,
which exceeds the critical thresholds suggested by Stock and Yogo [200] to ensure the
instruments are not weak. All statistics are robust to heteroskedasticity, autocorrelation,
and clustering.

How friends’ negative rate affects users’ positive rate (non rainy days)
Instrument: binary indicator of rainfall

FIRST STAGE Standard 95% Confidence Interval
Friends’ emotion Ȳ (n) Coefficient Error t P > |t| Low High

Friends’ rainfall X̄ 0.0116 0.00195 5.97 0.000 0.00776 0.0155

SECOND STAGE Standard 95% Confidence Interval
User’ emotion ȳ(p) Coefficient Error t P > |t| Low High

Friends’ emotion Ȳ (n) -1.798 0.271 -6.62 0.000 -2.330 -1.266
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Table 4.9. Instrumental variable regression estimates: effect of friends positive emotion
on user positive emotion. Observations such that x̄g(t) = 1 are considered (30,300 total
observations). The Kleibergen-Paap rk LM statistic is 13.531 (p = 0.0002) suggesting
the regression is not underidentified [128]. The Cragg-Donald Wald F statistic is 78.189,
which exceeds the critical thresholds suggested by Stock and Yogo [200] to ensure the
instruments are not weak. All statistics are robust to heteroskedasticity, autocorrelation,
and clustering.

Emotion measure: positive rate (rainy days)
Instrument: binary indicator of rainfall

FIRST STAGE Standard 95% Confidence Interval
Friends’ emotion Ȳ (p) Coefficient Error t P > |t| Low High

Friends’ rainfall X̄ -0.00985 0.00268 -3.68 0.000 -0.0152 -0.00454

SECOND STAGE Standard 95% Confidence Interval
Users’ emotion ȳ(p) Coefficient Error t P > |t| Low High

Friends’ emotion Ȳ (p) 1.794 0.233 7.70 0.000 1.338 2.251

Table 4.10. Instrumental variable regression estimates: effect of friends negative emotion
on user negative emotion. Observations such that x̄g(t) = 1 are considered (30,300 total
observations). The Kleibergen-Paap rk LM statistic is 11.333 (p = 0.0008) suggesting
the regression is not underidentified [128]. The Cragg-Donald Wald F statistic is 102.297,
which exceeds the critical thresholds suggested by Stock and Yogo [200] to ensure the
instruments are not weak. All statistics are robust to heteroskedasticity, autocorrelation,
and clustering.

Emotion measure: negative rate (rainy days)
Instrument: binary indicator of rainfall

FIRST STAGE Standard 95% Confidence Interval
Friends’ emotion Ȳ (n) Coefficient Error t P > |t| Low High

Friends’ rainfall X̄ 0.00973 0.00281 3.47 0.001 0.00416 0.0153

SECOND STAGE Standard 95% Confidence Interval
Users’ emotion ȳ(n) Coefficient Error t P > |t| Low High

Friends’ emotion Ȳ (n) 1.473 0.134 10.97 0.000 1.210 1.736
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Table 4.11. Instrumental variable regression estimates: effect of friends positive emotion
on user negative emotion. Observations such that x̄g(t) = 1 are considered (30,300 total
observations). The Kleibergen-Paap rk LM statistic is 13.531 (p = 0.0002) suggesting
the regression is not underidentified [128]. The Cragg-Donald Wald F statistic is 78.189,
which exceeds the critical thresholds suggested by Stock and Yogo [200] to ensure the
instruments are not weak. All statistics are robust to heteroskedasticity, autocorrelation,
and clustering.

How friends’ positive rate affects users’ negative rate (rainy days)
Instrument: binary indicator of rainfall

FIRST STAGE Standard 95% Confidence Interval
Friends’ emotion Ȳ (p) Coefficient Error t P > |t| Low High

Friends’ rainfall X̄ -0.00985 0.00268 -3.68 0.000 -0.0152 -0.00454

SECOND STAGE Standard 95% Confidence Interval
User’ emotion ȳ(n) Coefficient Error t P > |t| Low High

Friends’ emotion Ȳ (p) -1.456 0.475 -3.06 0.002 -2.387 -0.524

Table 4.12. Instrumental variable regression estimates: effect of friends negative emotion
on user positive emotion. Observations such that x̄g(t) = 1 are considered (30,300 total
observations). The Kleibergen-Paap rk LM statistic is 11.333 (p = 0.0008) suggesting
the regression is not underidentified [128]. The Cragg-Donald Wald F statistic is 102.297,
which exceeds the critical thresholds suggested by Stock and Yogo [200] to ensure the
instruments are not weak. All statistics are robust to heteroskedasticity, autocorrelation,
and clustering.

How friends’ negative rate affects users’ positive rate (rainy days)
Instrument: binary indicator of rainfall

FIRST STAGE Standard 95% Confidence Interval
Friends’ emotion Ȳ (n) Coefficient Error t P > |t| Low High

Friends’ rainfall X̄ 0.00973 0.00281 3.47 0.001 0.00416 0.0153

SECOND STAGE Standard 95% Confidence Interval
User’ emotion ȳ(p) Coefficient Error t P > |t| Low High

Friends’ emotion Ȳ (n) -1.816 0.550 -3.30 0.001 -2.895 -0.738
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Figure 4.2. Models estimates. (a) Difference in emotional expression between days
with and without rain. Estimates derived from first stage regressions of each measure of
emotion on a binary measure of rainfall. (b) Estimates of emotional contagion between
friends from the second stage of an instrumental variables regression from four separate
models. The results show that rain affects emotional expression, both positive and
negative posts are contagious, and positive posts tend to inhibit negative posts and vice
versa. All models include fixed effects for city and day, average friends weather in other
cities, and standard errors clustered by city and day. Vertical bars show 95% confidence
intervals.

We conduct instrumental variable regression using X̄g,t+30 as an instrument for Ȳg,t+30.

Tables 4.13 to 4.16 report the estimates (with standard errors, t-statistics, 95% confidence

intervals, and diagnostic statistics) for the first and second stage of the 2SLS regression.

The estimates of γ from the second stage regression are not statistically significant and

they are much lower in magnitude than those estimated for the model in equation (4.4).

4.6.2 Controlling for topic contagion

One concern is that our estimates of emotional contagion are actually estimates

of topic contagion. Friends who post more negatively when it rains may be posting

about the weather itself, and users may respond with their own statuses about weather.
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Table 4.13. Placebo test: effect of friends positive emotion on user positive emotion. Ob-
servations such that x̄g(t) = 0 and x̄g,t+30 = 0 are considered (67,493 total observations).
The Kleibergen-Paap rk LM statistic is 28.711 (p = 0.0000) suggesting the regression is
not underidentified [128]. The Cragg-Donald Wald F statistic is 265.910, which exceeds
the critical thresholds suggested by Stock and Yogo [200] to ensure the instruments are
not weak. All statistics are robust to heteroskedasticity, autocorrelation, and clustering.

Model in Equation (4.11) (non rainy days)
Emotion measure: positive rate - Instrument: binary indicator of rainfall

FIRST STAGE Standard 95% Confidence Interval
Friends’ emotion Ȳ (p)

t+30 Coefficient Error t P > |t| Low High

Friends’ rainfall X̄t+30 -0.0118 0.00191 -6.19 0.000 -0.0156 -0.00804

SECOND STAGE Standard 95% Confidence Interval
Users’ emotion ȳ(p) Coefficient Error t P > |t| Low High

Friends’ emotion Ȳ (p)
t+30 -0.112 0.177 -0.63 0.526 -0.459 0.235

Table 4.14. Placebo test: effect of friends negative emotion on user negative emotion.
Observations such that x̄g(t) = 0 and x̄g,t+30 = 0 are considered (67,493 total obser-
vations). The Kleibergen-Paap rk LM statistic is 26.552 (p = 0.0000) suggesting the
regression is not underidentified [128]. The Cragg-Donald Wald F statistic is 458.685,
which exceeds the critical thresholds suggested by Stock and Yogo [200] to ensure the
instruments are not weak. All statistics are robust to heteroskedasticity, autocorrelation,
and clustering.

Model in Equation (4.11) (non rainy days)
Emotion measure: negative rate - Instrument: binary indicator of rainfall

FIRST STAGE Standard 95% Confidence Interval
Friends’ emotion Ȳ (n)

t+30 Coefficient Error t P > |t| Low High

Friends’ rainfall X̄t+30 0.0120 0.00188 6.42 0.000 0.00832 0.0158

SECOND STAGE Standard 95% Confidence Interval
Users’ emotion ȳ(n) Coefficient Error t P > |t| Low High

Friends’ emotion Ȳ (n)
t+30 -0.185 0.126 -1.46 0.143 -0.432 0.0627
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Table 4.15. Placebo test: effect of friends positive emotion on user negative emotion. Ob-
servations such that x̄g(t) = 0 and x̄g,t+30 = 0 are considered (67,493 total observations).
The Kleibergen-Paap rk LM statistic is 28.711 (p = 0.0000) suggesting the regression is
not underidentified [128]. The Cragg-Donald Wald F statistic is 265.910, which exceeds
the critical thresholds suggested by Stock and Yogo [200] to ensure the instruments are
not weak. All statistics are robust to heteroskedasticity, autocorrelation, and clustering.

Model in Equation (4.11) (non rainy days)
Friends’ positive rate to users’ negative rate - Instrument: binary indicator of rainfall

FIRST STAGE Standard 95% Confidence Interval
Friends’ emotion Ȳ (p)

t+30 Coefficient Error t P > |t| Low High

Friends’ rainfall X̄t+30 -0.0118 0.00191 -6.19 0.000 -0.0156 -0.00804

SECOND STAGE Standard 95% Confidence Interval
User’ emotion ȳ(n) Coefficient Error t P > |t| Low High

Friends’ emotion Ȳ (p)
t+30 0.188 0.121 1.55 0.120 -0.0493 0.425

Table 4.16. Placebo test: effect of friends negative emotion on user positive emotion. Ob-
servations such that x̄g(t) = 0 and x̄g,t+30 = 0 are considered (67,493 total observations).
The Kleibergen-Paap rk LM statistic is 26.552 (p = 0.0000) suggesting the regression is
not underidentified [128]. The Cragg-Donald Wald F statistic is 458.685, which exceeds
the critical thresholds suggested by Stock and Yogo [200] to ensure the instruments are
not weak. All statistics are robust to heteroskedasticity, autocorrelation, and clustering.

Model in Equation (4.11) (non rainy days)
Friends’ negative rate to users’ positive rate - Instrument: binary indicator of rainfall

FIRST STAGE Standard 95% Confidence Interval
Friends’ emotion Ȳ (n)

t+30 Coefficient Error t P > |t| Low High

Friends’ rainfall X̄t+30 0.0120 0.00188 6.42 0.000 0.00832 0.0158

SECOND STAGE Standard 95% Confidence Interval
User’ emotion ȳ(p) Coefficient Error t P > |t| Low High

Friends’ emotion Ȳ (n)
t+30 0.110 0.172 0.64 0.521 -0.226 0.447
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This would not undermine our statistical results on contagion, but it might change our

interpretation if we discovered that topics were driving the similarity in word choice by

users and friends.

To address this issue, we created a dictionary of weather terms based on a

meteorological glossary supplied by NOAA (http://www.erh.noaa.gov/box/glossary.htm).

We then crowdsourced this dictionary to approximately 100 students, postdocs, and

professors asking for additional suggestions. The resulting list is not exhaustive, but we

expect it will allow us to detect most status updates that are on a weather-related topic.

The full list of terms can be found in Table 4.17.

Recall that Ui(t) represents the status updates of user i on day t, and let u(w)i (t) be

the number of status updates in Ui(t) that contain at least one word from our dictionary of

weather terms. If ui(t) 6= 0, let wi(t) = u(w)i (t)/ui(t) be the fraction of i’s status updates

related to weather, and let w̄g(t) = 1
ng

∑i∈Sg wi(t) be the average over city g. We can now

use this variable to control for the tendency to post status updates about the weather by

adding it to equation (4.4):

ȳg(t) = θ(t)+ f̄g +λ w̄g(t)+ γȲg(t)+ ε̄g(t). (4.12)

Tables 4.18 to 4.21 report the estimates (with standard errors, t-statistics, 95% confidence

intervals, and diagnostic statistics) for the first and second stage of the 2SLS regression.

The negative estimates for λ suggest that increased usage of weather words is generally

associated with decreased emotional expression. However, the relationships are weak

and sometimes insignificant, and more importantly, the estimates for the emotional

transmission parameter γ remain substantially the same as the estimates from model (4.4)

without controls. These results indicate that posting on the topic of weather is not driving

the relationship in use of emotional words between users and their friends.
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Table 4.17. Terms used to identify status updates on the topic of weather.

aerovane air airstream altocumulus altostratus anemometer anemometers anticyclone
anticyclones arctic arid aridity atmosphere atmospheric autumn autumnal balmy
baroclinic barometer barometers barometric blizzard blizzards blustering blustery
blustery breeze breezes breezy brisk calm celsius chill chilled chillier chilliest
chilly chinook cirrocumulus cirrostratus cirrus climate climates cloud cloudburst
cloudbursts cloudier cloudiest clouds cloudy cold colder coldest condensation contrail
contrails cool cooled cooling cools cumulonimbus cumulus cyclone cyclones damp damp
damper damper dampest dampest degree degrees deluge dew dews dewy doppler downburst
downbursts downdraft downdrafts downpour downpours dried drier dries driest drizzle
drizzled drizzles drizzly drought droughts dry dryline fall farenheit flood flooded
flooding floods flurries flurry fog fogbow fogbows fogged fogging foggy fogs forecast
forecasted forecasting forecasts freeze freezes freezing frigid frost frostier
frostiest frosts frosty froze frozen gale gales galoshes gust gusting gusts gusty
haboob haboobs hail hailed hailing hails haze hazes hazy heat heated heating heats
hoarfrost hot hotter hottest humid humidity hurricane hurricanes ice iced ices icing
icy inclement landspout landspouts lightning lightnings macroburst macrobursts maelstrom
mercury meteorologic meteorologist meteorologists meteorology microburst microbursts
microclimate microclimates millibar millibars mist misted mists misty moist moisture
monsoon monsoons mugginess muggy nexrad nippy NOAA nor’easter nor’easters noreaster
noreasters overcast ozone parched parching pollen precipitate precipitated precipitates
precipitating precipitation psychrometer radar rain rainboots rainbow rainbows raincoat
raincoats rained rainfall rainier rainiest raining rains rainy sandstorm sandstorms
scorcher scorching searing shower showering showers skiff sleet slicker slickers slush
slushy smog smoggier smoggiest smoggy snow snowed snowier snowiest snowing snowmageddon
snowpocalypse snows snowy spring sprinkle sprinkles sprinkling squall squalls squally
storm stormed stormier stormiest storming storms stormy stratocumulus stratus
subtropical summer summery sun sunnier sunniest sunny temperate temperature tempest thaw
thawed thawing thaws thermometer thunder thundered thundering thunders thunderstorm
thunderstorms tornadic tornado tornadoes tropical troposphere tsunami turbulent twister
twisters typhoon typhoons umbrella umbrellas vane warm warmed warming warms warmth
waterspout waterspouts weather wet wetter wettest wind windchill windchills windier
windiest windspeed windy winter wintery wintry

Table 4.18. Controlling for topic contagion: effect of friends positive emotion on
user positive emotion. Observations such that x̄g(t) = 0 are considered (87,700 total
observations). The Kleibergen-Paap rk LM statistic is 17.750 (p = 0.0000) suggesting
the regression is not underidentified [128]. The Cragg-Donald Wald F statistic is 169.315,
which exceeds the critical thresholds suggested by Stock and Yogo [200] to ensure the
instruments are not weak. All statistics are robust to heteroskedasticity, autocorrelation,
and clustering.

Model in Equation (4.12) (non rainy days)
Emotion measure: positive rate - Instrument: binary indicator of rainfall

FIRST STAGE Standard 95% Confidence Interval
Friends’ emotion Ȳ (p) Coefficient Error t P > |t| Low High

Friends’ rainfall X̄ -0.00888 0.00199 -4.46 0.000 -0.0128 -0.00492
Users’ weather rate w̄ -0.0186 0.00322 -5.78 0.000 -0.0250 -0.0122

SECOND STAGE Standard 95% Confidence Interval
Users’ emotion ȳ(p) Coefficient Error t P > |t| Low High

Friends’ emotion Ȳ (p) 1.205 0.0974 12.37 0.000 1.0140 1.396
Users’ weather rate w̄ -0.0399 0.00301 -13.25 0.000 -0.0458 -0.0340
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Table 4.19. Controlling for topic contagion: effect of friends negative emotion on
user negative emotion. Observations such that x̄g(t) = 0 are considered (87,700 total
observations). The Kleibergen-Paap rk LM statistic is 15.799 (p = 0.0001) suggesting
the regression is not underidentified [128]. The Cragg-Donald Wald F statistic is 199.681,
which exceeds the critical thresholds suggested by Stock and Yogo [200] to ensure the
instruments are not weak. All statistics are robust to heteroskedasticity, autocorrelation,
and clustering.

Model in Equation (4.12) (non rainy days)
Emotion measure: negative rate - Instrument: binary indicator of rainfall

FIRST STAGE Standard 95% Confidence Interval
Friends’ emotion Ȳ (n) Coefficient Error t P > |t| Low High

Friends’ rainfall X̄ 0.00749 0.00175 4.29 0.000 0.00403 0.0110
Users’ weather rate w̄ 0.0252 0.00496 5.09 0.000 0.0154 0.0351

SECOND STAGE Standard 95% Confidence Interval
Users’ emotion ȳ(n) Coefficient Error t P > |t| Low High

Friends’ emotion Ȳ (n) 1.509 0.0986 15.30 0.000 1.315 1.702
Users’ weather rate w̄ -0.0157 0.00305 -5.14 0.000 -0.0217 -0.00971

4.7 Quantifying the total effect of a user on her friends

Consider a user j and assume she posts a single status update during day t. For

presentation, we consider negative emotions and compare the case in which j’s status

update contains a negative word (y j(t) = 1) versus the case it does not (y j(t) = 0). We

estimate the additional number of negative status updates posted by j’s friends conditional

on y j(t) = 1 versus y j(t) = 0.

According to the individual level model (4.2), the emotional contagion from j

to i is given by ci jt = γai j(t)y j(t)/δi(t) for each user i who posted on day t (we assume

that each user i posted either one or zero status updates). Conditional on y j(t) = 1 and
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Table 4.20. Controlling for topic contagion: effect of friends positive emotion on
user negative emotion. Observations such that x̄g(t) = 0 are considered (87,700 total
observations). The Kleibergen-Paap rk LM statistic is 17.750 (p = 0.0000) suggesting
the regression is not underidentified [128]. The Cragg-Donald Wald F statistic is 169.315,
which exceeds the critical thresholds suggested by Stock and Yogo [200] to ensure the
instruments are not weak. All statistics are robust to heteroskedasticity, autocorrelation,
and clustering.

Model in Equation (4.12) (non rainy days)
Friends’ positive rate to users’ negative rate - Instrument: binary indicator of rainfall

FIRST STAGE Standard 95% Confidence Interval
Friends’ emotion Ȳ (p) Coefficient Error t P > |t| Low High

Friends’ rainfall X̄ -0.00888 0.00199 -4.46 0.000 -0.0128 -0.00492
Users’ weather rate w̄ -0.0186 0.00322 -5.78 0.000 -0.0250 -0.0122

SECOND STAGE Standard 95% Confidence Interval
User’ emotion ȳ(n) Coefficient Error t P > |t| Low High

Friends’ emotion Ȳ (p) -1.274 0.302 -4.22 0.000 -1.866 -0.681
Users’ weather rate w̄ -0.00134 0.0113 -0.12 0.905 -0.0234 0.0207

on y j(t) = 0 respectively, this term is

c(1)i jt = γai j(t)/δi(t),

c(0)i jt = 0.

Summing over all users i who posted on day t, the total emotional contagion of user j

conditional on y j(t) = 1 is

C(1)
j (t) = ∑

i
c(1)i jt = γ ∑

i
ai j(t)/δi(t),

while conditional on y j(t) = 0 it is C(0)
j (t) = 0. The difference in number of negative

status updates posted by j’s friends conditional on y j(t) = 1 versus y j(t) = 0 can be
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Table 4.21. Controlling for topic contagion: effect of friends negative emotion on
user positive emotion. Observations such that x̄g(t) = 0 are considered (87,700 total
observations). The Kleibergen-Paap rk LM statistic is 15.799 (p = 0.0001) suggesting
the regression is not underidentified [128]. The Cragg-Donald Wald F statistic is 199.681,
which exceeds the critical thresholds suggested by Stock and Yogo [200] to ensure the
instruments are not weak. All statistics are robust to heteroskedasticity, autocorrelation,
and clustering.

Model in Equation (4.12) (non rainy days)
Friends’ negative rate to users’ positive rate - Instrument: binary indicator of rainfall

FIRST STAGE Standard 95% Confidence Interval
Friends’ emotion Ȳ (n) Coefficient Error t P > |t| Low High

Friends’ rainfall X̄ 0.00749 0.00175 4.29 0.000 0.00403 0.0110
Users’ weather rate w̄ 0.0252 0.00496 5.09 0.000 0.0154 0.0351

SECOND STAGE Standard 95% Confidence Interval
User’ emotion ȳ(p) Coefficient Error t P > |t| Low High

Friends’ emotion Ȳ (n) -1.427 0.368 -3.88 0.000 -2.149 -0.706
Users’ weather rate w̄ -0.0264 0.0150 -1.76 0.078 -0.0557 0.00300

therefore quantified as

Fj(t) =C(1)
j (t)−C(0)

j (t) = γ ∑
i

ai j(t)/δi(t) = γA j(t),

where A j(t) = ∑i ai j(t)/δi(t) constitutes a measure of how influential user j is. In

words, j’s cumulative effect on her friends is proportional to the coefficient of emotional

contagion γ and her influence A j(t).

Observe that A j(t) can be computed exactly for each j and t. And note that this

measure is increasing in the number of friends (more friends means more people might

be influenced) and decreasing in the number of friends those friends have (if a friend has

more friends, the user will on average have less influence on that friend).

The average user’s effect F̄(t) can be computed as the average individual effect
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Table 4.22. Average cumulative effect of a user on her friends. D̄t is the cumulative
number of additional status updates posted by a user’s friends and containing an emotion
word (either positive or negative, depending on the variable choice) when the user posts
an additional status updates containing an emotion word (either positive or negative,
depending on the variable choice).

Average user emotional contagion effect – estimates and 95% CI

User’s emotion Friend’s emotion D̄t Lo95% Hi95%
Positive rate Positive rate 1.752 1.514 1.991
Negative rate Negative rate 1.288 1.193 1.383
Positive rate Negative rate -1.255 -1.701 -0.809
Negative rate Positive rate -1.798 -2.330 -1.266

over all n users,

F̄(t) =
1
n ∑

j
Fj(t) = γ

1
n ∑

j
A j(t) = γ

1
n ∑

j
∑

i
ai j(t)

1
δi(t)

= γ
1
n ∑

i

1
δi(t)

∑
j

ai j(t) = γ
1
n ∑

i

1
δi(t)

δi(t) = γ.

The average user’s effect F̄(t) and 95% CI for all four choices of emotions (user’s

positive/negative rate, friends’ positive/negative rate) are shown in Table 4.22, and

correspond directly to the estimates of γ in Tables 4.5 to 4.8. In other words, the γ

coefficients themselves are estimates of the total effect a user has on all her friends.

4.8 How rain affects friends in other cities

Here we compute the cumulative effect that rain in one city has on all friends of

users in that city who are in different cities. This allows us to answer the question: if it

rains in New York, how many additional users in other cities post negative status updates

as a result?

Consider the 2SLS model given by equations (4.9) and (4.10) for day t and city



115

g,

Ȳg(t) = θ
′(t)+ f̄ ′g +β1X̄g(t)+ ε

′
g(t),

ȳg(t) = θ(t)+ f̄g + γȲ pred
g (t)+ ε̄g(t).

Suppose that other cities are indexed by h 6= g and let X̄ (h,1)
g (t), Ȳ (h,1)

g (t), ȳ(h,1)g (t) re-

spectively denote X̄g(t), Ȳg(t), ȳg(t) conditional on x̄h(t) = 1 (that is, rainfall in city h).

Similarly, let X̄ (h,0)
g (t), Ȳ (h,0)

g (t), ȳ(h,0)g (t) be the same quantities conditional on x̄h(t) = 0.

Using this notation, we can derive the following relationships:

X̄ (h,1)
g (t)− X̄ (h,0)

g (t) = ∑
i∈Sh

1
ng

∑
j∈Sg

1
δ j(t)

ai j(t),

Ȳ (h,1)
g (t)− Ȳ (h,0)

g (t) = β1

(
X̄ (h,1)

g (t)− X̄ (h,0)
g (t)

)
= β1 ∑

i∈Sh

1
ng

∑
j∈Sg

1
δ j(t)

ai j(t),

ȳ(h,1)g (t)− ȳ(h,0)g (t) = γβ1

(
X̄ (h,1)

g (t)− X̄ (h,0)
g (t)

)
= γβ1 ∑

i∈Sh

1
ng

∑
j∈Sg

1
δ j(t)

ai j(t).

Observe that ȳ(h,1)g (t)− ȳ(h,0)g (t) is the difference in emotion of the average user in city

g conditional on x̄h(t) = 1 verus x̄h(t) = 0. Assuming that each user posts either one or

zero status updates on day t, ng(ȳ
(h,1)
g (t)− ȳ(h,0)g (t)) is the additional number of negative

status updates posted in city g conditional on x̄h(t) = 1 verus x̄h(t) = 0, where ng is the

number of users in city.

Fix a day t, let Īh(t) be the cumulative number of negative status updates posted

in all cities different than h conditional on x̄h(t) = 1 versus x̄h(t) = 0, that is the indirect
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of rain in city h. This can be computed by summing the effect on each city g 6= h,

Īh(t) = ∑
g6=h

ng

(
ȳ(h,1)g (t)− ȳ(h,0)g (t)

)
= γβ1 ∑

g6=h
ng ∑

i∈Sh

1
ng

∑
j∈Sg

1
δ j(t)

ai j(t)

= γβ1 ∑
i∈Sh

∑
g6=h

∑
j∈Sg

1
δ j(t)

ai j(t) = γβ1 ∑
i∈Sh

∑
j/∈Sh

1
δ j(t)

ai j(t).

For a user i in city h, ∑ j/∈Sh
ai j(t)/δ j(t) is the sum of the inverse degrees of i’s friend

who are in a different city, and represents a measure of i’s influence outside city h. The

indirect effect or rain Īh(t) is therefore proportional to the total influence from users in

city h to their friends in other cities.

For each city h, we let Īh be the average of T̄h(t) over all days t.

The confidence interval of Īh is computed from the confidence interval for the

product γβ1, as the other terms can be exactly computed. To compute a confidence

interval on the product γβ1 we cannot simply multiply the estimates of γ and β1 in Ta-

ble 4.6 derived from the model in equation (4.4) using two-stage least-squares regression,

because they might be correlated We therefore use bootstrap sampling by independently

generating 100 bootstrap samples of our data set. Each bootstrap sample is generated by

first selecting 1180 days uniformly at random with replacement, and then selecting 100

cities uniformly at random with replacement for each of the 1180 selected days. For each

bootstrap sample, we estimate the model in equation (4.4) using two-stage least-squares

regression, and we compute the product between β1 (from the first-stage regression) and

γ (from the second-stage regression). We them compute the mean and 95% CI of the

estimates of γβ1 from all bootstrap samples.

Tables 4.23 and 4.24 show the direct effect D̄h (with 95% CI) of rain in city h on

status updates posted by users in that city, computed by multiplying the number of users

nh by the coefficient β1 from the first stage in the 2SLS regression. The tables also show
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the indirect effect Īh (with 95% CI) for each city h of rain on status updates posted by

users in other cities.

Similar results can be obtained by considering the effect on the number of either

positive or negative posts, and using positive or negative emotions as the variable Ȳg(t)

in the first stage regression. The size and direction of Īh and D̄h would depend on the

magnitude and sign of γβ1 and β1 respectively.

Figure 4.3 plots the direct and indirect effect on the cities considered in the

dataset.

Figure 4.3. Total number of negative posts generated by a day of rainfall within a
city (direct) and in other cities via contagion (indirect). Blue colors indicate higher
indirect/direct effect ratio. Larger labels indicate larger population
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Table 4.23. Indirect and direct effect on negative emotion of rain in a city (the 50 most
populous cities out of 100). The direct effect of rain in a city g is the cumulative number
of status updates posted by the users in city g, as an effect of rain versus the lack of
rain in city g (keeping everything else fixed). The indirect effect of rain in a city g is
the cumulative number of status updates posted by the friends of users in city g who do
not live in city g, as an effect of rain versus the lack of rain in city g. The table shows
estimates and 95% CI

Indirect and direct effect of rain in a city – estimates and 95% CI
(Number of negative posts)

Population Indirect effect Direct effect
City Code (US Census 2010) Īg Lo95% Hi95% D̄g Lo95% Hi95%

NYC 8175133 712.14 626.23 806.32 1550.42 1023.81 2071.68
LAX 3792621 666.96 586.5 755.16 1136.34 750.37 1518.38
CHI 2695598 573.32 504.16 649.14 1637.96 1081.62 2188.65
WAS 601723 494.37 434.73 559.75 878.38 580.04 1173.7
ATL 420003 477.59 419.98 540.75 992.6 655.46 1326.32
DAL 1197816 445.36 391.63 504.25 714.63 471.9 954.89
HOU 2100263 352.2 309.71 398.77 881.18 581.88 1177.44
SAN 1307402 299.02 262.95 338.56 536.04 353.97 716.26
AUS 790390 283.22 249.05 320.67 443.31 292.74 592.35
SFO 805235 278.62 245.01 315.47 419.23 276.84 560.18
ORL 238300 262.76 231.06 297.51 530.92 350.59 709.42
PHX 1445632 252.38 221.94 285.76 432.45 285.57 577.85
PHL 1526006 250.07 219.9 283.14 831.29 548.94 1110.77
BOS 617594 226.16 198.87 256.07 678.99 448.37 907.27
LAS 583756 215.53 189.53 244.03 367.55 242.71 491.12
TPA 335709 203.99 179.38 230.96 407.76 269.26 544.85
CLT 731424 202.33 177.92 229.09 441.28 291.4 589.65
BWI 620961 201.65 177.32 228.32 510.88 337.36 682.64
SEA 608660 199.65 175.57 226.05 450.34 297.38 601.75
MSP 382578 189.01 166.21 214 487.64 322.01 651.58
MIA 399457 184.1 161.89 208.44 511.4 337.7 683.34
BNA 601222 181.93 159.98 205.99 340.53 224.87 455.02
SAT 1327407 180.27 158.52 204.11 402.74 265.95 538.14
DEN 600158 174.49 153.44 197.57 342.77 226.35 458.01
DTT 713777 169.29 148.86 191.67 722.21 476.91 965.02
CMH 787033 165.41 145.45 187.28 385.78 254.75 515.48
VIB 437994 164.3 144.48 186.03 261.33 172.57 349.19
RAL 403892 155.61 136.84 176.19 331.11 218.64 442.43
PDX 583776 151.09 132.86 171.07 368.13 243.1 491.9
IND 820445 145.44 127.89 164.67 426.14 281.4 569.42
STL 319294 140.84 123.85 159.47 428.03 282.65 571.94
PIT 305704 138.34 121.65 156.63 423.86 279.89 566.36
JAX 821784 128.47 112.97 145.46 313.3 206.88 418.63
CVG 296943 125.75 110.58 142.38 349.55 230.82 467.07
MKE 594833 123.44 108.55 139.76 356.36 235.32 476.17
CLE 396815 121.64 106.97 137.73 290.14 191.59 387.69
MCI 459787 121.57 106.9 137.64 361.38 238.64 482.88
MSY 343829 119.4 104.99 135.18 217.86 143.86 291.1
DFW 741206 114.47 100.66 129.6 143.96 95.06 192.36
SMF 466488 109.26 96.08 123.7 259.26 171.2 346.42
MEM 646889 101.05 88.86 114.41 281.99 186.21 376.8
COS 416427 85.02 74.76 96.26 164.61 108.7 219.95
TUS 520116 85 74.74 96.24 183.67 121.29 245.42
OKC 579999 82.09 72.19 92.95 197.24 130.25 263.55
BHM 212237 80.15 70.48 90.74 206.74 136.52 276.25
ROC 210565 79.8 70.18 90.36 231 152.54 308.66
GSP 269666 79.29 69.72 89.77 148.43 98.02 198.34
BUF 261310 78.59 69.11 88.99 240.16 158.59 320.91
OMA 408958 77.38 68.04 87.61 198.7 131.21 265.51
HNL 337256 76.94 67.66 87.11 146.49 96.73 195.74
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Table 4.24. Indirect and direct effect on negative emotion of rain in a city (the 50 least
populous cities out of 100). The direct effect of rain in a city g is the cumulative number
of status updates posted by the users in city g, as an effect of rain versus the lack of
rain in city g (keeping everything else fixed). The indirect effect of rain in a city g is
the cumulative number of status updates posted by the friends of users in city g who do
not live in city g, as an effect of rain versus the lack of rain in city g. The table shows
estimates and 95% CI

Indirect and direct effect of rain in a city – estimates and 95% CI
(Number of negative posts)

Population Indirect effect Direct effect
City Code (US Census 2010) Īg Lo95% Hi95% D̄g Lo95% Hi95%

MSN 233209 75.29 66.21 85.25 157.48 103.99 210.42
TUL 391906 73.27 64.43 82.96 182.92 120.79 244.42
LGB 462257 70.16 61.7 79.44 82.38 54.4 110.08
BTR 229493 69.06 60.73 78.19 144.26 95.26 192.76
GKY 365438 68.67 60.38 77.75 77.07 50.89 102.98
ORF 242803 66.44 58.43 75.23 69.23 45.72 92.51
SDL 217385 64.1 56.37 72.58 56.15 37.08 75.03
SJC 945942 63.62 55.95 72.04 124.93 82.5 166.93
LEX 295803 62.26 54.75 70.49 166.71 110.08 222.76
MES 439041 58.33 51.29 66.04 70.82 46.76 94.63
SNP 285068 58.13 51.12 65.82 56.62 37.39 75.65
AWO 207627 58.11 51.1 65.79 48.02 31.71 64.16
CAK 199110 54.97 48.34 62.24 127.26 84.03 170.04
ICT 382368 53.72 47.24 60.82 172.3 113.78 230.23

OAK 390724 52.66 46.31 59.62 63 41.6 84.17
PLA 259841 52.58 46.23 59.53 51.25 33.84 68.47
TOL 287208 52.5 46.17 59.44 139.47 92.1 186.36
ABQ 545852 51.48 45.27 58.29 124.55 82.25 166.42
LNK 258379 48.66 42.79 55.09 113.83 75.17 152.11
LBB 229573 45.6 40.1 51.63 83.81 55.34 111.98
CPK 222209 44.53 39.16 50.42 48.25 31.86 64.47
CHD 236123 42.98 37.8 48.67 44.24 29.21 59.11
FAT 494665 40.7 35.79 46.08 114.99 75.94 153.66
JCY 247597 40.27 35.41 45.6 79.44 52.46 106.15
FWA 253691 39.61 34.83 44.85 112.57 74.33 150.42
ELP 649121 38.59 33.94 43.69 89.57 59.15 119.68

MGM 205764 38.23 33.62 43.29 83.39 55.07 111.43
CRP 305215 36.17 31.81 40.95 72.06 47.58 96.28
BOI 205671 34.14 30.02 38.66 98.93 65.33 132.19
ANC 291826 33.83 29.75 38.3 82.87 54.72 110.73
PIE 244769 33.8 29.72 38.27 36.59 24.16 48.89

HND 257729 33.54 29.49 37.97 32.71 21.6 43.71
RNO 225221 30.89 27.16 34.97 67.57 44.62 90.29
BFL 347483 27.67 24.33 31.33 84.18 55.59 112.49
RIV 303871 25.28 22.23 28.62 48.15 31.79 64.33
GAR 226876 23.98 21.08 27.15 26.58 17.55 35.52
SCK 291707 19 16.71 21.51 40.11 26.49 53.6
HTS 189992 18.27 16.07 20.69 49 32.36 65.48
ANA 336265 18.18 15.99 20.59 30.24 19.97 40.41
CHU 243916 17.9 15.74 20.27 18.21 12.03 24.34
MOD 201165 15.42 13.56 17.46 37.16 24.54 49.65
GEU 226721 14.99 13.18 16.97 13.86 9.15 18.52
EWR 277140 13.44 11.81 15.21 27.85 18.39 37.21
HIA 224669 11.27 9.91 12.76 12.02 7.94 16.06
LRD 236091 9.46 8.31 10.71 27.13 17.92 36.25
SNA 324528 8.65 7.61 9.8 17.44 11.52 23.31
SBD 209924 7.51 6.6 8.5 15.98 10.55 21.36
NHE 226322 5.35 4.71 6.06 6.01 3.97 8.03
RDU 228330 1.22 1.07 1.38 28.31 18.69 37.82
AUR 325078 0.31 0.27 0.35 3.87 2.55 5.17
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4.9 Discussion

We proposed a rigorous method based on mathematical modeling and instru-

mental variable regression to detect and quantify contagion of semantic expression in

online social networks using observational data. First, our method allows us to determine

what semantic categories are susceptible to peer influence between social contacts. In

particular, we showed that a person’s post expressing positive or negative emotion can

cause his or her friends to generate one to two additional posts expressing the same emo-

tion. Second, it allows us to estimate a signed relationship between different categories,

characterizing how an increase in the usage of a semantic category by an individual alters

the usage of another by her social contacts. Third, our model allows us to quantify the

cumulative effect that a person has on all her social contacts.

One potential concern is the instrument’s weakness [198]—rainfall has only

a small effect in our analysis, but this does not harm the validity of our conclusions

because it is the precision, and not the size of the estimate that matters. In the dataset we

used, built from content posted by millions of users, even a small effect is statistically

significant and robust to a multitude of statistical tests against instrument weakness.

Our method limits inference to influence between subpopulations (individuals in

different cities). Drawing conclusions about influence within a subpopulation (individuals

in the same city) using observational data requires either the identification of a valid

instrument or the definition of a different approach. This is an avenue of future research.

There are, of course, some limitations in inferring causality from observational

data, and robust instruments may not always be available. Our model provides an

alternative method when a large scale experiment is infeasible and researchers must

rely on observational data. In an experiment, one would directly control the state of

some people in order to track changes in their friends’ outcomes (semantic expression, in
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our case). With the proposed approach, which constitutes a “natural experiment”, the

instrument (rainfall, in our case) constitutes a source of variation that affects some people

directly (those experiencing it) but can predict changes in their social contacts who do not

directly experience it. Moreover, our method can be easily applied to massive datasets

(thanks to aggregation), and allows us to perform multiple analyses regarding several

outcomes.

We advocate for the involvement of the engineering community in the develop-

ment of non-experimental methods of causal inference. On the one hand, it is an open

question how methods based on instrumental variable regression generalize to different

contexts (especially contagion within a population) and how to build instruments in

a systematic way. On the other hand, although instrumental variables might provide

interesting answers, researchers should also develop and propose alternative techniques.
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Chapter 5

Approximating physical encounter
with friendship to predict epidemic
outbreaks

5.1 Introduction

The forecast and mitigation of epidemics is a central theme in public health [104,

55, 92, 73, 146, 71, 72]. Events such as the recent ebola epidemic constantly drive the

attention and resources of governments, institutions such as the World Health Organiza-

tion, and the research community [86, 93, 178, 136, 145, 154]. The study of infectious

processes on real-world networks is of interests to diverse disciplines, and similar mod-

els have been proposed to characterize the spread of information, behaviors, cultural

norms, innovation, as well as the diffusion of computer viruses [85, 180, 209, 143, 170].

Therefore, epidemiologists, computer scientists and social scientist have joint forces

in the study of contagion phenomena. Due to the impossibility to study the spread

of infectious diseases through controlled experiments, modeling efforts have prevailed

[99, 170, 132, 125, 169]. Recently, advancements in computation tools determined the

emergence of data-driven simulations in the study of epidemic outbreaks and dynamical

processes in general [210].

Physical encounter is the preferred vehicle for the spread of infectious deceases,

122
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and occurs when two individuals meet at the same location at the same time. Therefore,

detailed information about said encounters is fundamental to monitor and contain out-

breaks. Different sources of data can serve as proxies of physical encounter – checkins

on social networking platforms [49, 164, 163], traffic records [23, 203, 202], phone call

records [166, 87, 101], wifi and RFID wearable sensors data [189, 42, 199], geographical

and non-geographical information shared online [19, 48].

Human mobility and encounter present high spatial and temporal regularity and

predictability [39, 87, 196, 203]. However, information about physical encounter, or

proxies of it, is not always available, or it might be expensive and unpractical to collect

(as in the case of sensor technologies [189, 42, 199]), prone to errors (as in the case of

survey data [181, 65]), and privacy-sensitive [139, 28, 27, 60]. Therefore, the researcher

needs to rely on the specific information in her possession, which might come in the form

of self-reported social relationships between the individuals in a population (e.g., family,

professional, friendship ties), or explicit ties formed by the users of a social network (e.g.

Facebook friendship, follower-followee relationships on Twitter). Both real-word and

online social relationships have been shown to predict the diffusion of behaviors and

other phenomena [51, 52, 43, 13, 14]. Moreover, location data from cell phone records

and online social networks has shown that social relationships can partially explain the

patterns of human mobility [50].

The spread of an infection over a real-world network is composed by two pro-

cesses. On the one hand, the dynamics of the network, whose structure changes over

time according to the contacts between individuals. On the other hand, the dynamics

on the network, whose state is represented by the set of infected nodes. When these

dynamics operate at comparable time scale, the time-varying nature of the network

cannot be ignored [90, 192], aggregating the dynamics of the edges into a static version

of the network introduces bias [102, 174], and specifically devised control strategies are
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necessary [142].

Given an infection transmitted by physical encounter, the present work is an

attempt to quantify how accurately and within which limits said process can be predicted

and approximated if the researcher has only access to explicit relationship ties between

individuals (i.e., friendship). We consider a dataset from Yelp (www.yelp.com), a popular

crowd-sourced online review service, in which users write reviews to restaurants, bars

and other types of business. We use the time in which reviews to a business are posted as

a proxy of physical encounter between users. That is, we assume that two individuals

encountered on a given day if they both wrote a review to the same restaurant on that day.

Users of Yelp can also form friendship ties between each other.

Physical encounter defines a time-varying network between users, over which

an infection can spread over time. Such network has a fixed set of users, and the link

between two users is activated when they have a contact. As a comparison, we define a

time-varying network based on friendship, which has a fixed set of links between users

(i.e., friendship ties) and where a user is activated whenever she writes a review. On such

network, the infection can spread from a user to a friend only if they both write a review,

even to different businesses, on the same day.

How well can an infection on the friendship network approximate an infection

on the encounter network? We consider a susceptible-exposed-infected process (SEI

process [8]), in which susceptible individuals can become infected when they are exposed

to infected individuals, and individuals never recover from infection. To answer our

question, we compare how the process spreads on the two networks both at a macroscopic

and a microscopic level.

At the macroscopic level, we observe how the infection spreads over time on

the two different networks. Two are the quantities of interests, the final size of the

population infected over a given period to time, and the time needed to infect a fixed

www.yelp.com
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fraction of the entire population. Differences between the friendship and encounter

networks arise for their different connectivity, firstly because friendship determines a

denser structure than physical encounter. In particular, friendship ties predict faster

spread of the infection, larger infected population and earlier detection than physical

encounter. Given an alarm threshold in terms of the infected fraction of the population,

friendship predicts significantly more infections above the threshold than physical en-

counter. Despite these quantitative differences, the qualitative observations are similar

for the two networks. Friendship appears a valid approximation to predict infections

driven by physical encounter, if anything, with earlier detection and more likely alarm.

At the microscopic level, we focus on the set of nodes that are infected during an

infection process. We consider seeds that are present in both the friendship and encounter

networks and, on each network, we consider independent runs of the infection process

starting at a given seed. We observe that, on average, the sets of nodes infected on the

two networks show little overlap, suggesting that the two types of ties are substantially

different. In addition, the stochasticity of the infection introduces larger unpredictability

between independent runs on different networks then on the same network. Our results

suggest that, given a set of initially infected seeds, friendship does not provide accurate

prediction of the individuals at risk if the infection is driven by physical encounter.

Since seminal work on the structure and growth of complex networks [215,

26, 69], interdisciplinary research has shown that biological networks, social networks

and the Internet are governed by similar rules [5, 110, 161, 32], and share similar

structure [81, 162, 168]. Local connectivity and notions of centrality [76, 76, 41] reflect

into nodes having different structural [6, 170, 54] and influential [127, 24, 25] importance.

In this light, a contrast between global and local properties of complex networks emerges

in the present paper. On the one hand, the global structural properties shared by two

networks based on friendship and physical encounter result in similar infection dynamics
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at a macroscopic level. On the other hand, differences in local connectivity determine

striking differences in the dynamics at the microscopic level, making the similarity only

superficial.

5.1.1 Outline

Section 5.2 describes the dataset and defines the notion of physical encounter.

Section 5.3 formally defines the time-varying and static networks determined by friend-

ship and encounter. Section 5.4 introduces the SEI process, defines the metrics to measure

its spread, and describes the sensor selection mechanisms. Infection processes on time-

varying networks are analyzed in Section 5.5 and Section 5.6. First, Section 5.5, takes

macroscopic look at the process, focusing on the size of the infected population and the

time to infect a desired fraction of the population (Section 5.5.1), and on the detection

via sensors (Section 5.5.2). Then, Section 5.6, considers the process from a microscopic

perspective, analyzing the sets of nodes infected on the two different networks, starting

from the same seed. Infection processes on static networks are analyzed in Section 5.7

and Section 5.8, which, following an approach similar to that for time-varying network,

take a macroscopic and a microscopic look at the process, respectively.

5.2 Dataset

We consider the Yelp Dataset Challenge dataset1, which contains 1,569,264

reviews and 495,107 tips to 61,184 businesses (in 10 cities around the world) posted by

366,715 users over a period spanning over than 10 years. Each review is accompanied

by rich metadata including the user who wrote it, the reviewed business, the day in which

the review was written. Similarly, each tip has metadata including the user who wrote tip

it, the date and the target business. Other than writing reviewed to businesses, Yelp users

1www.yelp.com/dataset challenge

www.yelp.com/dataset_challenge
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can also form friendship ties between each other, in the same way as they would do in

other social networking platforms. Each users in the dataset is accompanied by metadata

listing his Yelp friends. Time information about the formation of friendship ties is not

available.

The dataset allows us to build networks representing for friendship and physical

encounter between users. We use such networks to simulate the spread of infection

processes.

When friendship is the driver of a spreading phenomenon (such as a new opinion),

then such phenomenon spreads over a network dictated by friendship ties. Friendship

defines friendships network. Of all users, 174,100 have at least one friend, with an

average number of friends per user, or friend degree, of 7.03 (14.8 restricted to non-

singletons). The friend degree distribution presents a power low shape with cutoff at

degree of about 1000 (Figure 5.1, circles).

Other phenomena, such as viral outbreaks, require physical contacts between

individuals (rather than friendship) in order to spread. Therefore, we are interested in

physical encounters between users. Strictly speaking, two users encountered on a given

day if they visit to the same business on that day and at the same time. However, the

dataset does not allow to precisely determine if two users encountered, as exact data

about users checkins in business is not available. We use reviews as a proxy of physical

encounter. In particular, we assume that two users encountered on a given day if they

wrote a review to the same business on that day. This constitutes an approximation to real

physical encounter, which requires users to visit (rather then review) a business at about

the same time. We justify our approximation of physical encounter under the assumption

that the date of a review is a proxy of the date of the visit to the reviewed business.

Moreover, the element which spreads over a network (e.g., a virus or an opinion) does not

necessarily require strict and timely physical contact between two particular individuals.
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Figure 5.1. Inverse Cumulative Distribution Function of friends degree and encounter
degree. Left: all non-singleton users. Center: users in the giant component of the network
defined by all encounters. Right: users in the giant component of the network defined by
all friendship ties.

For example, in the context of our dataset, after an infected user visits a business, the

virus can infect customers which are not included in the dataset, and from them can infect

another user who visits the business in a later moment.

Encounters defines encounter networks. In the dataset, 143,780 users have at

least one encounter (who reviewed the same business as the user on the same day as the

user), with an average number of encounters per user, or encounter degree, of 1.51 (3.9

restricted to non-singletons). The distribution of the encounter degree has a power law

shape with cutoff at degree of about 100 (Figure 5.1, triangles).

Figure 5.2 shows a heat map of friend degree and encounter degree of users.

Despite friend degree and encounter degree are correlated (Pearson product-moment

correlation 0.3416, p-value < 2.2 ·10−16), the sets of the friends and of the encounters of

an individual significantly differ on average. Figure 5.3 shows the cumulative distribution

function of the Jaccard similarity of the set of friends end the set of encounters of all users

in the dataset (left panel), of all users in the giant component of the network defined by

all friendship ties (center panel), and of all users in the giant component of the network

defined by all encounters (right panel). Considering the 72,786 users with at least one
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Figure 5.2. Heat map of friend degree and encounter degree of all users with at least one
friend and one encounter (friend degree and encounter degree are limited to 200 in the
plot).

friend and one encounter, the average Jaccard similarity of their encounter and friend

set is 0.01716, with only 9,527 of them with a value different than zero. Looking at the

giant component of the network defined by all friendship ties, the users with nonzero

encounters have average Jaccard similarity of their encounter and friend set of 0.1306,

with only 9,022 users with a nonzero value. Looking at the giant component of the

network defined by all encounters, the users with nonzero friends have average Jaccard

similarity of their encounter and friend set of 0.112, with only 8,278 users with a nonzero

value. In general, the sets of encounters and of friends of a user can significantly different

and often have empty intersection. Therefore, as we will see, although processes driven

by friendship and physical encounter evolve in a qualitatively similar way, the sets of

infected nodes can be very dissimilar even if the seed of the infection is the same in the

two cases.
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Figure 5.3. Percentile plot of the Jaccard similarity of the set all user’s friends and the
set of all user’s encounters. Left: all non-singleton users. Center: users in the giant
component of the network defined by all encounters. Right: users in the giant component
of the network defined by all friendship ties.

5.3 Static and time-varying networks

Let U be the set of users, F ⊆U ×U be the set of friendship ties, B the set of

businesses, T be the set of days, R ⊆U ×B×T be the set of reviews and tips (which

we will refer to as reviews). For each user u ∈U let Fu ⊂U be the set of friends of u.

Therefore F = ∪u∈U{(u,v) : v ∈ Fu}. Each review (or tip) r ∈ R is a triple (u,b, t) where

u ∈U,b ∈ B, t ∈ T .

For each t ∈ T , let U(t) = {u ∈U : (u,b, t) ∈ R for some b ∈ B}, that is, the set

of users who wrote a review on day t. We refer to U(t) as the active users on day t. For

each t ∈ T , let F(t) = {(u,v) ∈ F : u,v ∈U(t)}, that is, the set of friendship ties between

users in U(t). Observe that friendship ties are not associated to temporal information

(i.e., the time when the edge formed is unknown).

For each t ∈ T and u ∈U(t), let

Eu(t) = {v ∈U(t),v 6= u : (u,b, t) ∈ R and (v,b, t) ∈ R for some b ∈ B} ⊆U,

that is, the encounters of user u on day t. Let Eu =∪t∈T Eu(t)⊆U be the set of encounters
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of u, E(t) = ∪u∈U Eu(t)⊆U×U be the set of encounters on day t, and E = ∪t∈T E(t)⊆

U×U be the set of encounters.

We define static and time-varying networks of friends and encounters. Static

networks have a set of edges that is independent of time, whereas the edges of a time-

varying network are activated at specific times. Let NF = (U,F) be the static friendship

network. Let NE = (U,E) be the static encounter network. That is, the static networks

are defined by the set of all friendship ties and all encounter ties, respectively. For each

t ∈ T , let NF(t) = (U,F(t)) be the friendship network of day t, defined by the friendship

ties between the active users on day t (observe that the set of nodes is U rather than

U(t)). For each t ∈ T , let NE(t) = (U,E(t)) be the encounter network of day t, defined

by encounters on day t. The time-varying networks defined sequences {NF(t)}t∈T and

{NE(t)}t∈T , called the friendship time-varying network and the encounters time-varying

network.

As we consider processes spreading between connected nodes, connectedness is

the key property of the networks. For static networks, we restrict our attention to giant

components. Users outside giant components form small components whose dynamics

are not relevant. The giant component of the static friendship network NF includes

168,923 users (whereas the second largest component has 8 users). The giant component

of the static encounter network NE includes 113,187 users (whereas the second largest

component has 23 users). For time-varying networks, we restrict our attention to a set T

of 1,469 consecutive days ranging from January 1st , 2011 to January 8th, 2015 included,

as the number of daily reviews before year 2011 is smaller. The encounter time-varying

network contains the 133,038 users who had at least one encounter during T . The

friendship time-varying network contains the 41,664 users who reviewed a business

during T and also had a friend who reviewed a business during T .

Different networks might be relevant for the spread of different phenomena. As an
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example, if a spreading process is driven by friendship (and the time in which friendship

ties formed is irrelevant) then the static network NF is the most natural network model.

On the other hand, encounters are inherently associated to time, and if a spreading

process is driven by physical encounters then the time-varying network {NE(t)}t∈T is the

most natural network model. In addition, different information, and therefore different

networks, might be available to the researcher. For example, in specific situations,

friendship ties might be the only available information, and the researched would have

to rely on those. In other situation, friendship information might be unavailable and the

researcher might have to rely on checkin information. Therefore, it is our interest to

compare all the networks defined above. However, static and time-varying networks (say,

NE and {NE(t)}t∈T ) are not directly comparable, due to the different processes through

which they are defined. In what follows, we will either compare the static networks NF

and NE , or the time-varying networks {NF(t)}t∈T and {NE(t)}t∈T .

5.4 Infection dynamics

Given a set of nodes V , a set of edges E ⊆ V ×V and a set of time indices T ,

let {N(t)}t∈T be a sequence of networks, where N(t) = (V ,E (t)) with E (t)⊆ E . For

static networks, E (t) = E for all of t ∈T .

We consider a Susceptible-Infected (SI) model, in which nodes never recover

after being infected.

Let I (t) denote the set of infected nodes at time t, of cardinality I(t). The

infection starts at time t = 0 from a set I (0) of infected seeds.

Consider any t > 0. The infection spreads from the set of already infected nodes

I (t − 1) as follows. For each non-infected node v ∈ V \I (t − 1), let dv(t) = |{u ∈

I (t − 1) : (u,v) ∈ E (t)|}, that is, the number of neighbors of v at time t which are

infected at time t − 1. Let B(t) = {v ∈ V \I (t − 1) : dv(t) > 0}, that is, the set of
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susceptible nodes at time t. Each node v ∈ B(t) gets infected with probability βdv(t),

where β ∈ [0,1] is the rate of infection.

For β → 1, the infection process is deterministic in the sense that all non-infected

neighbors at time t of the infected nodes at time t− 1 become infected at time t. For

finite values of β , the infection spreads in a stochastic way.

For the time-varying networks defined above, we take T = T , that is, the set

of days in the date set. The infection will propagate for |T | time steps, resulting in an

infected population I (|T |). For static networks, we take T = [0,∞) and let the infection

propagate until I (t) = V (i.e., until the entire population is infected).

5.4.1 Infection time

We consider a sequence of networks {N(t)}t∈T , where N(t) = (V ,E (t)), and

the SEI process with rate β starting from a seed I (0). For each α ∈ [0,1] let

τ(α) = min{t : I(t)/|V | ≥ α}.

τ(α) is a random variable and represents the first time in which an α-fraction of V

are infected (once I (0) is fixed, τ(α) is a degenerate random variable for β = 1). For

time-varying networks, τ(α) = ∞ for α > I (|T |)/|V |.

We will also consider the number, rather than the fraction, of infected nodes. For

each M ∈ [0, |V |], let

t(M) = min{t : I(t)≥M},

The random variable t(M) denotes the first time in which at least M nodes are infected.

For time-varying networks, Let t(M) = ∞ for M > I (|T |).
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5.4.2 Seed selection

In a static network, seeds are chosen at random and without replacement. In a

time-varying network, the infection can start propagating at the first time t in which there

is an edge between an infected seed and a non-infected node, that is, at time

t0(I (0)) = min{t : ∃(u,v) ∈ E (t) for some u ∈I (0),v ∈ V \I (0)}.

As a remark, for β < 1, it is possible that no node is infected at time t0. Seeds are

selected uniformly at random and without replacement among all nodes v ∈ V such that

t0({v})≤ 500, that is, nodes that have a neighbor in the time-varying network by time

t = 500.

5.4.3 Detection time with sensors

In real scenarios, it might be infeasible to monitor all nodes in the network.

Constraints of different nature (e.g., budget, physical, privacy) might limit the researchers

to monitor a subset S ⊂ V of all nodes, referred to as sensors. At each time t, let

IS(t) = I (t)∩S be the set of infected sensors, and IS(t) be its cardinality. Assuming as

before that the network and the set of seeds are given, for each α ∈ [0,1] let

τS(α) = min{t : IS(t)/|S| ≥ α}.

That is, τS(α) represents the first time in which an α-fraction of the sensors S are infected.

For time-varying networks, Let t(α) = ∞ for α > IS(|T |)/|S|.

5.4.4 Sensor selection

We consider two types of sensor selection, random sensors and friend sensors,

defined as follows. Let m be a fixed parameter. A set S of random sensors is obtained
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by selecting m nodes from V uniformly at random and without replacement. A set S of

friend sensors is obtained in two steps. First, S is initialized as the empty set, and a set

S0 of random nodes is obtained by selecting m users from V uniformly at random and

without replacement. Then, for each node u ∈ S0, a friend v ∈ V is selected uniformly at

random from Fu (i.e., from the set of friends of u) and added to S. We require each friend

sensor to be in V and to be friend of a node in S0. We remark that, even for encounter

networks, friend sensors are selected on the basis of friendship rather than encounter.

We make this assumption because explicit relationships (such as friendship, family or

professional ties) might be accessible or inferable in a real setting in which the researcher

has to select a set of sensors. Observe that, in both cases of random sensors and friend

sensors, the size of the resulting set S might be smaller than m.

Given the fact that, on average, people have fewer friends than their friends

have (also know and the friendship paradox [70]), randomly sampled friends are more

connected than randomly sampled individuals and are shown to provide earlier detection

of phenomena spreading over complex networks [53, 79].

5.5 Infection detection – Time-varying networks

In this section, we consider SEI processes on the two time-varying networks

{NF(t)}t∈T and {NE(t)}t∈T , started from a single seed, I (0) = {s}. We will focus on

β = 1 (i.e., infection is certain) in order to study how the structure of the two different

networks affects the spreading process. We remark that, despite the set of nodes of the

networks is potentially the same (i.e., all users in the dataset), the definitions of friendship

and encounter result in different sets of nodes.
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5.5.1 Single seed – Infection rate

With β = 1, we perform 10,000 simulations on each time-varying network. In

each simulation, a single seed is selected uniformly at random between all nodes s such

that t0({s})≤ 500. That is, in the case of the friendship (respectively, encounter) network,

we consider potential seeds that have an edge in NF(t) (respectively, NE(t)) for some

t ≤ 500. As infections on time-varying networks spread for a limited number of time

steps, we require them to start early enough.

Each simulation i is therefore associated to a seed si and, as β = 1, the first time

in which a node other than si is infected is

t0(si) = min{t : ∃(si,v) ∈ E (t) for some v 6= si} ∈ [1,500],

We refer to t0(si) as the starting time of the infection. Let tF(si) be the last time in which

a node is infected in an infection starting from si (i.e., the time after which the size of

the infected population stops increasing). It holds that tF(si)≤maxT . Moreover, tF(si)

depends on the sequence of the edge sets in the time-varying network. At time tF(si), the

infection reaches its peak, infecting a fraction r(si) ∈ [0,1] of the population.

The final infection r(si) decreases with increasing infection starting time t0(si), for

both the friendship network (OLS, coefficient−4.255 ·10−4, p-value< 2 ·10−16, intercept

0.451, p-value< 2 ·10−16) and the encounter network (OLS, coefficient −3.922 ·10−4,

p-value< 2 ·10−16, intercept 0.757, p-value< 2 ·10−16). Instead, t0(si) does not predict

tF(si) for either the friendship network (OLS, coefficient −0.03701, p-value 0.376) or

the encounter network (OLS, coefficient −0.03662, p-value 0.381). This suggests that

the networks remain connected over time and therefore infections that start earlier do not

stop earlier.

Due to higher connectivity, the final rate of infection r(si) is on average 31.5%



137

higher on the friendship network than on the encounter network (OLS, 0.3149, p-value<

2 ·10−16, when controlling for t0(si)), see Figure 5.4 (right panel). Also, the time tF(si)

of maximum infection is reached on average 79 time steps later on the friendship network

than on encounter network (OLS, 79.19, p-value< 2 ·10−16, when controlling for t0(si)),

see Figure 5.4 (left panel).

The fraction of infected nodes increases linearly over time in both networks (see

Figure 5.5). In particular, we consider all infections that infected at least 1% of the total

population (7,888 out of 10,000 simulations in the encounter network, and 9,100 in

the friendship network). The infection spreads faster in the friendship network (OLS,

slope 0.06209, p-value< 2 ·10−16) than in the encounter network (OLS, slope 0.03187,

p-value< 2 · 10−16), with a significantly different slope difference (OLS, interaction

coefficient of 7.57 ·10−3, p-value< 2 ·10−16). Moreover, even if an infection starts at

time t ≤ 500, it still might take a while to infect a significant amount of the population

(see Figure 5.5). There is, therefore, a period of “incubation” during which the fraction

of the infected population remains very low.

5.5.2 Single seed – Sensor monitoring

Instead of monitoring the entire population, in each run of the SEI process, we

consider a random set of sensors composed by 1% of the population. Sensors are selected

in the two ways described above: random sensors and friend sensors (where the selection

is based on friendship rather than encounter, even when considering a process spreading

on the encounter network). We perform 10,000 simulations on each time-varying network

and each sensor type, setting β = 1 (i.e., infection is certain). In each simulation, a single

seed is selected uniformly at random between all nodes si such that t0(si)≤ 500.

Let rS(si) denote the final infection of the sensors (which we have to use instead

of r(si) to monitor the infection). Also rS(si) linearly decreases with increasing infection
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Figure 5.4. Susceptible-exposed-infected process on the friendship time-varying network
(white circles) and encounter time-varying network (grey circles), β = 1 (certain infec-
tion). 10,000 simulations are run on each network, each with a single seed si selected
at random among all nodes such that t0(si) ≤ 500. The x-axis represents the infection
start time t0(si), rounded to the lower multiple of 10. Point size is proportional to the
number of observations for the corresponding value of the x-axis. Left: Average of the
last time of infection tF(si) (i.e., the time at which the peak of the infection is reached)
with respect to t0(si), for both the friendship and encounter networks. Right: Average
of the final infection r(si) with respect to t0(si), for both the friendship and encounters
networks.
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Figure 5.5. Fraction of infected nodes over time, for the friendship time-varying network
(left) and the encounter time-varying network (right). Each SEI process (with β = 1)
is started from a single seed si selected at random among all nodes such that t0(si) ≤
500. For each network, 60 simulations that infected at least 1% of the population are
considered. Colors are not meaningful.

start time (Figure 5.6, left). On average, friend sensors predict an infection rate 9.5%

higher than random sensors (OLS, coefficient 0.0953, p-value< 2 · 10−16, controlling

for infection starting time t0(si) and type of network). As random sensor constitute

a random sample of the population, their infection reflects the infection of the entire

population. Instead, friends sensors are more connected that average nodes (friend

paradox) and therefore their larger infection constitutes an overestimation of the infection

of the population. Such overestimation can be beneficial for early detection of an

outbreak. The overestimation effect is larger on the encounter network (OLS, coefficient

0.1197, p-value< 2 ·10−16, controlling for infection starting time) than on the friendship

network (OLS, coefficient 0.0709e, p-value< 2 ·10−16, when controlling for infection

starting time). However, the sensor type does not significantly affect the slope of the

observed linear decrease (OLS: interaction between infection starting time and sensor

type, 2.299 · 10−5, p-value 0.21). We also observe that, on the friendship network,
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the rS(si) is on average 29% higher than on the encounter network (OLS, coefficient

−0.2935, p-value< 2 ·10−16, controlling for infection starting time and type of network).

This effect is larger for random sensors (OLS, coefficient 0.2809, p-value< 2 · 10−16,

controlling for infection starting time) than for friend sensors (OLS, coefficient 0.2130,

p-value< 2 ·10−16, controlling for infection starting time).

When restricting our attention to simulations which infected at least 10% of the

sensors (on the encounter network, 7,669 with random sensors, 7,781 with friend sensors,

on the friendship network, 9,140 with random sensors, 9,109 with friend sensors), on

average, the 10% infection of friends sensors is reached 128 time units earlier than

the 10% infection of random sensors (OLS, coefficient −128.0, p-value< 2 · 10−16,

controlling for infection starting time and type of network). For the same consideration

as above, friend sensors offer earlier detection with respect to the 10% infection of

the entire population. This underestimation effect is larger on the encounter network

(OLS, coefficient−197.3, p-value< 2 ·10−16, controlling for infection starting time) than

on the friendship network (OLS, coefficient −69.2, p-value< 2 ·10−16, controlling for

infection starting time). Also in this case, the sensor type does not affect the slope of the

observed linear increase (OLS: interaction between infection starting time and sensor

type, −2.302 · 10−3, p-value 0.892). We also observe that, on the friendship network,

the infection of 10% of the sensors requires on average 302 units of time less than on

the encounter network (OLS, coefficient −302.6, p-value< 2 · 10−16, controlling for

infection starting time and type of sensors). This effect is larger for random sensors (OLS,

coefficient−3.672, p-value< 2 ·10−16, controlling for infection starting time) than friend

sensors (OLS, coefficient −2.384, p-value< 2 ·10−16, controlling for infection starting

time).

Figure 5.7 plots the fraction of simulations that reached a target sensors’ infection

versus the infection starting time (values of the target: 10%,25%,50%,75%,80%,85%).
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We refer to the infections that reached a given target as successful (for the given target).

For targets of 10% and 20% (top plots) the observations are the same as above. For

a target of 50% (middle left plot), on the encounter network (circles), the fraction

of successful infection decreases more steeply for random sensors (grey) than friend

sensors (white). with the former, the fraction of successful infections approaches zero

for infection starting time above t = 350. This effect is not observed in the case of the

friendship network (triangles) for target of 50%. For a target of 75% (middle right plot),

we observe a similar effect also on the friendship network, on which the success rate

decreases faster with random sensors (approaching zero for infection starting times above

t = 400). On the encounter network, there is no successful infection of random sensors,

whereas some successful infection of friends sensors happens for infection starting time

before t = 100. For targets of 80% and 85% (bottom plots), the observations are similar.
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Figure 5.6. Infection detection with random sensors and friend sensors on the friendship
and encounter time-varying networks. 10,000 simulations, with β = 1, are run on each
network and for each sensor type. Each simulation starts with a seed si selected at random
among all nodes such that t0(si)≤ 500. Sensor size is 1% of the population. The x-axis
represents the infection start time t0(si), rounded to the lower multiple of 10. Point size
proportional to the number of observations for the corresponding value of the x-axis.
Left: average final sensor infection versus infection start time, for the friendship network
(triangles) and the encounter network (circles), with random sensors (grey) and friend
sensors (white). Right: average time to infect 10% of the sensors versus infection start
time, considering only the simulations in which at least 10% of the sensors are infected.
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Figure 5.7. Fraction of simulations that reached a target sensors’ infection versus the
infection starting time, for different targets, for the encounter (circles) and friendship
time-varying networks (triangles), using random sensors (grey) and friend sensors (white).
10,000 simulations, with β = 1, are run on each network and for each sensor type. Each
simulation starts with a seed si selected at random among all nodes such that t0(si)≤ 500.
Sensor size is 1% of the population. The x-axis represents the infection start time t0(si),
rounded to the lower multiple of 10. Point size proportional to the number of observations
for the corresponding value of the x-axis.



144

5.6 The infected population – Time-varying networks

In the previous section, we observed how infection processes spread on the

friendship and encounter time-varying networks, at a macroscopic level, by focusing on

quantities such as the size of the final infection and the infection detection time. In this

section, we take a microscopic look at the process, moving our attention on the sets of

nodes that become infected. That is, we will consider seed nodes that are present in both

the friendship and the encounter network, and we will compare the sets of nodes that

become infected in processes starting at the same seed but evolving on the two different

networks. First, we will consider the case of certain infection (β = 1), in which the

dynamics are dictated by the network structure only. As we will observe, the structural

differences between the two networks result in substantially different sets of infected

nodes. Then, we will consider the case of stochastic infection (β < 1). Randomness

introduces a certain amount of unpredictability in the spread of the infection, and two runs

of the process on the same network starting from the same seed can result in different

sets of infected nodes. However, we will observe that the unpredictability within a

given network is substantially lower than the unpredictability between the two different

networks.

Despite infections spread similarly on the encounter and friendship network at the

macroscopic level (at least qualitatively), our results show that the same is not true at the

microscopic level That is, the individuals predicted to be at risk are different according

to the two networks. This observation is particularly relevant if we consider that the

experimenter has to rely on the social network information available to her, regardless of

the network on which the phenomenon of interest spreads. Such information might come

in the form of implicit ties formed by individuals (e.g., friendship, work relationship), or

in the form of records of human behavior across time (e.g., reviews, checkins, sharing).
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Similarly, different phenomena spread in different ways. On the one hand, physical

encounter is the vehicle over which diseases spread. On the other hand, ideas, news and

digital content might spread over the ties of a social network.

5.6.1 Certain infection (β = 1)

In order to study how the network structure affects the infection process at a

microscopic level, we consider infections with β = 1 starting from seeds that are present

in both the friendship and encounter network. Fixed a seed si, we consider infection

processes that spread independently on the two networks. The infection from a seed si

spreads deterministically. It begins at the first time step t0(si) in which si is connected to

at least another node in the network, it continues up to time T , and the set of infected

nodes is non-decreasing over time. Given a target set size m, we will compare the sets

of the first m infected nodes in the encounter and the friendship network, respectively.

As we consider a discrete process, there might be no time t at which exactly m nodes

are infected. Therefore, we allow for some flexibility on the number of infected nodes,

requiring that at least (rather than exactly) m nodes are infected. In particular, let IE(t;si)

and IF(t;si) denote the set of infected nodes in the encounter and the friendship network

at time t, respectively. Let IE(t;si) and IF(t;si) be their cardinality. Let

tE(m;si) = min{t ∈ T : IE(t;si)≥ m}

tF(m;si) = min{t ∈ T : IF(t;si)≥ m}

be the minimum time at which at least m nodes are infected on the encounter and

friendship network, respectively. tE(m;si) or tF(m;si) are undefined is m nodes never get

infected in the corresponding network. tE(m;si) and tF(m;si) can different between each

other and need not be both defined.
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If tE(m;si) is defined, then the corresponding infected set is

I ∗E (m;si) = IE(tE(m;si)).

If tF(m) is defined, then the corresponding infected set is

I ∗F (m;si) = IF(tF(m;si)).

When they are both defined, I ∗E (m;si) and I ∗F (m;si) can be compared by means

of their Jaccard similarity

J(m;si) =
|I ∗E (m;si)∩I ∗F (m;si)|
|I ∗E (m;si)∪I ∗F (m;si)|

,

by means of the fraction of I ∗E (m;si) contained in I ∗F (m;si) (that is, the nodes infected

in the encounter network that are also infected in the friendship network),

PE(m;si) =
|I ∗E (m;si)∩I ∗F (m;si)|

|I ∗E (m;si)|
,

and by means of the fraction of I ∗F (m;si) contained in I ∗E (m;si) (that is, the nodes

infected in the friendship network that are also infected in the encounter network),

PF(m;si) =
|I ∗E (m;si)∩I ∗F (m;si)|

|I ∗F (m;si)|
.

If either I ∗E (m;si) or I ∗F (m;si) is not defined, then the metrics above are not defined.
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It holds that

0≤ PE(m;si) ·PF(m;si)

PE(m;si)+PF(m;si)

≤ J(m;si)≤max{PE(m;si),PF(m;si)}

≤ 1.

Experiments. We ran 5000 pairs simulations of the SEI process. For each

simulation pairs, a single seed is selected at random among all nodes si such that t0(si)≤

500 in both the encounter and the friendship time-varying network (that is, we consider

nodes that have neighbors on both networks by time t = 500). For each choice of the

seed, we separately run two infection processes: one on the encounter network and one

on the friendship network. For target set size m ∈ {500,1000,2000,5000,10000,20000}

and each of the 5000 seeds si, the metrics J(m;si),PE(m;si),PF(m;si) are considered

when I ∗E (m;si) and I ∗F (m;si) are defined.

Results are plot in Figure 5.8. Observations for a given value of m constitute a

block on the x-axis (larger m corresponds to x positions on the right) and are represented

with the same color. For a fixed value of m, relative x positions are irrelevant. The three

panels represent the metrics defined above, J(m;si), PE(m;si) and PF(m;si) (which are

between zero and one). For a given metric and m, the black point represents the average

of the metric over all observations such that the metric is defined, and the bars represent

standard deviations. Combined, the low values of the metrics highlight the structural

differences between the two networks.

However, the intersections between the infected sets on the encounter and friend-

ship networks are far from random. To compare the intersection of the infected sets

with the intersection of random sets, we derive an upper bound for the expected size of

the intersection of random sets, as follows. If we consider only the n = 24,251 nodes
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which appear in both networks, then two random sets of size m1 and m2 have expected

intersection size m1m2/n. If all nodes in each network can be selected, the expected size

of the intersection of random sets is smaller, and the quantity above is an upper bound.

With m1 = I ∗E (m;si) and m2 = I ∗F (m;si), and considering each value of the target m

separately, t-tests reject hypothesis that the size of the intersections of the infected sets

on the two networks has the same mean as the size of the intersection of random sets

(p-values< 2.2 ·10−16).
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Figure 5.8. The three panels show the metrics J(m;si), PE(m;si), PF(m;si) for 5000
simulation pairs, each with a random choices of a single seeds, and different values of
the target set size m. For each seed, simulations are run separately on the friendship and
encounter network. On the x- axis, observations for a given value of m form a block with
a constant color (within the block, the x position is irrelevant). We only consider pairs
(m,si) for which the metrics are defined. For a given metric and each value m, the black
point represents the average of the metric over all observations such that the metric is
defined, and the bars represent standard deviations.
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5.6.2 Stochastic infection (β < 1)

In the previous section, setting β = 1 (certain infection) allowed us to isolate

the effect of the network structure from any randomness other that the selection of

the seed. In this section, we consider β <= 1 (stochastic infection) and show that the

structural difference between friendship and encounter networks introduces additional

unpredictability about the sets of infected nodes with respect to the unpredictability of

the random infection. In particular, given a seed si that is present in both networks, for

different target infection size m, we compare the sets of the first m infected nodes between

runs of the infection process on the two different networks as well as within the same

network.

Fixed a seed si, let IE1(t;si) and IE2(t;si) denote the set of infected nodes at time

t in two separate infection processes on the encounter network starting at si. IF1(t;si)

and IF2(t;si) are similarly defined by considering the friendship network. Let IE1(t;si),

IE2(t;si), IF1(t;si), IF2(t;si) be their cardinality. For j = 1,2, let

tE j(m;si) = min{t ∈ T : IE j(t;si)≥ m}

tFj(m;si) = min{t ∈ T : IFj(t;si)≥ m}

be the minimum time at which at least m nodes are infected in the corresponding process.

tE j(m;si) or tFj(m;si) is undefined is m nodes never get infected in the corresponding

process.

If tE j(m;si) is defined, then the corresponding infected set is

I ∗E j
(m;si) = IE j(tE j(m;si)).
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If tFj(m) is defined, then the corresponding infected set is

I ∗Fj
(m;si) = IF(tFj(m;si)).

When all values I ∗E j
(m;si) and I ∗Fk

(m;si) for j,k ∈ {1,2} are defined, we define

the following measures of Jaccard similarity,

JE j,Fk(m;si) =
|I ∗E j

(m;si)∩I ∗Fk
(m;si)|

|I ∗E j
(m;si)∪I ∗Fk

(m;si)|
,

JE1,E2(m;si) =
|I ∗E1

(m;si)∩I ∗E2
(m;si)|

|I ∗E1
(m;si)∪I ∗E2

(m;si)|
,

JF1,F2(m;si) =
|I ∗F1

(m;si)∩I ∗F2
(m;si)|

|I ∗F1
(m;si)∪I ∗F2

(m;si)|
.

JE j,Fk(m;si) is the similarity between the infected sets (for target m) in two infection

processes on the different networks. In the analyses we will consider JE1,F1(m;si) only.

JE1,E2(m;si) (resp., JF1,F2(m;si)) is the similarity between the infected sets (for target m)

in the two infection processes on the encounter (resp., friendship) network.

When all values I ∗E j
(m;si) and I ∗Fk

(m;si) for j,k ∈ {1,2} are defined, we also

define the following measures of precision,

PE j,Fk(m;si) =
|I ∗E j

(m;si)∩I ∗Fk
(m;si)|

|I ∗E j
(m;si)|

,

PFj,Ek(m;si) =
|I ∗Fj

(m;si)∩I ∗Ek
(m;si)|

|I ∗Fj
(m;si)|

,

PE1,E2(m;si) =
|I ∗E1

(m;si)∩I ∗E2
(m;si)|

|I ∗E1
(m;si)|

,

PF1,F2(m;si) =
|I ∗F1

(m;si)∩I ∗F2
(m;si)|

|I ∗F1
(m;si)|

.

For target m, PE j,Fk(m;si) is the fraction of nodes infected in the process with index
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j in the encounter network that are also infected in the process with index k in the

encounter network. PFj,Ek(m;si) has a similar interpretation, by inverting the role of

the two networks. In the analyses we will consider PE1,F1(m;si) and PF1,E1(m;si) only.

PE1,E2(m;si) (resp.,PF1,F2(m;si)) is the fraction of nodes infected in the first simulation in

the encounter (resp., friendship) network that are also infected in the second infection on

the same network.

Experiments. We ran 5000 groups of simulations of the SEI process with

β = 0.5. For each simulation, a single seed is selected at random among all nodes si

such that t0(si) ≤ 500 in both the encounter and the friendship time-varying network

(that is, we consider nodes that have neighbors on both networks by time t = 500). For

each choice of the seed, we separately run two infection processes on the encounter

network and two infection processes on the friendship network. Therefore, each seed

selection is associated to four simulations (referred to as E1, E2, F1, F2). For target

set size m ∈ {500,1000,2000,5000,10000,20000} and each of the 5000 seeds si, we

consider the metrics above when they are defined.

Figure 5.9 plots the Jaccard similarity measures JE1,F1(m;si) (top-left panel),

JE1,E2(m;si) (top-right panel), JF1,F2(m;si) (bottom panel). Observations for a given value

of m constitute a block on the x-axis (larger values of m correspond to x positions on the

right) and are represented with the same color. For a fixed value of m, relative x positions

are irrelevant. For a given metric and each value m, the black point represents the average

of the metric over all observations such that the metric is defined, and the bars represent

standard deviations.

For all values of m, two-sample t-tests support the hypotheses that JE1,F1(m;si)

has smaller average than JE1,E2(m;si) and JF1,F2(m;si), and that JE1,E2(m;si) has smaller

average than JF1,F2(m;si) (p-values< 2.2 ·10−16).

A comparison between JE1,F1(m;si), JE1,E2(m;si), and JF1,F2(m;si) is not straight-
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Table 5.1. Single seed infection on the time-varying networks. Jaccard similarity
measures: empirical upper bounds, average of original measures, average of rescaled
measures.

m JU
E1,F1

JU
E1,E2

JU
F1,F2

J̄E1,F1 J̄E1,E2 J̄F1,F2 JE1,F1 JE1,E2 JF1,F2

500 0.110 0.459 0.786 0.365 0.259 0.563 0.040 0.119 0.443
1000 0.129 0.481 0.808 0.417 0.343 0.652 0.053 0.165 0.527
2000 0.161 0.507 0.797 0.442 0.450 0.737 0.071 0.228 0.588
5000 0.199 0.550 0.764 0.544 0.593 0.839 0.108 0.327 0.641

10000 0.225 0.592 0.749 0.697 0.681 0.910 0.157 0.403 0.682
20000 0.218 0.590 0.739 0.876 0.795 0.966 0.1918 0.469 0.714

forward for the lack of an upper bound for JE1,F1(m;si). There are nI = 31,735 nodes

in the intersection of the friendship and encounter network and nU = 142,967 nodes

in their union. Therefore, for large values of target m, JE1,F1(m;si) is upper bounded

by nI/nU = 0.2219. A bound that is independent of si cannot be derived for general

values of m, for which JE1,F1(m;si) is not constrained to have small values. However,

JE1,E2(m;si) and JF1,F2(m;si) can be as large as 1 for all values of m.

To take this into account, we define a rescaled version of the Jaccard similarity,

J̄E1,F1(m;si) =
JE1,F1(m;si)

JU
E1,F1

(m)
,

where JU
E1,F1

(m) = maxsi JE1,F1(m;si) is an empirical upper bound for JE1,F1(m; ·), and

the maximum is taken over all experiments. We similarly define rescaled measures

J̄E1,E2(m;si), and J̄F1,F2(m;si), considering the empirical upper bounds JU
E1,E2

(m) and

JU
F1,F2

(m). Table 5.1 reports the empirical upper bounds, and the averages of the original

and rescaled measures of Jaccard similarity. Two-sample t-tests support the hypothesis

that J̄E1,F1(m;si) has a larger average than J̄E1,E2(m;si) for all considered values of m (p-

values smaller that 0.0078), whereas the null hypothesis of equal mean is not rejected for

m = 2000. For all values of m, two-sample t-tests support the hypotheses that J̄E1,F1(m;si)

and J̄E1,E2(m;si) have a smaller average than J̄F1,F2(m;si) (p-values< 2.2 ·10−16).



154

Figure 5.10 plots the precision measures PE1,F1(m;si), PE1,E2(m;si), PF1,F2(m;si)

in the top-left, top-right and bottom panels respectively. Observations for a given value

of m constitute a block on the x-axis (larger m correspond to x positions on the right)

and are represented with the same color. For a fixed value of m, relative x positions are

irrelevant. For a given metric and each value m, the black point represents the average of

the metric over all observations such that the metric is defined, and the bars represent

standard deviations.

For all values of m, two-sample t-tests support the hypotheses that PE1,F1(m;si)

and PF1,E1(m;si) have smaller average than both PE1,E2(m;si) and PF1,F2(m;si), and that

PE1,E2(m;si) has smaller average than PF1,F2(m;si) (p-values< 2.2 ·10−16).

As before, a comparison between the precision measures is not possible for the

lack of a strightforward upper bound for PE1,F1(m;si) and PF1,E1(m;si). There are nE =

133,038 and n = 41,664 nodes in the encounter and friendship networks, respectively,

and nI = 31,735 nodes in their intersection. Therefore, for large values of m, PE1,F1(m;si)

and PF1,E1(m;si) are upper bounded by nI/nE = 0.2385 and nI/nF = 0.7617, respectively.

Bounds that are independent of si cannot be derived for general values of m. However,

PE1,E2(m;si) and PF1,F2(m;si) can be as large as 1 for all values of m.

To take this consideration into account, we define rescaled version of the precision

measures, for example,

P̄E1,F1(m;si) =
PE1,F1(m;si)

PU
E1,F1

(m)
,

where PU
E1,F1

(m) is an empirical upper bound obtained taking the maximum over all

simulations. P̄F1,E1(m;si), P̄E1,E2(m;si) and P̄F1,F2(m;si) are similarly defined.

Table 5.2 reports the averages of the original and rescaled precision metrics. For

all vales of m, two-sample t-tests support the hypothesis that P̄F1,F2(m;si) has a larger

average than all other precision measures. For m ∈ {500,1000,20000}, two-sample
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Table 5.2. Single seed infection on the time-varying networks. Precision measures:
average of original and rescaled measures.

m P̄E1,F1 P̄F1,E1 P̄E1,E2 P̄F1,F2 PE1,F1 PE1,F1 PE1,E2 PF1,F2

500 0.377 0.399 0.314 0.648 0.079 0.075 0.200 0.579
1000 0.428 0.461 0.407 0.733 0.102 0.101 0.266 0.658
2000 0.476 0.477 0.518 0.806 0.132 0.132 0.349 0.715
5000 0.582 0.584 0.660 0.883 0.194 0.194 0.469 0.766
10000 0.731 0.730 0.749 0.939 0.268 0.268 0.557 0.804
20000 0.895 0.895 0.853 0.980 0.321 0.321 0.633 0.833

t-tests support the hypotheses that P̄E1,F1(m;si) and P̄F1,E1(m;si) have larger average

than P̄E1,E2(m;si) (all p-values< 0.001). For m ∈ {500,1000,20000}, two-sample t-tests

support the hypotheses that P̄E1,F1(m;si) and P̄F1,E1(m;si) have smaller average than

P̄E1,E2(m;si) (all p-values< 0.002). The null hypothesis that P̄E1,F1(m;si) and P̄F1,E1(m;si)

have equal average is rejected only for m ∈ {500,1000}, for which the former has larger

average (p-values< 1e−10).
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Figure 5.9. Single seed infection on time-varying networks: Jaccard similarity. The three
panels show the metrics JE1,F1(m;si) (top-left), JE1,E2(m;si) (top-right) and JF1,F2(m;si)
(bottom), for 5000 random choices of a single seeds, and different values of the target set
size m. For each seed, two simulations on the friendship network and two simulations
on the encounter network are run separately. The top-left panel considers, for each of
the 5000 seeds, a pair of simulations on the two different networks. The top-right panel
considers the 5000 pairs of simulations ran on the encounter network. The bottom panel
considers the 5000 pairs of simulations ran on the friendship network. On the x- axis,
observations for a given value of m form a block with a constant color (within the block,
the x position is irrelevant). We only consider pairs (m,si) for which the metrics are
defined. For a given metric and each value m, the black point represents the average of
the metric over all observations such that the metric is defined, and the bars represent
standard deviations.



157

Figure 5.10. Single seed infection on time-varying networks: precision measures.
The three panels show the metrics PE1,F1(m;si) (top-left), PE1,E2(m;si) (top-right) and
PF1,F2(m;si) (bottom), for 5000 random choices of a single seeds, and different values of
the target set size m. For each seed, two simulations on the friendship network and two
simulations on the encounter network are run separately. The top-left panel considers, for
each of the 5000 seeds, a pair of simulations on the two different networks. The top-right
panel considers the 5000 pairs of simulations ran on the encounter network. The bottom
panel considers the 5000 pairs of simulations ran on the friendship network. On the x-
axis, observations for a given value of m form a block with a constant color (within the
block, the x position is irrelevant). We only consider pairs m of si for which the metrics
are defined. For a given metric and each value m, the black point represents the average
of the metric over all observations such that the metric is defined, and the bars represent
standard deviations.
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5.7 Infection detection – Static networks

Let GE =(UE ,EUE ) and GF =(UF ,FUF ) be the giant components of the encounter

and friendship static networks, respectively. For simplicity, we refer to such giant

components as the static networks. UE (resp. UF ) represents the set of nodes in the

encounter (resp. friendship) giant component, and EUE (resp. FUF ) represents the

set of encounter (resp. friendship) ties restricted to UE (resp. UF ). We have that

uE = |UE | = 113,187 and uF = |UF | = 168,923, and uU = |UE ∪UF | = 210,899. We

consider the SEI process on the static networks GF and GE .

5.7.1 Single seed – Infection rate

We perform 5,000 simulations on each static network, setting β = 0.01. In each

simulation, a single seed si is selected uniformly at random between all nodes in the

corresponding network. Given that in a SEI process nodes never recover from infection,

the entire population eventually becomes infected for each β > 0 and for each seed si.

Recall that, for 0 ≤ α ≤ 1, τ(α) represents the first time in which a α-fraction of the

population is infected (for ease of notation, we omit the dependency on si). In this section,

we study how the infection grows over time, that is, how τ(α) grows with α .

Figure 5.11 relates the degree of the infection seed (i.e., encounter and friend

degree) to the time τ(α) to reach infection targets of α ∈ {0.5%,1%,5%,10%}. Top

and bottom panels consider the SEI process on the encounter and friendship network,

respectively. The x-axis show either the encounter degree (left panels) or the friend

degree (right panels) of the seed (with degree at most 25).

In general, for all targets α ∈ {0.5%,1%,5%,10%}, increasing encounter (reps.

friendship) degree is related to an initial steep decrease in the infection time on the

encounter (reps. friendship) network, that then smooths out when the degree surpasses a
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threshold.

In the encounter network (compare Figure 5.11, top-left panel), encounter degree

larger than 10 results in a four-fold decrease of the infection time with respect to degree

one, for all values of α (two-sample t-tests, means 188 and 42 for α = 0.5%, 191 and

45 for α = 1%, 201 and 55 for α = 5%, 209 and 62 for α = 10%, p-value< 2.2 ·10−16

for all α). The decrease of the infection time is slow for degree larger than 15 (OLS,

restricted to seed with encounter degree larger than 15, degree coefficient −0.300 for all

α , p-value< 5.57e−11). The effect of the seed’s friend degree on the infection speed on

the encounter network is limited (degree coefficient −0.14 for all α , p-value< 2.48e−8;

compare Figure 5.11, top-right panel).

In the friendship network (compare Figure 5.11, bottom-right panel), friend

degree larger than 5 results in a six-fold decrease of the infection time with respect

to degree one, for all values of α (two-sample t-tests, means 134.97 and 20.63 for

α = 0.5%, 135.60 and 21.23 for α = 1%, 137.48 and 23.11 for α = 5%, 139.37 and

25.01 for α = 10%, p-value< 2.2 ·10−16 for all α). The decrease of the infection time

is slow for degree larger than 10 (OLS, restricted to seed with encounter degree larger

than 10, degree coefficient −0.0547 for all α , p-value< 9.63e−14). Larger encounter

degree is not related to an equally steep decrease of the infection speed on the friendship

network (compare Figure 5.11, bottom-left panel), despite its effect is somewhat (degree

coefficient−1.270 for all α , p-value< 2.08e−7), likely due to the low average encounter

degree (mean 2.594).

If we look at how the infection grows over time, we observe an initial “incubation”

period, during which the infected population is very small, followed by an explosion of

the infection. Figure 5.11 plots the percentage of the infected population over time (up to

25%) for a sample of 60 randomly selected seeds on the encounter (right panel) network

and 60 randomly selected seeds on the friendship network (left panel). Overall, on the
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Figure 5.11. Infection speed versus degree. The plots relate the encounter and friendship
degree of a seed node with the infection speed for different target infections α . 5000
simulations with β = 0.01 are run per network, selecting a seed uniformly at random
for each simulation. The left panels relate encounter degree of the seed with infection
on the encounter network (top) and friendship network (bottom), for degree of at most
25. The right panels relate friends degree of the seed with infection on the encounter
network (top) and friendship network (bottom), for degree of at most 25. Point size are
proportional to the logarithm of the number of observations for each degree.
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Figure 5.12. Growth of the infection over time. 60 simulations with β = 0.01 are
shown for the friendship network (left) and for the encounter network (right). For each
simulation, a seed is selected uniform at random and the infection starts at time t = 0.
Colors are not meaningful. An initial “incubation” period, during which the infection
spreads from the seed to its first neighbors, is followed by an explosion of the infection.

friendship network, an infection starting from a single seed takes on average 59.44 time

units to infect an initial 0.01% of the population (about 17 nodes), with more connected

nodes requiring less time (OLS, degree coefficient−0.273, p-value< 2.2 ·10−16). On the

encounter network, an infection starting from a single seed takes on average 107.78 time

units to infect an initial 0.01% of the population (about 12 nodes), with more connected

nodes requiring less time (OLS, degree coefficient −3.384, p-value< 2.2 ·10−16).

The incubation period is determined by the stochasticity of the infection process,

represented by the parameter β , and it is in large part constituted by the time required

by the seed to infect the first neighbor. Indeed, the first infection happens, on average,

after 39.68 time units in the friendship network (decreasing with degree, OLS, −0.1608,

p-value 4.46e−11), and after 53.07 time units in the encounter network (decreasing with

degree, OLS, −2.011, p-value < 2 ·10−16).
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5.7.2 Single seed – Sensor monitoring

Instead of monitoring the entire population, in each run of the SEI process, we

consider a random set of sensors composed by 1% of the population. Sensors are selected

in the two ways described above: random sensors and friend sensors (where the selection

is based on friendship rather than encounter, even when considering a process spreading

on the encounter network). We perform 5,000 simulations on each static network and

each sensor type, setting β = 0.01 (stochastic infection). In each simulation, a single

seed is selected uniformly at random between all nodes in the network.

Figure 5.13 plots the average time to detect a 5% infection of the sensors versus

the seed degree, on the encounter network (top panels) and friendship network (bottom

panels). The x-axis shows either the encounter degree (left panels) or the friend degree

(right panels) of the seed (degree at most 25).

On the encounter network (compare Figure 5.13, top panels), friends sensors

guarantee earlier detection than random sensors. The average detection time for a 5%

infection of friends sensors (135.36 time units) is smaller than that of random sensors

(141.66 time units, t-test, p-value 0.00487). The average detection time for a 10%

infection of friends sensors (139.96 time units) is smaller than that of random sensors

(149.13 time units, t-test, p-value 4.109 ·10−5). The average detection time for a 25%

infection of friends sensors (151.17 time units) is smaller than that of random sensors

(168.51 time units, t-test, p-value 9.913e−15). The earlier detection provided by friend

sensors over random sensors is not statistically significant for targets of 0.05% and 1%

infection.

On the friendship network (compare Figure 5.13, bottom panels), despite friend

sensors provide a lower average detection time than random sensors, the difference is not

statistically significant for any target infection rate.
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The results above are driven by the stochastic incubation time needed to get the

infection started, driven by the parameter β , as we observed in the previous section. In

order to control for such randomness, we perform 5,000 additional simulations for each

time-varying network and sensor type, setting β = 1 (certain infection). This choice

allows to study the effect of the structural properties of the selected sensors on the

infection detection time. Friend sensor provide faster detection of the infection both on

the friendship and the encounter network, and for all targets α .

Figure 5.14 plots the average time to detect a 25% infection of the sensors versus

the seed degree, on the encounter network (top panels) and friendship network (bottom

panels). The x-axis shows either the encounter degree (left panels) or the friend degree

(right panels) of the seed (degree at most 25). On the encounter network (compare

Figure 5.14, top panels), the average detection time for a 0.5% infection of friends

sensors is 3.3516 time units (versus 3.7426 for random sensors), for a 1% infection is

3.5488 (versus 3.9894), for a 5% infection is 4.1192 (versus 4.5660), for a 10% infection

is 4.4008 (versus 4.8526), for a 25% infection is 4.8922 (versus 5.3340), and all value are

statistically significant (t-tests, p-values< 2 ·10−16). On the friendship network (compare

Figure 5.14, bottom panels), the average detection time for a 0.5% infection of friends

sensors is 3.3516 time units (versus 3.7426 for random sensors), for a 1% infection is

2.4748 (versus 2.8432), for a 5% infection is 2.6004 (versus 2.9804), for a 10% infection

is 2.9286 (versus 3.6092), for a 25% infection is 3.5142 (versus 3.9056), and all value

are statistically significant (t-tests, p-values< 2 ·10−16).
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Figure 5.13. Sensor infection monitoring versus seed degree. The plots show the average
time to infect 5% of the sensors versus the degree of the infection seed. 5000 simulations
with β = 0.01 are run per network and per sensor type. For each simulation, a seed is
selected uniformly at random, and the sensor size is 1% of the total population. The left
panels relate encounter degree of the seed with infection on the encounter network (top)
and friendship network (bottom), for degree of at most 25. The right panels relate friends
degree of the seed with infection on the encounter network (top) and friendship network
(bottom), for degree of at most 25. Point size are proportional to the logarithm of the
number of observations for each degree.
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Figure 5.14. Sensor infection monitoring versus seed degree. The plots show the
average time to infect 25% of the sensors versus the degree of the infection seed. 5000
simulations with β = 1 (certain infection) are run per network and per sensor type. For
each simulation, a seed is selected uniformly at random, and the sensor size is 1% of
the total population. The left panels relate encounter degree of the seed with infection
on the encounter network (top) and friendship network (bottom), for degree of at most
25. The right panels relate friends degree of the seed with infection on the encounter
network (top) and friendship network (bottom), for degree of at most 25. Point size are
proportional to the logarithm of the number of observations for each degree.



166

5.8 The infected population – Static networks

In the previous section, we analyzed how infection processes spread on the en-

counter and friendship static networks at a macroscopic level, focusing on the infection

detection time and on the infection growth over time. In this section, we take a micro-

scopic look at the process, moving our attention to the sets of nodes that become infected.

In particular, we consider seed nodes that are present in both the friendship and encounter

network, and we will compare the sets of nodes that become infected in processes starting

at the same seed but evolving on the two different networks. By comparing several

independent runs of the infection process starting at each seed, we will observe that the

unpredictability within a given network is substantially lower than the unpredictability

between the two different networks.

We ran 10,000 groups of simulations of the SEI process with β = 0.01 (stochastic

infection). For each group of simulation, a single seed is selected at random among all

nodes si in the intersection of the two networks (uI = |UE ∩UF | = 71,211). For each

choice of the seed, we separately run two infection processes on the encounter network

and two infection processes on the friendship network.

The Jaccard similarity measures JE j,Fk(m;si) for j,k ∈ {1,2}, JE1,E2(m;si) and

JF1,F2(m;si), and the precision measures PE j,Fk(m;si) for j,k ∈ {1,2}, PE1,E2(m;si), and

PF1,F2(m;si) are defined as in the case of time-varying networks. Observe that, as all

nodes eventually become infected in a SEI process on a static network, these quantities

are defined for each si and m < n, where n is the number of nodes in the network. We

consider target set size m ∈ {500,1000,2000,5000,10000,20000}.

Figure 5.15 plots the Jaccard similarity measures JE1,F1(m;si), JE1,E2(m;si) and

JF1,F2(m;si) in the top-left, top-right and bottom panels respectively. Figure 5.16 plots the

precision measures PE1,F1(m;si), PE1,E2(m;si) and PF1,F2(m;si) in the top-left, top-right
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and bottom panels respectively. Observations for a given value of m constitute a block

on the x-axis (larger m corresponds to x positions on the right) and are represented with

the same color. For a fixed value of m, relative x positions are irrelevant. For a given

metric and each value m, the black point represents the average of the metric over all the

observations and bars represent standard deviations.

JE1,F1(m;si) has smaller average than JE1,E2(m;si), JF1,F2(m;si), and for m > 500,

JE1,E2(m;si) has larger average than JF1,F2(m;si) (two-paired t-tests, p-values< 2.2 ·

10−16). Similarly, PE1,F1(m;si) and PF1,E1(m;si) have smaller average than PE1,E2(m;si),

PF1,F2(m;si), and for JE1,E2(m;si) has smaller average than JF1,F2(m;si) (two-paired t-tests,

p-values< 2.2 ·10−16).

However, these result should be interpreted with caution, as it is not straightfor-

ward to rigorously compare the quantities for all values of m. The metrics JE1,E2(m;si),

JF1,F2(m;si), PE1,E2(m;si) and PF1,F2(m;si) can be as large as 1 for all values of m. In-

stead, for large m, JE j,Fk(m;si) is upper bounded by uI/uU = 0.338, PE j,Fk(m;si) is upper

bounded by uI/uE = 0.629, and PFj,Ek(m;si) is upper bounded by uI/uF = 0.422. For

general values of m, tight upper bounds for these quantities depend on si and therefore

on the network structure. Therefore, we proceed by computing empirical upper bounds

JU
·,·(m) and PU

·,·(m) over all simulations, and rescaling the quantities above by dividing by

the corresponding bounds and obtaining rescaled metrics J̄·,·(m,si) and P̄·,·(m,si).

Table 5.3 reports the averages of the original and rescaled Jaccard similarity

measures. Table 5.4 reports the averages of the original and rescaled precision measures.

For all values of m, J̄E1,F1(m;si) has smaller average than J̄E1,E2(m;si) and J̄F1,F2(m;si),

and for m > 500, J̄E1,E2(m;si) has larger average than J̄F1,F2(m;si) (two-sample t-tests,

p-values< 2.2 · 10−16). For all values of m, P̄E1,F1(m;si) has smaller average than

P̄E1,E2(m;si) and P̄F1,F2(m;si), whereas P̄F1,E1(m;si) has smaller average than P̄F1,F2(m;si),

only for m ∈ {500,1000,2000,5000} and larger for m ∈ {10000,20000} (two-sample
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Table 5.3. Single seed infection on the static networks. Jaccard similarity measures:
empirical upper bounds, average of original measures, average of the rescaled measures.

m J̄E1,F1 J̄E1,E2 J̄F1,F2 JE1,F1 JE1,E2 JF1,F2

500 0.283 0.300 0.402 0.012 0.046 0.055
1000 0.404 0.538 0.517 0.0211 0.0677 0.100
2000 0.553 0.704 0.650 0.0341 0.098 0.163
5000 0.749 0.877 0.823 0.061 0.155 0.251

10000 0.852 0.931 0.911 0.090 0.212 0.309
20000 0.929 0.956 0.952 0.128 0.292 0.365

Table 5.4. Single seed infection on the static networks. Precision measures: average of
original and rescaled measures.

m P̄E1,F1 P̄F1,E1 P̄E1,E2 P̄F1,F2 PE1,F1 PE1,F1 PE1,E2 PF1,F2

500 0.267 0.250 0.312 0.406 0.034 0.021 0.088 0.111
1000 0.359 0.370 0.559 0.471 0.055 0.034 0.126 0.190
2000 0.503 0.456 0.701 0.558 0.085 0.055 0.179 0.291
5000 0.686 0.692 0.883 0.731 0.136 0.101 0.268 0.409
10000 0.788 0.846 0.916 0.833 0.181 0.154 0.350 0.475
20000 0.885 0.920 0.955 0.908 0.237 0.219 0.452 0.535

t-tests, p-values< 2.2 ·10−16).

The rescaled measures suggest that the network structure has a large impact on the

spread of the infection between the friendship and encounter networks, at a microscopic

level.
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Figure 5.15. Single seed infection on the static networks: Jaccard similarity. The three
panels show the metrics JE1,F1(m;si) (top-left), JE1,E2(m;si) (top-right) and JF1,F2(m;si)
(bottom), for 10,000 random choices of a single seeds, and different values of the target
set size m. For each seed, two simulations on the friendship network and two simulations
on the encounter network are run separately. The top-left panel considers, for each
of the 10,000 seeds, a pair of simulations on the two networks. The top-right panel
considers the 10,000 pairs of simulations ran on the encounter network. The bottom
panel considers the 10,000 pairs of simulations ran on the friendship network. On the x-
axis, observations for a given value of m form a block with a constant color (within the
block, the x position is irrelevant). For a given metric and each value m, the black point
represents the average of the metric over all the observations and bars represent standard
deviations.
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Figure 5.16. Single seed infection on the static networks: precision measures. The three
panels show the metrics PE1,F1(m;si) (top-left), PE1,E2(m;si) (top-right) and PF1,F2(m;si)
(bottom), for 10,000 random choices of a single seeds, and different values of the target
set size m. For each seed, two simulations on the friendship network and two simulations
on the encounter network are run separately. The top-left panel considers, for each
of the 10,000 seeds, a pair of simulations on the two networks. The top-right panel
considers the 10,000 pairs of simulations ran on the encounter network. The bottom
panel considers the 10,000 pairs of simulations ran on the friendship network. On the x-
axis, observations for a given value of m form a block with a constant color (within the
block, the x position is irrelevant). For a given metric and each value m, the black point
represents the average of the metric over all the observations and bars represent standard
deviations.



Chapter 6

Query incentive networks with split-
contracts: robustness to individuals’
selfishness

6.1 Introduction

A challenging class of crowdsourcing problems requires an interested party to

provide incentives for large groups of people to contribute to the search and retrieval

of rare information [205, 147, 94]. The small world problem, i.e. distributed routing of

messages to unknown individuals, is the seminal example of this class and has illustrated

the difficulty of the approach for almost 50 years [155, 208, 193, 62, 214]. In this class

of problems, individuals in the social network act as intermediaries to create a channel

between the querier and the answer. Observe that the chief difficulty of this approach

is to offer incentives to the individuals to propagate the query further in the network as

well as to return the answer all the way back to the querier [62]. The goal is therefore to

incentivize participation of the users using some form of (possibly financial) reward. In

this way, a node who does not know the answer but is offered a sufficiently high reward

can act as intermediary and propagate the query by offering the neighbors a share of its

reward. This setting models the social network as a marketplace of information where

the users strategically act in order to maximize their utility, and raises several questions

171
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about the system’s performance and the incentive propagation, the main one being: can

we retrieve the answer to a difficult query when given a limited budget?

The Defense Advanced Research Projects Agency (DARPA), a research orga-

nization of the United States Department of Defense, designed a so called “Network

Challenge” that conveyed a positive answer to this question.1 The challenge consisted of

locating ten moored red weather balloons placed at ten undisclosed locations in the conti-

nental United States. A single $40,000 cash prize was allocated for the first participant

to submit the correct latitude and longitude (within one mile error) of all ten balloons

within the contest period. In particular, the competition consisted in recruiting a team to

achieve the goal. This task posed varied issues of large-scale, time-critical mobilization.

In particular, in order to guarantee the participation and coordination of a large team, an

adequate structure of economic incentives had to be built.

The MIT Media Laboratory team won the competition in less than 9 hours,

adopting a recruitment scheme based on recursive incentives.2 Specifically, using the

$40,000 they could possibly win, they allocated an amount of $4,000 for finding each

balloon. For each balloon, they would distribute the $4,000 up the chain of participants

leading to successful balloon spotting, as described in their website: “[In the case we

win the competition,] we’re giving $2,000 per balloon to the first person to send us the

correct coordinates, but that’s not all – we’re also giving $1000 to the person who invited

them. Then we’re giving $500 whoever invited the inviter, and $250 to whoever invited

them, and so on...”. This is equivalent to say that a node u who does not have the desired

answer, can offer its friends a 1/2-split contract, stipulating that if the answer is found in

the subtree of a child v of u, then u will get back from v a 1/2 fraction of whatever amount

v gets. However, if u is not the querier, the total amount pocketed by u is less, as u has to

1https://networkchallenge.darpa.mil/
2http://balloon.media.mit.edu/

https://networkchallenge.darpa.mil/
http://balloon.media.mit.edu/


173

give a 1/2 fraction of its reward to its recruiter.

While the success of this strategy has been hailed as an empirical testimony to

the power of incentive structures [206], the theoretical efficiency of the proven scheme

has remained an open question, and motivates this work. In particular, we analyze this

economic structure in the model for query incentive networks introduced By Kleinberg

and Raghavan in [129]. This model considers a competitive environment where every

node plays strategically. To fit the split contracts to this model, we generalize the splits

to any fraction 0 < ρ < 1, in the sense that any node u can offer a child v a ρ-split

contract stipulating the following: if v has the answer, then v would pocket a (1−ρ) of

the whole reward while returning a fraction ρ to u; if v does not have the answer, then

v can in turn offer some ρ ′-split to its (still unrecruited) friends, and so on. Given the

strategic setting, nodes will choose the splits to offer to their children so to maximize

their expected payoffs; observe that contracts between different nodes can have different

splits — and this is indeed the case in the Nash equilibrium as our results show. The

details of the original model introduced in [129] follow.

6.1.1 Query Incentive Networks

The scenario of interest is that of a node, the root, that is willing to invest some

amount r∗ to retrieve certain information from a large network in which every node plays

strategically. The main goal is to characterize the tradeoff between the investment and the

rarity of the information. The model, introduced by Kleinberg and Raghavan [129], is as

follows: the querier node is the root of an infinite d-ary tree, where each node possesses

independently the desired information with probability 1/n, where n represents the rarity

of the answer. The root offers each child u a “fixed-payment” contract of r∗, stipulating

that the root will pay u that amount upon u providing the answer. The query propagates

down the tree according to the following scheme: every node u has an integer-valued
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function fu encoding its strategies; if u is offered a reward of r by its parent and does

not possess the answer, then in turn it offers a reward of 1≤ fu(r)≤ r−1 to its children.

When the answer to the query is found, the root selects for payment one among the

answer-holders using a fixed non-strategic rule. The payment is then propagated down

through the path to that selected node, with each node along the path pocketing its share.

If an intermediate node u on this path was offered r by its parent, then its overall payoff

is r− fu(r)−1, where the unit cost is associated with the act of returning the answer3.

The game-theoretical aspect of the model is that any node u chooses the function fu so to

maximize its payoff. To break ties, it is assumed that a node who is offered a reward of

one (and does not possess the answer) will always forward the query to its children, even

if its expected payoff is zero (since the unit reward would be spent when returning the

answer up to its parent).

As pointed out in [129], there is a subtle deficiency with a deterministic tree:

the Nash equilibria of a game played in a deterministic network tacitly assume that the

nodes know the entire network. Indeed, in a Nash equilibrium, each node chooses its

best strategy by knowing the strategies of every other node. However, this is unrealistic,

as we want to model a setting where nodes are only aware of their neighbors. To deal

with this technical issue, Kleinberg and Raghavan consider a network that can be thought

as a branching process from the root. In particular, the number of children of each node

is chosen independently from a binomial distribution Bin(d,q), where q is a constant

probability of a node being present. The expected number of children of a node — i.e.,

the branching factor — is then b = qd. By classical results in the theory of branching

3As observed in [129], if nodes placed no value on this answering effort then the root could simply
invest an arbitrarily small reward ε > 0, and it would retrieve an answer because each node would have
a positive payoff from participating in the game and returning the answer. To avoid this situation, a unit
price is placed on the effort of returning the answer, while the cost of participating to the game is zero.
This is motivated by the fact that the cost of forwarding requests to a list of friends is typically considered
negligible in peer-to-peer and social-network systems [120, 219, 220] (see [129] for additional details on
the motivations).
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processes, if b < 1 the process dies out almost surely; therefore there is no amount that

the root can offer to obtain an answer with constant probability if the rarity n of the

answer is large enough. Instead, for any b > 1, there is a constant non-zero probability

that the process will generate infinitely many nodes, so that the answer is present within

the first O(logn) levels of the tree with high probability. Nevertheless, Kleinberg and

Raghavan show that in the Nash equilibrium the investment needed at the root can be

much larger than logarithmic in n. Specifically, while an investment r∗ = O(logn) is

sufficient to retrieve the answer with constant probability for b > 2, an investment of

r∗ = nΘ(1) is needed when 1 < b < 2. That is, in the latter case the root must invest a

reward that is exponentially larger than the expected distance from the closest answer.

Arcaute et al. [15] generalized the work in [129] showing that this threshold

behavior at b = 2 still holds for arbitrary Galton-Watson branching process. They also

proved that in a ray — a deterministic infinite path (b = 1, but with zero extinction

probability) — the reward needed is super-exponential in the expected depth of the search

tree, that is r∗ = Ω(n!). Finally, they observed that this threshold behavior vanishes if the

root desires to find the answer with probability tending to 1: if the desired probability is

1−1/n, then for any branching process with b > 1 and no extinction, the needed reward

is nΘ(1).

6.1.2 Our results

We present a theoretical study of the multi-level marketing strategies adopted by

the winning team of the DARPA Network Challenge. Given the strong affinity between

this challenge and the model of query incentive networks introduced in [129, 15], we

frame these strategies in this model by considering split contracts as the possible offers

between nodes.

Our main result is that split contracts, unlike fixed-payment contracts, are robust
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to a strategic environment, where every node selfishly determines the offers to its children

based on the offer received from its parent. We show that for any constant ε > 0 and

Galton-Watson branching process with b > 1, the Nash equilibrium with split contracts

uses an investment of r∗ = O(logn) to retrieve the answer with probability at least

1−ζ − ε , where ζ is the extinction probability of the process. As the expected distance

to the closest answer is Θ(logn) and nodes pay a unit cost to return the answer, this is a

constant approximation with respect to an ideal centralized non-strategic setting. In other

words, the price of anarchy of the game with split contracts is constant (ignoring some

pathological equilibria, see Section 6.4 and Section 6.7.8).

Unlike previous work that assumed the parameters of the branching process to

be held constant, we are also able to characterize the dependence of the investment

with respect to the branching process and the success accuracy. This allows us to show

additional improvements of split contracts over fixed-payment contracts: for example,

for branching processes with no extinction, an investment of O(n logn) is enough to

retrieve the answer with probability at least 1−1/n, improving upon the nΘ(1) investment

provided in [15]. In fact, our result is even stronger since it guarantees a success

probability of at least 1−ζ −1/n in general branching processes. In the case of a ray

(where the expected distance from the closest answer is n), we show that the investment

needed to find the answer with constant probability is O(n2), while Ω(n!) is needed when

using fixed-payment contracts [15].

6.1.3 Additional related work

Pickard et al. [177] described and analyzed the winning strategy of the DARPA

Network Challenge. However, we distinguish ourselves from [177] in both aims and

methods. The authors of [177] are mainly concerned with the motivation of the exact

1/2-split winning strategy that was implemented by the MIT Media Laboratory, for which
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they show that it is in the participants’ interest to recruit the highest number of friends

and back the theory with an empirical analysis of the diffusion cascades. Our work

considers the more general setting of split contracts in the model of query incentive

networks introduced in [129] and analyzes the efficiency, in terms of investment, of the

Nash equilibria.

In the context of query incentive networks with fixed-payment contracts, Kota and

Narahari [133] applied the results of general branching processes from [15] to analyze

the reward when the degree distribution follows a power-law and the desired success

probability is at least 1−1/n and show a threshold behavior of the reward with respect

to the scaling exponent. Dikshit and Yadati [61] considered the issue of the quality of the

answers in query incentive networks. In particular, they define a quality conscious model

of incentives and derive the same threshold behavior around the branching factor b = 2

found in [15, 129].

It is worth to mention additional related work that is not in the context of query

incentive networks. Emek et al. [66] studied strategies of multi-level marketing, in

which each individual is rewarded according to direct and indirect referrals, and show

that geometric reward schemes are the only guarantee to certain desirable properties.

Our setting is substantially different from [66], as the reward is based on referral rather

that information retrieval. Douceur and Moscibroda [63] proposed the lottery tree as a

mechanism to incentivize the adoption of a distributed systems and the solicitation of

new participants. Influence in social networks is also related to our work. Kempe et

al. [126] considered the algorithmic question of selecting an influential set of individuals.

Jackson and Yariv [109] proposed a game-theoretic framework to model incentives

in adoption processes. Hartline et al. [95] studied influence in social networks from

a revenue maximization point of view. Singer [195] developed incentive-compatible

mechanisms for influence maximization in several models.
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6.2 Preliminaries

We model the network as a tree generated via a Galton-Watson branching process

with offspring distribution {ck}d
k=0, that is, ck is the probability that any node has exactly

k children and ∑
d
k=0 ck = 1. We adopt the convention that the root of the tree is at level 0,

its children at level 1, and so on. The probability generating function of the offspring

distribution is given by

Ψ(x) =
d

∑
k=1

ckxk, 0≤ x≤ 1.

The branching factor of the process is defined as b = Ψ′(1) = ∑
d
k=0 kck. A fundamental

result in the theory of Galton-Watson processes states that the extinction probability ζ of

a branching process is the smallest non-negative root of the equation x = Ψ(x). If follows

that ζ = 1 if and only if b < 1, or b = 1 with c0 > 0, and that 0≤ ζ < 1 otherwise. For

classical theory on Galton-Watson branching processes we refer to [18].

We assume that each node in the network possesses the answer to the query

independently of the other nodes with probability 1/n, where n represents the rarity of

the answer. Note that n is the expected number of nodes to query before finding the

answer. For i≥ 0, let φi be the probability that no node at level j ≤ i has the answer and

λi = φi−1−φi be the probability that some node at level i and no node at a lower level

possesses the answer. (These probabilities are over the randomness of the branching

process and of the process assigning the answers.) Moreover, conditional on the event

that the branching process with probability generating function Ψ does not die out, let

hΨ(ε,n) be the minimum integer i such that φi < ε . For branching factor b > 1, we have

that hΨ(ε,n) = O(logn) for any ε = n−O(1), whereas in the case of b = 1 and c0 = 0 (i.e.,

a ray), hΨ(ε,n) = n ln 1
ε
.

Assume that r∗ is the investment available at the root, which desires to retrieve
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the answer with probability at least 1−ζ − ε , for a given success accuracy ε > 0. With

the notation introduced so far, we will show that for any constants b > 1 and ε > 0 an

investment of r∗ = O(hΨ(ε,n)) suffices to propagate the query down to level hΨ(ε,n) of

the tree, and hence to retrieve the answer with probability at least 1−ζ − ε . For ease of

analysis, we assume that the root is not willing to explore the tree below level hΨ(ε,n),

that is, we truncate the tree at that height.

6.2.1 Split contracts

We now formalize the notion of split contracts. Every node including the root can

offer a ρ-split contract to its children, for some 0 < ρ < 1, stipulating the following. If

the root offers a ρ-split to a child u who possesses the answer, then u receives a payment

of r∗ but is required to return a ρ fraction to the root, earning a total of r∗(1−ρ)−1,

where we introduced a unit cost for returning the answer to the parent, as in [129, 15].

If instead u does not possess the answer then it might decide to propagate the query

to its children, according to its strategy fu(·), that is, offering a fu(ρ)-split contract to

its children. If one among u’s children possesses the answer, then u receives an fu(ρ)

fraction of the reward but it gives a ρ fraction back to the root and pays the unit cost to

return the answer, with an overall earning of r∗(1−ρ) fu(ρ)−1. In general, consider

a node u` which is reached by a query and possesses the answer, and let u0,u1, . . . ,u`

be the path connecting the root to u`, where u0 is the root. Then, if the root offered a

ρu0-split to its children, and ρui = fui(ρui−1) is the split offered by ui to its children for

all i < `, then the root u0 (who need not to pay the unit cost) receives a payoff of

r∗ ·ρu0 · fu1(ρu0) · fu2( fu1(ρu0)) · · · fu`−1( fu`−2(· · ·)) = r∗ ·
`−1

∏
j=0

ρu j .

Similarly, for 1≤ i≤ `, the payoff of node ui is
(
r∗(1−ρui−1) ·

`−1

∏
j=i

ρu j

)
−1.

Without loss of generality, we assume that nodes never propose useless split-



180

offers to their children, that is, ρ-split where ρ > ρ1 := 1− 1/r∗, since their children

would not have incentive to play even if they possessed the answer themselves. Also, for

simplicity we assume discrete domain and range for the strategy fu of every node u, that

is, fu : DM→ (DM ∪⊥), where fu(ρ) =⊥ indicates that u chooses not to propagate the

query, and DM = {ρ1
M , 2ρ1

M , . . . , (M−1)ρ1
M ,ρ1} is a discretization of the interval (0,ρ1].

6.2.2 Propagation of the payment

We remark that the above payoffs for the path u0, . . . ,u` will turn into concrete

payments only if the root selects u` among the answer-holders. Indeed, among all

answer-holders reached by the query the root, will select only one for payment. In the

fixed-payment model of [129, 15], this selection is made using a fixed arbitrary procedure

that does not affect the strategies of the nodes (e.g., performing a random walk from

the root descending down the tree; the first hit answer-holder will be paid along with

its ancestors). In their setting, this choice is coherent as the root always spends a fixed

investment, no matter how deep in the tree the payment is propagated. In our case this

peculiarity is missing as a result of the split contract mechanism. In our model we will

assume the root selects for payment one among the answer-holders (reached by the query)

at smallest depth. This is motivated by different facts. First, if we consider some notion

of time related to propagating the query one level down, then our selection mechanism

better depicts the strategy adopted in the DARPA Network Challenge, where the payment

was given to the first participant reporting the correct location of a balloon. Second, the

actual investment of the root is in general smaller if the path to the answer is shorter.

Finally, a selection mechanism based on smallest depth alleviates the false-name issue

discussed in [177]. In case of multiple answer-holders at smallest depth, we assume

that the root breaks ties in a way that does not affect the strategies of the nodes (e.g.,

performing a random walk from the root to one of the leaves of the subtree formed by all
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shortest paths to the answers, and selecting the corresponding answer-holder).

6.2.3 Difference with respect to previous work

We would like to spend a few words highlighting some of the main differences

between our analysis and those in [129, 15]. One of these differences, the propagation

of payments, has been already discussed above; from the technical point of view, the

smallest depth selection mechanism introduces the hurdle that the strategy of each node

does not only depend on the strategies in its subtree (as in the case of [129, 15]), but

potentially on those of all nodes. We remark that the gap in efficiency of the two models

is not related to the different propagation of payment. In fact, if the answer-holder were

to be selected according to the smallest depth mechanism in the fixed-payment setting,

then the investment needed to retrieve the answer would increase. Roughly speaking, this

happens as a node further down in the tree requires higher reward to forward the query,

in order to compensate for the smaller probability of having a payment candidate in its

subtree.

Another salient difference between the two models concerns the values of the

contracts: while the nature of the fixed-payment contracts of [129, 15] implies that a

node being offered a reward of r can only offer an amount r′ < r to its children, we

do not enjoy this property on the ρ’s in the case of split contracts. This unfortunately

precludes the inductive arguments adopted in [129, 15], making a more involved analysis

necessary.

We conclude this section discussing about the gap in efficiency between split

contracts, for which an investment proportional to the depth of the search tree suffices

for any branching factor b > 1, and the results in [129, 15], for which the investment

becomes exponential in the depth of the search tree when the branching factor drops

below 2. In the setting of [129], the additional amount of reward δ j that the root needs in
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order to explore j levels of the tree (rather than stopping at level j−1) can be expressed

as

δ j+1 =
1−φ j−1

λ j
δ j +1.

When the branching factor drops below 2, the ratio 1−φ j−1
λ j

is greater than 1, and the

investment needed at the root to propagate the query down to depth hΨ(ε,n) becomes

exponential in logn (hence, poly(n)).

In contrast, the dependency on the ratio 1−φ j−1
λ j

is softer in our setting. In the

proof of Theorem 9, we show that the ρ-split a node at level ` needs to receive in order

to propagate the query i levels down its subtree is

ρ
〈`〉
i = 1− 1

r∗− i(1+O(1−φi−1
λi

))
.

Since we can show that 1−φi−1
λi

is bounded by a constant for any branching process with

b > 1, an investment r∗ = O(hΨ(ε,n)) = O(logn) suffices for the value ρ
〈1〉
hΨ(ε,n) offered

by the root to its children to be well-defined (i.e., in DM), and hence for the answer to be

retrieved cheaply.

6.2.4 Roadmap

The rest of the paper is structured as follows. In Section 6.3, we derive properties

that hold for any Nash equilibrium. In Section 6.4, we develop a condition that we call h-

consistency under which we can show that a set of strategies g for the nodes propagates the

query to the desired level and is substantially the unique Nash equilibrium. In Section 6.5,

we derive a bound on the investment r∗, depending on quantities related to the branching

process, for which h-consistency is guaranteed to hold. Finally, in Section 6.6, we study

such quantities of the branching process to conclude that r∗ = O(hΨ(ε,n)) = O(logn).

Due to space constraints, all proofs are deferred to Section 6.7.
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6.3 Properties of Nash Equilibria

In this section we present the notion of Nash equilibrium that naturally arises in

the context of split-contracts, and we then derive a manageable expression that any Nash

equilibrium has to maximize. Let fv be the function representing the strategy of node v,

and f be the set of strategies of all nodes up to level hΨ(ε,n), as we assumed that nodes

in lower levels do not play.

Definition 11 (Nash equilibrium) Let r∗, Ψ, ε , n be the parameters of the model, and

f be a set of functions for all nodes up to level hΨ(ε,n). For any such node v, let ρv be

the split contract offered to v by its parent under f. Then, f is a Nash equilibrium if, for

each node v, v does not increase its expected payoff by deviating from fv(ρ
v) when all

other nodes play according to f. The expectation is taken over the randomness of the

branching process and of the process assigning answers to nodes.

We now give a few definitions that will be useful to derive properties of any

Nash equilibrium. Given a realization of the branching process, we say that a node v

at level `≤ hΨ(ε,n) is active if the branching process reaches v. Moreover, given a set

f of strategies and a realization of the branching process, we say that an active node v

is f-reachable if f forwards the query down to v. Given a realization of the branching

process and of the process assigning the answer to nodes, we say that an f-reachable

node v at level ` is an f-candidate if v holds the answer and no f-reachable node at a

level `′ < ` does. Observe that the root selects for payment one among the f-candidates.

For each node v at level ` ≤ hΨ(ε,n), set f of strategies, and j ≥ 1, let α f
v( j|ρ) be the

probability that there is an f-candidate in v’s subtree at distance j from v, conditional on

v being f-reachable and offering a ρ-split to its children. Similarly, for j ≥ 1, let β f
v( j|ρ)

be the expected payment that v receives from its children given that v offers a ρ-split to

its children and there is an f-candidate in v’s subtree at distance j from v to whom the



184

root propagates the payment.

The following lemma characterizes an expression that must be maximized by

every node up to level hΨ(ε,n) in any Nash Equilibrium.

Lemma 16 Consider any set f of strategies, and let ρv be the split contract offered to v

by its parent under f. Then, f is a Nash equilibrium if and only if, for every node v up to

level hΨ(ε,n), fv(ρ
v) is a value of ρ maximizing the function

χ
f
v(ρ;ρ

v) := ∑
j≥1

α
f
v( j|ρ)

(
(1−ρ

v)β f
v( j|ρ)−1

)
. (6.1)

To break ties in case of multiple maxima for χ f
v(·;ρv), we make the same assump-

tion as in [129, 15] that nodes favor strategies that forward the query further down in the

tree. Using Lemma 16, we can now prove that Nash equilibria are “leveled”.

Lemma 17 Consider any Nash equilibrium f. Then for each active node v at level `, v is

f-reachable if and only if every active node at level ` is.

By means of Lemma 17, we will say that a Nash equilibrium f is k-tall if level k is

f-reachable and level k+1 is not. This notion is useful in decoupling the probabilities

α f
v( j| fv(ρ)) from the particular equilibrium f and node v. To see how, assume f is k-tall,

k ≤ hΨ(ε,n). For any node v at level `≤ k and any j ≤ k− `, let γ
〈`〉
j be the probability

that there exists an f-candidate in v’s subtree at distance j from v (and therefore there

is no f-candidate in the first `+ j−1 levels). Then, as f is k-tall, we have that for any

node at level `, γ
〈`〉
j depends only on ` and j (and not on f or the specific node). This

observation directly yields the following result relating the probabilities α f
v( j| fv(ρ

v))

and γ
〈`〉
j .

Lemma 18 Let f be a k-tall Nash equilibrium, k ≤ hΨ(ε,n). Then, for every `≤ k and
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node v at level `,

α
f
v( j| fv(ρ

v)) =

 γ
〈`〉
j , for 1≤ j ≤ k− `

0, for j > k− `

In general, if the query is forwarded j levels down v’s subtree when v offers a ρ-split to

its children, then we have α f
v( j|ρ) = γ

〈`〉
j .

6.4 The Nash Equilibrium

In this section, we derive conditions for the existence of a Nash equilibrium that

forwards the query down to level hΨ(ε,n), or, equivalently, retrieves the answer with

the desired probability 1− ζ − ε . For ease of notation, let h = hΨ(ε,n). We proceed

as follows. First we define the functions e〈`〉i and the thresholds ρ
〈`〉
i , which intuitively

represent expected rewards and contracts for a special set of strategies g. However, to

define g, we will need all ρ
〈`〉
i to exist and be decreasing in i, for all `≤ h, property that

we will dub h-consistency. Finally, assuming h-consistency, we will show that g forwards

the query to level h and is a Nash equilibrium (in fact with an extra property, we will say

g is a best-interest Nash Equilibrium).

We begin by defining the aforementioned functions and values. We provide

an inductive process which defines, for each 1 ≤ ` ≤ h, a sequence of functions e〈`〉i :

[0,1]→ R, 0≤ i≤ h− `, and values ρ
〈`〉
i ∈DM, 1≤ i≤ h− `+1. For every 0≤ `≤ h,

set e〈`〉0 (ρ) = 0 and ρ
〈`〉
1 = ρ1 = 1− 1/r∗. Suppose that all ρ

〈`′〉
i have been defined for

` < `′ ≤ h and 1 ≤ i ≤ h− `′+ 1. Then, for all 1 ≤ i ≤ h− `, the function e〈`〉i (ρ) is

defined as

e〈`〉i (ρ) =
i

∑
j=1

γ
〈`〉
j

[
(1−ρ)r∗

(
j−1

∏
t=0

ρ
〈`+t+1〉
i−t

)
−1

]
.
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Having defined e〈`〉i (ρ), we define

ρ
〈`〉
i+1 = max{ρ ∈DM : e〈`〉i (ρ)≥ e〈`〉i−1(ρ)},

if such value exists, and leave ρ
〈`〉
i+1 undefined otherwise.

For a node v at level `≤ h, e〈`〉i has the intuitive meaning of the expected reward

that v receives from its children when the query is propagated i levels down v’s subtree

(assuming the other nodes play accordingly). The value ρ
〈`〉
i+1 represents the “cheapest”

split to offer a node v at level `≤ h so that v prefers to propagate the query i levels down

its subtree rather than i−1 (recall that, to break ties, we assumed that nodes prefer to

propagate the query further down the tree). To guarantee the propagation of the query to

level h, we will need the values ρ
〈`〉
h−` to be defined.

Definition 12 (h-consistency) We say that h-consistency holds if, for all 1≤ `≤ h and

2 ≤ i ≤ h− `+ 1, the value ρ
〈`〉
i is defined and ρ

〈`〉
i < ρ

〈`〉
i−1 (note that ρ

〈`〉
1 is always

defined).

Intuitively, the ordering of the values ρ
〈`〉
i in the definition of h-consistency states that

if a node v propagates the query i levels down its subtree when offered a ρ-split by its

father, then, in order to propagate the query i+1 levels down, it must be that v is offered

a split not greater than ρ . This property is at the basis of the following definition of the

set of strategies g, which we will then show to be a Nash equilibrium. Note how, under g,

nodes at the same level play the same strategy.

Definition 13 (Strategy g) Assume h-consistency holds. For each 1≤ `≤ h, consider

the function t〈`〉(ρ) : [0,1]→DM ∪{⊥} defined by t〈`〉(ρ) = ρ
〈`+1〉
i−1 for the unique i such

that ρ
〈`〉
i+1 < ρ ≤ ρ

〈`〉
i (such i exists under h-consistency), where we assume ρ

〈`〉
h−`+2 = 0
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and ρ
〈`+1〉
0 = ⊥. The set of strategies g is defined by setting gv(ρ) = t〈`〉(ρ) to every

node v at level `, for each 1≤ `≤ h, and letting the root play ρ
〈1〉
h .

It follows that, under g, the root (at level zero) offers a ρ
〈1〉
h -split to its children, who in

turn offer ρ
〈2〉
h−1-split contracts to their own children, and so on, until the nodes at level

h, who do not forward the query (they play t〈h〉(ρ〈h〉1 ) =⊥). Observe that g is h-tall, as

all nodes up to level h are g-reachable. The following theorem states that g is a Nash

equilibrium.

Theorem 7 (Nash equilibrium) Assuming h-consistency, the set of strategies g is a

Nash equilibrium.

The key fact in the proof is to show that, for any node v at level 1≤ `≤ h (which under g

receives a ρ
〈`〉
h−`+1-split from its parent and in turn offers a ρ

〈`+1〉
h−` -split to its children),

χ
g
v (ρ

〈`+1〉
j ;ρ) = e〈`〉j (ρ) for all j ≤ h− `, and that ρ

〈`+1〉
h−` is the only maximizer of (6.1)

that propagates the query to level h. Then the theorem follows by Lemma 16.

Even though g is not the only Nash equilibrium, the proof of Theorem 7 shows

that g enjoys the additional property that, for each node v and ρ ∈DM,

gv(ρ) = argmax
ρ ′
{χg

v (ρ
′;ρ)}.

We call any equilibrium enjoying such property a best-interest equilibrium, as nodes

choose their best option in any scenario. The following theorem shows that g is substan-

tially the only best-interest equilibrium, meaning that every other best-interest equilibrium

f coincides with g on all the split-offers that are actually offered to nodes under f. As

a remark, we observe that even the game with fixed-payment contracts in [129, 15]

admits multiple equilibria, although the authors claim uniqueness (a counter-example is

presented in Section 6.7.8). On the positive side, the equilibrium analyzed in [129, 15] is

the unique best-interest Nash equilibrium of their game.
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Theorem 8 (Uniqueness) Assume h-consistency. Let f be any `-tall best-interest Nash

equilibrium, for some 1 ≤ ` ≤ h, and, for each node v up to level `, let ρv be the

split contract offered to v by its parent under f. Then, for every node v up to level `,

fv(ρ
v) = gv(ρ

v).

Theorem 8 implies that every best-interest equilibrium f in which the root offers a ρ
〈1〉
h -

split to its children has to be h-tall, as f agrees with g on all split-offers made in g. As

h-tall equilibria retrieve the answer with the desired probability, the root has incentive to

play ρ
〈1〉
h as its strategy and would have incentive to deviate to ρ

〈1〉
h if playing a different

strategy. The following result is then implied.

Corollary 4 Under the assumption of h-consistency, all best-interest equilibria retrieve

the answer with the desired probability.

6.5 Guaranteeing h-consistency

Until now, we assumed h-consistency both in the definition of g and in the proof

that g is a Nash equilibrium. It therefore remains to derive conditions that ensure h-

consistency. In the following theorem, we provide a lower bound on the reward r∗ above

which h-consistency is guaranteed. The bound reads in terms of the probabilities γ
〈`〉
i

through the quantities Γ
〈`〉
i = 1

γ
〈`〉
i

∑
i−1
j=1 γ

〈`〉
j , which, for all 1 ≤ ` ≤ h and 1 ≤ i < h− `,

intuitively represent the ratio between the probability that a node at level ` has a candidate

at depth j < i in its subtree versus the probability that it has one at depth i.

Theorem 9 Suppose the discretization parameter M is large enough, say M = Θ(r∗2),

and that

r∗ ≥ 4 ·h ·max
{

1, max
1≤`≤h

1≤i<h−`

Γ
〈`〉
i

}
. (6.2)
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Then h-consistency holds. In particular, for all 1≤ `≤ h and 1≤ i≤ h−`, ρ
〈`〉
i is defined

and satisfies

1− 1
r∗− i

< ρ
〈`〉
i ≤ 1− 1

r∗− i+1
. (6.3)

The main idea to prove the theorem is to derive tight upper and lower bounds on ρ
〈`−1〉
i+1

and then proceed by induction on both ` and i. It can also be proven that, for a fixed i,

ρ
〈`〉
i is decreasing in ` for 0 ≤ ` ≤ h− i. The intuition for this property is that a node

further down in the tree is willing to give a smaller fraction of its reward back to its

parent, in order to compensate the smaller probability of having a candidate in its subtree.

However, we do not need this property to ensure h-consistency.

Theorem 9 along with Corollary 4 directly yields the following pivotal result,

which relates the quantities Γ
〈`〉
j to the investment that is sufficient at the root to retrieve

the answer with the desired probability.

Corollary 5 Suppose condition (6.2) holds. Then, in any best-interest Nash equilibrium,

the query reaches all nodes at level h = hΨ(ε,n) of the tree. That is, an answer is

retrieved with probability at least 1−ζ − ε .

6.6 Efficiency

In the previous section, we derived a lower bound on the investment r∗ as a

function of the values Γ
〈`〉
i , for 1≤ `≤ h and 1≤ i≤ h− `. In this section, we show our

main result by relating these values to the branching process and the desired success

probability. The following lemma bounds these quantities in terms of the probabilities

λi and φi of the branching process. Recall that, for each i ≥ 0 we defined φi as the

probability that no node at level j ≤ i possesses the answer, and λi = φi−1−φi as the

probability that a node at level i possesses the answer and no node at level j < i does.



190

Lemma 19 For every 1≤ `≤ h and 1≤ i≤ h− `, it holds that Γ
〈`〉
i ≤

1
φ`+i−1

1−φi−1

λi
.

The key in proving Lemma 19 is to express γ
〈`〉
i in terms of the probabilities φ j and

λ j defined above, and then to bound Γ
〈`〉
i exploiting the memory-less property of the

branching process and of the process assigning the answer to the nodes.

The following technical lemma provides an upper bound to 1−φi−1
λi

. In particular,

for any fixed branching process with b > 1, this ratio is bounded by a constant, as long

as φi is bounded away from the extinction probability ζ . The lemma characterizes the

bound with respect to the branching process and the gap φi− ζ , and its proof builds

on the mathematical properties of the probability generating function of the branching

process. Recall that the desired success probability is 1−ζ − ε .

Lemma 20 Consider any Galton-Watson branching process with branching factor b > 1.

Then, for every i such that ζ + ε ≤ φi ≤ 1, it holds that

1−φi

λi+1
≤max

{
1

b−1
,
1
ε
· 1

1−Ψ′(ζ )

}
.

Our main result directly follows by combining Corollary 5, Lemma 19 and

Lemma 20, along with the observation that φ`+i−1 > ε (as φ`+i−1 ≥ φhΨ(ε,n)−1 > ε). For

the case of a ray, the bound can be obtained observing that φi = (1− 1/n)i and λi+1 =
φi
n ,

which implies Γ
〈`〉
i ≤ Γ

〈1〉
h ≤ ε−2n.

Theorem 10 (Efficiency) Consider any Galton-Watson branching process with b > 1.

Then, the root retrieves the answer with probability at least σ = 1−ζ − ε provided an

investment of

r∗ =
4
ε
·max

{
1

b−1
,
1
ε
· 1

1−Ψ′(ζ )

}
·hΨ(ε,n).

In the case of a ray, with b = 1 and c0 = ζ = 0, an investment of r∗ = 4 · n
ε2 ·hΨ(ε,n) =

4 · n2

ε2 ln 1
ε

suffices.
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Observe that an investment of hΨ(ε,n) is necessary even in a centralized (non-strategic)

setting, where the root decides the strategies of all nodes while only guaranteeing a

non-negative payoff to them (each node pays a unit cost when returning the answer).

In line with intuition, the investment grows as b tends to 1 (in the limit, when the tree

becomes a ray, the investment is polynomial in n), and when the accuracy ε approaches

0. The term 1
1−Ψ′(ζ ) can be crudely bounded by 1

c0
. However, when c0 tends to zero, so

does the extinction probability ζ , which implies 1
1−Ψ′(ζ ) ≈

1
1−c1

, also suggesting a more

expensive investment when the tree tends to a ray (i.e., when c1 approaches 1).

6.7 Proofs

6.7.1 Proof of Lemma 16

Fix the available investment r∗, a set f of strategies, and a node v at level ` ≤

hΨ(ε,n). We need to define the following events. Let A denote the event that the

root propagates the payment down through v, that is, the root selects for payment an

f-candidate in v’s subtree. For each 0≤ j ≤ hΨ(ε,n)− `, let B j denote the event that the

f-candidates are at level `+ j. Finally let C denote the event that v is f-reachable and D

denote the event that there is an f-candidate in v’s subtree. Observe that the co-occurrence

of B0 and D means that v itself is an f-candidate. Given r∗ and f, let Y v
f,r∗ be the random

variable denoting the payment assigned to v.

We have that

E[Y v
f,r∗] = ∑

j≥0
E[Yf,r∗|A,B j,D,C]Pr(A,B j,D,C)

= Pr(A|D)Pr(C) ∑
j≥0

E[Yf,r∗|A,B j,D,C]Pr(B j,D|C).

The first equality follows from the law of total probability together with the obser-
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vation that Pr(A,C) = Pr(A,D) = 0 and E[Y v
f,r∗ |A] = 0. The second equality follows from

the chain rule of probability and the fact that Pr(A|B j,D,C) = Pr(A|D) for all j ≥ 0. Ob-

serve that the term corresponding to j = 0 (i.e., v is the f-candidate selected for payment)

does not depend on fv since E[Yf,r∗|A,B0,D,C] = (1−ρv)r∗− 1 and Pr(B0,D|C) only

depends on the strategies of the nodes that are ancestors of v. Similarly, fv affects neither

Pr(C), which depends on the strategies of v’s ancestors only, nor Pr(A|D), which is only

based on the root’s choice of whom to propagate the payment to. Finally, note that if v

offers a ρ-split to its children, then, for j ≥ 1, E[Yf,r∗|A,B j,S,C] = (1−ρv)β f
v( j|ρ)−1

and Pr(B j,D|C) = α f
v( j|ρ). Therefore, f is a Nash equilibrium if and only if, for every

node v up to level hΨ(ε,n), fv(ρ
v) is a value ρ maximizing χ f

v(ρ;ρv).

6.7.2 Proof of Lemma 17

Let f be a Nash equilibrium. Fix a node v and let

ρ2 = max{ρ ∈DM : χ
f
v(ρ1;ρ)≥ χ

f
v(⊥;ρ)}

be the maximum split v’s father can ask v so that v will in turn prefer to offer a ρ1-split to

their children rather than just participating in the game without propagating the query.

We first argue that ρ2 does not depend on the chosen node v, then show that fv(ρ) =⊥

for every node v and ρ2 < ρ ≤ ρ1 = 1− 1
r∗ , and finally use this fact to prove the lemma.

To see that ρ2 does not depend on v, observe that χ f
v(⊥;ρ) = 0 as α f

v( j|⊥) = 0 for

j≥ 1, and that χ f
v(ρ1;ρ) = α f

v(1|ρ1)((1−ρ)β f
v(1|ρ1)−1) = α f

v(1|ρ1)((1−ρ)r∗ρ1−1).

We now show that fv(ρ) =⊥, for every node v and ρ2 < ρ ≤ ρ1. By contradiction,

suppose fv(ρ) = ρ ′, for some v, ρ2 < ρ ≤ ρ1, ρ ′ ∈DM. On the one hand, as f is a Nash

equilibrium, Lemma 16 implies that ρ ′ maximizes χ f
v(ρ
′;ρ), and thus

χ
f
v(ρ
′;ρ)≥ χ

f
v(⊥;ρ) = 0.
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On the other hand, we have that

χ
f
v(ρ
′;ρ) = ∑

j≥1
α

f
v( j|ρ ′)

(
(1−ρ)β f

v( j|ρ ′)−1
)

≤ ∑
j≥1

α
f
v( j|ρ ′)((1−ρ)r∗ρ1−1),

where the last inequality follows from β f
v( j|ρ ′) ≤ r∗ρ1 for all j ≥ 1, as ρ ′ must be at

most ρ1 for v’s children to participate to the game. By definition of ρ2, it must be that

χ f
v(ρ1;ρ)< χ f

v(⊥;ρ) = 0, which implies ((1−ρ)r∗ρ1−1)< 0 and thus χ f
v(ρ
′;ρ)< 0,

generating a contradiction.

We are now ready to prove the lemma. By contradiction, suppose the statement

of the lemma does not hold. Then there must be two sibling nodes u and v (at some level

` < hΨ(ε,n)) and a value ρ = ρu = ρv such that fu(ρ) = ρ ′ 6= ⊥ and fv(ρ) = ⊥, that

is, such that u forwards the query when offered a ρ-split by its parent while v does not.

By the claim above, fu(ρ) = ρ ′ implies that ρ ≤ ρ2 and therefore, by definition of ρ2,

v would have incentive to deviate from fv, offering a ρ1-split to their children than just

participating to the game without propagating the query, contradicting that f is a Nash

equilibrium.

6.7.3 Proof of Theorem 7

Under h-consistency, for all ` ≤ h and 2 ≤ i ≤ h− `+ 1, ρ
〈`〉
i is defined and

ρ
〈`〉
i < ρ

〈`〉
i−1 (recall that ρ

〈`〉
1 is defined for all ` ≤ h). In the proof of the theorem, we

make use of the following technical lemma, that is a consequence of h-consistency.

Claim 3 Assume h-consistency. Then, for every 1 ≤ ` ≤ h, 1 ≤ i ≤ h− `, and ρ
〈`〉
i+2 <

ρ ≤ ρ
〈`〉
i+1, we have that

e〈`〉i (ρ)> e〈`〉i+1(ρ)> · · ·> e〈`〉h−`(ρ),
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and

e〈`〉i (ρ)≥ e〈`〉i−1(ρ)≥ ·· · ≥ e〈`〉0 (ρ),

where we assume ρ
〈1〉
h+1 = 0.

Proof. Consider any i+1≤ j ≤ h− `, and observe that, by definition,

ρ
〈`〉
j+1 = max{ρ ′ ∈DM : e〈`〉j (ρ ′)≥ e〈`〉j−1(ρ

′)},

and, by h-consistency (as j + 1 ≥ i+ 2), ρ
〈`〉
j+1 ≤ ρ

〈`〉
i+2 < ρ . It follows that e〈`〉j (ρ) <

e〈`〉j−1(ρ) for all i+1≤ j ≤ h− `, which implies that

e〈`〉h−`(ρ)< e〈`〉h−`−1(ρ)< · · ·< e〈`〉i (ρ),

proving the first chain of inequalities in the lemma. Now consider any 2≤m≤ i+1, and

observe that, by definition of ρ
〈`〉
m ,

e〈`〉m−1(ρ
〈`〉
m )≥ e〈`〉m−2(ρ

〈`〉
m )

and, by h-consistency (as i+1≥ m), ρ ≤ ρ
〈`〉
m . This implies that e〈`〉m−1(ρ)≥ e〈`〉m−2(ρ) for

all 2≤ m≤ i+1. It follows that

e〈`〉i (ρ)≥ e〈`〉i−1(ρ) . . .≥ e〈`〉0 (ρ),

which proves the second chain of inequalities in the lemma. �

To show that g is a Nash equilibrium, by Lemma 16, it suffices to prove that,

for every node v at level up to h, gv(ρ
v) is the value that maximizes χ

g
v (·;ρv), where

ρv is the split offer v receives from its parent. Let 0 ≤ i ≤ h− 1, and fix a node v at

level ` = h− i. Under g, v receives a ρ
〈`〉
i+1-split from its parent and in turn offers a
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t〈`〉(ρ〈`〉i+1) = ρ
〈`+1〉
i -split to its children. Therefore, it suffices to show that

ρ
〈`+1〉
i = argmax

ρ ′
{χg

v (ρ
′;ρ
〈`〉
i+1)}.

We will in fact prove something stronger, that is, for all ρ ∈DM,

gv(ρ) = t〈`〉(ρ) = argmax
ρ ′
{χg

v (ρ
′;ρ)}. (6.4)

Fix any ρ ∈ DM. A few observations allow to prove condition (6.4) for the

chosen ρ . First, by h-consistency, there exists unique k such that ρ
〈`〉
k+2 < ρ ≤ ρ

〈`〉
k+1, where

we assume ρ
〈`〉
h+1 = 0. Second, by definition of g and χ

g
v (·; ·), node v has an incentive

to play a given ρ ′ ∈ DM only if there is no ρ̂ > ρ ′ such that v’s children would play

exactly the same split contract if either offered a ρ̂-split or a ρ ′-split (otherwise, the

query would propagate the same number of levels down the tree, but with v earning more

if offering a ρ̂-split to its children). This implies that if ρ ′ maximizes χ
g
v (.,ρ), then

ρ ′ = ρ
〈`+1〉
j for some 0≤ j ≤ i (recall that node v is at level h− i). Third, by definition

of g, e〈`〉j (·) and χ
g
v (·; ·), and by Claim 18, we have that χ

g
v (ρ

〈`+1〉
j ;ρ) = e〈`〉j (ρ) for all

0≤ j ≤ h− `. Finally, by Lemma 3, as ρ
〈`〉
k+2 < ρ ≤ ρ

〈`〉
k+1, we have that e〈`〉k (ρ)> e〈`〉j (ρ)

for all k < j < h− ` and e〈`〉k (ρ) ≥ e〈`〉j (ρ) for all 0 ≤ j < k. We have that ρ
〈`+1〉
k is

the only maximizers of χ
g
v (·;ρ) which forwards the query to level h, while any other

maximizer forwards the query to some level `′ < h. Therefore, as we assumed that nodes

break ties preferring to propagate the query further down the tree, ρ
〈`+1〉
k = t〈`〉(ρ) is

the preferred strategy of node v when offered a ρ-split from its parent. Considering all

ρ ∈DM, condition (6.4) follows and the theorem is proven.
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6.7.4 Proof of Theorem 8

Under h-consistency, for all `≤ h, ρ
〈`〉
i is defined and ρ

〈`〉
i < ρ

〈`〉
i−1 for all 2≤ i≤

h− `+1. Ler f be a best-interest Nash equilibrium that is `-tall for some `≤ h. As f is

best-interest, for every node v up to level `,

fv(ρ) = argmax
ρ ′
{χ f

v(ρ
′;ρ)}, ∀ρ ∈DM.

We prove a stronger claim than the one in the theorem, that is, for every node v up to

level `,

fv(ρ) = gv(ρ), ∀ρv ≤ ρ ≤ ρ1, (6.5)

where ρv is the split offered to v by its parent under f, ρ1 = 1− 1/r∗ and g is the

best-interest Nash equilibrium from Definition 13.

We proceed by induction on the levels of the tree, starting from level ` and going

backwards. In particular we prove by induction that (6.5) holds for every node at level

`, for every level `′ ≤ `. Consider any node v at level `. As f is `-tall (i.e., level ` is

f-reachable, while level `+1 is not), node v plays ⊥. Therefore, v’s parent (at level `−1)

has incentive to offer v a ρ1-split (the maximum split such that v has incentive to forward

the answer to its parent). It follows that ρv = ρ1 and fv(ρ1) = ⊥ = gv(ρ1), and (6.5)

holds for level `.

Fix 0 ≤ i < `, and suppose (6.5) holds for every node at level `− i. Let `′ =

`− i−1, and consider any node v at level `′. In the proof of Theorem 7, we showed that,

for every ρ ∈DM and 1≤ j ≤ i,

χ
g
v (ρ

〈`′+1〉
j ;ρ) = e〈`

′〉
j (ρ).

By the inductive hypothesis on level `′+ 1 = `− i and the fact that both f and g are
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best-interest, we have that, for every ρ ∈DM and 1≤ j ≤ i,

χ
f
v(ρ
〈`′+1〉
j ;ρ) = χ

g
v (ρ

〈`′+1〉
j ;ρ).

The last two observations imply that, for every ρ ∈DM and 1≤ j ≤ i,

χ
f
v(ρ
〈`′+1〉
j ;ρ) = e〈`

′〉
j (ρ). (6.6)

Lemma 3, togethet with (6.6), implies that

(i) for every j < i and ρ
〈`′〉
j+2 < ρ ′ ≤ ρ

〈`′〉
j+1, node v has incentive to play ρ

〈`′+1〉
j among

all ρ
〈`′+1〉
i ≤ ρ ≤ ρ1, and

(ii) for ρ ′ = ρ
〈`′〉
i+1, node v has incentive to play ρ

〈`′+1〉
i among all ρ

〈`′+1〉
i ≤ ρ ≤ ρ1.

We need the following technical result in order to proceed with the proof.

Claim 4 Let v be a node at level `′ = `− i−1. Suppose that v receives a ρ ′-split from its

parent, with ρ
〈`′〉
j+2 < ρ ′ ≤ ρ

〈`′〉
j+1 for some j ≤ i, and that v forwards the query exactly to

level ˆ̀≤ `. Moreover, assume that (6.5) holds for every node below v. Then, ˆ̀= `′+ j+1

and fv(ρ
′) = ρ

〈`′+1〉
j .

Proof Let m = ˆ̀− `′ − 1. First we show that fv(ρ
′) ≤ ρ

〈`′+1〉
m , and then we argue

that equality must hold. To show that fv(ρ
′) ≤ ρ

〈`′+1〉
m , suppose by contradiction that

fv(ρ
′) > ρ

〈`′+1〉
m , that is, there exists k < m such that ρ

〈`′+1〉
k+1 < fv(ρ

′) ≤ ρ
〈`′+1〉
k . Then,

the query would only be forwarded to level `′+1+ j < `′+1+m = ˆ̀, as we assumed

that (6.5) holds for all nodes below v. This generates a contradiction, and, therefore, it

must be fv(ρ
′)≤ ρ

〈`′+1〉
m .

We now show that fv(ρ
′) = ρ

〈`′+1〉
m . As fv(ρ

′)≤ ρ
〈`′+1〉
m , we have that

β
f
v(k| fv(ρ

′))≤ β
f
v(k|ρ

〈`′+1〉
m )
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for all 1≤ k ≤ m, with equality if and only if fv(ρ
′) = ρ

〈`′+1〉
m . This yields

χ
f
v( fv(ρ

′);ρ
′)< χ

f
v(ρ
〈`′+1〉
m ;ρ

′)

for fv(ρ
′) < ρ

〈`′+1〉
m , which implies fv(ρ

′) = ρ
〈`′+1〉
m . By (i), it must be m = j, which

gives ˆ̀= `′+m+1 = `′+ j+1. square

We now proceed with the proof. As f is `-tall, fv(ρ
v) must forward the query

exactly to level `. We first show that ρv = ρ
〈`′〉
i+1 and fv(ρ

〈`′〉
i+1) = ρ

〈`′+1〉
i , and then we

show that (6.5) holds for v. Note that the claim above implies that if v receives a ρ ′-

split from its parent with ρ ′ > ρ
〈`′〉
i+1, then fv(ρ

′) does not forward the query to level

exactly `. Therefore, it suffices to show that fv(ρ
〈`′〉
i+1) = ρ

〈`′+1〉
i . Indeed, this would

imply that ρv = ρ
〈`′〉
i+1, as no better (larger) split forwards the query to level exactly `. By

contradiction, suppose v plays fv(ρ
〈`′〉
i+1) = ρ̂ 6= ρ

〈`′+1〉
i . As we are assuming v is offered a

ρ
〈`′〉
i+1-split, and (ii) implies that v prefers to play ρ

〈`′+1〉
i among all ρ > ρ

〈`′+1〉
i , it must

be ρ̂ < ρ
〈`′+1〉
i . Moreover, it must be the case that ρ̂ forwards the query below level `,

otherwise v would prefer to play ρ
〈`′+1〉
i . However, if it was the case, v would prefer

to play ρ̂ over ρ
〈`′+1〉
i when offered any ρ ′-split with ρ ′ < ρ

〈`′〉
i+1. This contradicts the

assumption that f is `-tall, for which there exists ρ ′ = ρv such that fv(ρ
′) forwards the

query exactly to level `.

We showed that ρv = ρ
〈`′〉
i+1 and fv(ρv) = gv(ρv). To complete the inductive step,

we need to prove that fv(ρ
′) = gv(ρ

′) for all ρv ≤ ρ ′ ≤ ρ1. Fix any ρv ≤ ρ ′ ≤ ρ1. We

already proved that fv(ρ
′) does not forward the query exactly to level `. Moreover, fv(ρ

′)

cannot forward the the query below level `′ > `, as otherwise v would prefer this strategy

even when offered a ρv-split. Thus, fv(ρ
′) must forward the query to some level ˆ̀< `,

and Claim 4 concludes the proof.
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6.7.5 Proof of Theorem 9

Suppose condition (6.2) holds, that is,

r∗ ≥ 4 ·h ·max

1, max
1≤`≤h

1≤i<h−`

Γ
〈`〉
i

 .

We show by induction that, if the discretization parameter M is large enough, for all

1≤ `≤ h and 1≤ i≤ h− `+1, ρ
〈`〉
i is defined and satisfies

1− 1
r∗− i

< ρ
〈`〉
i ≤ 1− 1

r∗− i+1
, (6.7)

that is, h-consistency holds.

By definition we have ρ
〈`〉
1 = ρ1 = 1− 1/r∗, for all 1 ≤ ` ≤ h. Therefore (6.7)

holds for all 1≤ `≤ h and i = 1. Fix `≤ h and suppose the claim holds for all `≤ `′ ≤ h

and 1≤ i≤ h− `′. We recall that ρ
〈`−1〉
i+1 is defined as

ρ
〈`−1〉
i+1 = max{ρ ∈DM : e〈`−1〉

i (ρ)≥ e〈`−1〉
i−1 (ρ)},

where

e〈`−1〉
i (ρ) =

i

∑
j=1

γ
〈`−1〉
j

[
(1−ρ)r∗

(
j−1

∏
t=0

ρ
〈(`−1)+t+1〉
i−t

)
−1

]
.

By definition of ρ
〈`−1〉
i+1 , it must be that

1− 1
r∗∆i
− 1

M
≤ ρ

〈`−1〉
i+1 ≤ 1− 1

r∗∆i
,

where

∆i =
i−1

∏
j=0

ρ
〈`+ j〉
i− j −

i−1

∑
j=1

γ
〈`〉
j

γ
〈`〉
i

[
j−1

∏
t=0

ρ
〈`+t〉
i−t−1−

j−1

∏
t=0

ρ
〈`+t〉
i−t

]
,
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and M is the discretization parameter of the domain DM. To see this, compute the

difference e〈`−1〉
i (ρ

〈`−1〉
i+1 )− e〈`−1〉

i−1 (ρ
〈`−1〉
i+1 ), and argue that 1 ≤ (1− ρ

〈`−1〉
i+1 )r∗∆i ≤ 1+

r∗∆i/M.

We find lower and upper bounds to the term between brackets in the expression

for ∆i. First, by the inductive hypothesis, ρ
〈`+t〉
i−t−1 > ρ

〈`+t〉
i−t for all 0 ≤ t ≤ h− ` and

0≤ t ≤ j−1 (with j < i). Therefore, we have

j−1

∏
t=0

ρ
〈`+t〉
i−t−1−

j−1

∏
t=0

ρ
〈`+t〉
i−t > 0.

Also by induction, we have

j−1

∏
t=0

ρ
〈`+t〉
i−t−1−

j−1

∏
t=0

ρ
〈`+t〉
i−t <

j−1

∏
t=0

r∗− i+ t +1
r∗− i+ t +2

−
j−1

∏
t=0

r∗− i+ t−1
r∗− i+ t

=
r∗− i+1

r∗− i+ j+1
− r∗− i−1

r∗− i+ j−1

=
2 j

(r− i+ j+1)(r− i+ j−1)
<

2i
(r∗)2 ,

as j < i in the expression of ∆i. Therefore, again by induction, we have

r∗− i−1
r∗−1

− 2i
(r∗)2 Γ

〈`〉
i < ∆i <

r∗− i
r∗

.

The upper bound on ρ
〈`−1〉
i+1 follows immediately. For the lower bound, it suffices to show

that r∗ ·∆i > (r∗− i−1)(1+ r∗/M). Also, note that this would imply that ∆i > 0, and so

that ρ
〈`−1〉
i+1 is defined. Rearranging the terms, it suffices to show that

2i
r∗(r∗− i−1)

Γ
〈`〉
i <

1
r∗−1

− r∗

M
. (6.8)
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By (6.2), we have that

i≤ r∗

4
min{1,1/Γ

〈`〉
i }−1.

Then, (6.8) holds if
1/2

1− 1
4 min{1,1/Γi}

< 1− (r∗)2

M
,

which is satisfied for M large enough.

6.7.6 Proof of Lemma 19

Recall that, for each i≥ 0 we defined φi as the probability that no node at level

j ≤ i possesses the answer, and λi = φi−1−φi as the probability that a node at level i

possesses the answer while no node at level j < i does. Also, for every 0≤ `≤ h and

0≤ i≤ `, we defined

Γ
〈`〉
i =

∑
i−1
j=1 γ

〈`〉
j

γ
〈`〉
i

,

where γ
〈`〉
i is the probability that, fixed any node v at level `, there is a g-candidate u in

v’s subtree at distance i from v, given that v is active. We recall that a node u at level `′

is a g-candidate if, under strategy g, u is an active answer-holder and there is no active

answer-holder in the first `′−1 levels. Let L j be the event that there is an answer holder

at level j of the tree, and Fj be the event that no event Lk happens for all k ≤ j. Observe

that Pr(L j,Fj−1) = λ j and Pr(Fj) = φ j. Fix a node v at level ` < h. Let Lv
j be the event

that there is an answer holder in v’s subtree at distance j from v, and Fv
j be the event that
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no Lv
k happens for all k ≤ j. Also, let Av be the event that v is active. We have

γ
〈`〉
j = Pr(Lv

j, F̀ + j−1|Av)

= Pr(Lv
j|Av, F̀ + j−1)Pr(F̀ + j−1|Av)

= Pr(L j|Fj−1)Pr(F̀ + j−1|Av)

=
Pr(L j,Fj−1)

Pr(Fj−1)
Pr(F̀ + j−1|Av)

=
Pr(L j,Fj−1)

Pr(Fj−1)

Pr(Av|F̀ + j−1)Pr(F̀ + j−1)

Pr(Av)
,

where the third equality follows by the fact that the branching process is memory-less,

and the last equality follows by Bayes’ rule. Observe that the probability that v is active

only depends on the existence of answer-holders on the path from the root to v or in the

subtree rooted at v. Therefore, letting Pv be the event that there is no answer-holder in

the path from the root to v, we can write

Pr(Av|F̀ + j−1) = Pr(Av|Pv,Fv
j−1)

=
Pr(Fv

j−1|Av,Pv)Pr(Av|Pv)

Pr(Fv
j−1|Pv)

=
Pr(Fj−1)Pr(Av|Pv)

Pr(Fv
j−1|Pv)

,

where the second equality follows by Bayes’ rule, and the third equality by the memory-

less property of the branching factor. It follows that, for all `≤ h and 0≤ j ≤ h− `,

γ
〈`〉
j =

Pr(L j,Fj−1)Pr(F̀ + j−1)Pr(Av|Pv)

Pr(Fv
j−1|Pv)Pr(Av)

.
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Plugging the last expression into the definition of Γ
〈`〉
i , we get

Γ
〈`〉
i =

1
Pr(Li,Fi−1)Pr(F̀ +i−1)

i−1

∑
j=1

Pr(L j,Fj−1)Pr(F̀ + j−1)
Pr(Fv

i−1|Pv)

Pr(Fv
j−1|Pv)

=
1

λiφ`+i−1

i−1

∑
j=1

λ jφ`+ j−1
Pr(Fv

i−1|Pv)

Pr(Fv
j−1|Pv)

.

As Pr(Fv
i−1|Pv)≤ Pr(Fv

j−1|Pv) for j ≤ i, and φ`+ j−1 ≤ 1, we have that

Γ
〈`〉
i ≤

1
λiφ`+i−1

i−1

∑
j=1

λ j <
1

φ`+i−1

1−φi−1

λi
.

6.7.7 Proof of Lemma 20

For all i≥ 0, let φ̂i = φi/p be the probability that for all levels up to i no node has

the answer given that the root (at level zero) does not. Observe that no node up to level

i+1 has the answer given that the root does not if and only if the root’s children and their

subtrees up to depth i do not have the answer. Therefore, we have that φ̂i+1 = Ψ(p · φ̂i),

where Ψ(x), 0≤ x≤ 1 is the probability generating function of the branching process. It

follows that

λi+1 = φi−φi+1 = φi p · φ̂i+1 = φi− p ·
d

∑
k=0

ckφ̂
k
i pk

= φi− p
d

∑
k=0

ckφ
k
i > φi−

d

∑
k=0

ckφ
k
i = φi−Ψ(φi). (6.9)

For 0 < ε ≤ 1−ζ and 0≤ z < 1−ζ , let

a(ε) = max
{

1
b−1

,
1
ε

1
1−Ψ′(ζ )

}
,
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and

t(z,ε) = a(ε) · (1− z−Ψ(1− z))− z.

We need to show that, for any 0 < ε ≤ 1−ζ ,

1−φi

λi+1
≤ a(ε).

Observe that, by inequality (6.9),

1−φi

λi+1
≤ 1−φi

φi−Ψ(φi)

and therefore it suffices to prove that, for every ε > 0,

t(1−φi,ε) = a(ε)(φi−Ψ(φi))− (1−φi)≥ 0.

First, observe that, for every ε > 0, we have t(0,ε) = 0, since Ψ(1) = 1 (see [18]). Also

note that
∂

∂ z
t(z,ε)

∣∣∣∣
z=0

= a(ε) ·
(
Ψ
′(1)−1

)
−1 = a(ε) · (b−1)−1,

which is non-negative since a(ε) ≥ 1/(b− 1). Also, observe that ∂ 2

∂ z2 t(z,ε) < 0 and

∂

∂ε
t(z,ε)> 0, for all z and ε in their respective domains. Therefore, since the function

t(z,ε) is continuous, it suffices to check that limε→0 t(1−ζ − ε,ε)≥ 0. As (1−b)−1 ≤

ε−1(1−Ψ′(ζ ))−1 for ε small enough, we have that

lim
ε→0

t(1−ζ − ε,ε)> lim
ε→0

[
1

1−Ψ′(ζ )

1
ε
(ζ + ε−Ψ(ζ + ε))

]
−1.

Since ζ = Ψ(ζ ), by l’Hôpital’s rule, we conclude that limε→0 t(1−ζ − ε,ε)> 0.
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6.7.8 Non-uniqueness of the Nash equilibrium

In this section, we discuss the existence of multiple Nash equilibria both in the

game with fixed-payment contract of [129, 15] and in the game with split contracts

presented in this work.

First we recall the setting of [129, 15]. Each node has an integer-valued function

fv; if v is offered a reward of r ≥ 1 by its parent, and v does not possess the answer to

the query, then v offers in turn a reward of fv(r)< r to its children. Also, by definition,

fv(1) = 0. Kleinberg and Raghavan [129] show that a set of strategies f is a Nash

equilibrium if and only if, for every node v, fv(rv) is the value x maximizing the function

hv(x;rv) = (rv− x−1)pv(f,x).

Here rv is the reward offered to v by its parent under f, and pv(f,x) is the probability that

the subtree below v yields the answer, given that v does not possess the answer and offers

reward x to its children. This characterization of the Nash equilibria for the game with

fixed-payment contract is analogous to our result of Lemma 16 for split contracts, where

the optimization is with respect to the function χ f
v(·,ρv).

Using the functions hv(x;rv), it is possible to construct a set of strategies gfixed

which optimizes hv(x;rv) for every node v and is therefore a Nash equilibrium of the

game with fixed-payment contracts. Theorem 2.2 in [129] claims that gfixed is the unique

equilibrium, in the sense that any other Nash equilibrium f in which fv(2) = 1 is such that

for all nodes v and rewards r that are reachable at v with respect to f , fv(r) = gfixed
v (r).

Note that this claim would imply that all equilibria have the same efficiency, in that the

query is forwarded to the same levels in every equilibrium.

Unfortunately, this claim can be showed to hold true only when restricted to

best-interest equilibria (as in our setting, see Theorem 8), that is, when considering only
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equilibria where fv(r′) is the value x maximizing hv(x;r′), for every r′. Note that in a

best-interest equilibrium, nodes choose their strategies to optimize their payoff for any

possible offer they may receive. This suggests that equilibria that are not best-interest are

somewhat pathological, as contain nodes who do not consider their payoff globally. It is

possible to show that both games admit (non-best-interest) equilibria that can be very

inefficient in the sense that the query is only forwarded to a constant number of levels

in the tree no matter how large the available investment r∗ is. We present one of these

equilibria for the case of fixed-payment contracts (the case with split contracts is similar).

Consider the set of strategies f in which all nodes at level 1 play f1(r), all nodes at level

2 play f2(r), and all nodes below play f3(r) (recall that the root is at level zero). For a

parameter r′ ≥ 4, the functions are defined as follows.

f1(r) =



0, if r = 1

1, if r = 2

2, if r ≥ 3 and (r− r′−1)(λ1 +λ2 +λ3)< (r−2−1)(λ1 +λ2)

r′, if r ≥ 3 and (r− r′−1)(λ1 +λ2 +λ3)≥ (r−2−1)(λ1 +λ2)

f2(r) =


0, if r = 1

1, if 2≤ r < r′

2, if r ≥ r′

f3(r) =

 0, if r = 1

1, if r ≥ 2

It can be verified that f is a Nash equilibrium, which thus forwards the query to level

at most 3, regardless of the reward r∗ offered by the root to the nodes at level 1. The

bottleneck in the equilibrium is created by the nodes at level 3 or more, who cannot

forward the query more than a single level as they never offer their children more than 1;
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in light of this, the nodes at level 2 are not going to offer their children more than 2 (and

they do so when receiving at least r′), and in turn the nodes at level 1 do not offer more

than r′. This causes the query not to be forwarded efficiently. This phenomenon cannot

happen in a best-interest equilibrium as, roughly speaking, the nodes at level 3 (or more)

would consider the scenario in which they get offered an amount larger than 2 and realize

that it is more convenient to offer their children an amount larger than 1 (assuming the

nodes below reason similarly), therefore forwarding the query deeper down the tree.
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Chapter 7

Matching markets with bundle dis-
counts: computing efficient, stable and
fair solutions

7.1 Introduction

We model a market in which vendors offer items of different types, and each

buyer is interested in purchasing a unit of each type, possibly from different vendors.

Vendors are nonstrategic. Supplies are unlimited and each vendor has a fixed price

for each item. Moreover, each vendor has a discount schedule according to which the

bundle of all items is offered at discounted price if her demands exceed given thresholds.

This can be seen as an incentive to loyal customers who buy from a single vendor who

can sustain lower sale prices only in an economy of scale. Buyers play strategically and

each selfishly tries to maximize her utility, given by the difference between the perceived

value of the products and the price paid. In order to maximize their utility, buyers might

be willing to cooperate to induce vendors to activate their bundle discounts. Buyers who

do not purchase any bundle (i.e., who buy from several vendors) also contribute to the

activation of discounts by increasing the total demands.

The externalities present in this scenario (for which a buyer’s utility depends on

the choices of others) make the core of the game empty in general [167]. That is, given a

208
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market, there might not exist a configuration such that no coalition of buyers can increase

their total utility by defecting. Therefore, we consider a notion of stability that looks at

deviations by single buyers rather than by coalitions of buyers. Despite it is certainly

a weak notion of stability in this multi-player setup, it is suitable to model a scenario

where communication and coordination between buyers is mediated by a central entity

(e.g., consider an online setting in which buyers might only be able to set reserve prices).

We consider the case of transferable utility, in which utility can be transferred

between buyers in the form of side-payments, to induce cooperation. To illustrate the

potential benefit of side-payments, consider a buyer who desires the bundle from a certain

vendor at a discounted price. In order to trigger the discount, she might be willing to

pay a subsidy to other buyers to induce them to purchase from the same vendor (as they

would otherwise switch to other vendors). Given a market configuration, or matching, we

ask whether there exist transfers that stabilize it (i.e., side-payments such that no buyer

wants to deviate).

Our pricing model combines ideas from auctions with reserve prices, typical of

on-line shopping websites such as Ebay (where a buyer specifies the maximum amount

she is willing to pay for a product), and “deal-of-the-day” on-line purchasing, made

popular by Groupon and Living Social (which offer discounted gift certificates that

become valid if enough people sign up to the deal). In particular, it could model an on-

line market in which buyers indicate reserve prices for products from different vendors,

who in turn offer discounts if enough people sign up. In the context of our model, reserve

prices might represent buyers’ valuations, each buyer prefers the pair of products with

the higher difference between her reserve price and the selling price, and buyers might

be willing to pay prices that are slightly different between each other in order to trigger

deals. Even if the selling price of a product is higher than her reserve price, a buyer

might be willing to purchase it if somebody else bears part of her cost. Similarly, if a
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buyer’s reserve price for a product choice is high enough with respect to a discounted

price, then she might be willing to pay a price higher than the selling price to decrease

the effective price of other buyers and induce them to buy – contributing to the activation

of the discount. In such a scenario, a stable assignment of buyers to vendors must be

computed in a centralized fashion.

Given a matching that maximizes social welfare, it is easy to prove the existence

of transfers that stabilize it. However, arbitrary transfers might be undesirable for buyers,

and we look for transfers that enjoy additional properties of rationality and fairness.

Rationality dictates that buyers who benefit from bundle discounts are the only who pay

transfers, and each only subsidizes buyers who purchase (at least one item) from her

same vendor (as they might be necessary to trigger the discount). This is motivated by the

willingness of each buyer to subsidize only buyers she benefits from. Fairness dictates that

buyers pay transfers that are proportional to their surplus, that is, the difference between

her current utility and the utility of their best alternative. In order to motivate this notion

of fairness, observe that it might be undesirable for a buyer to pay a disproportionately

large amount of the transfer needed by the buyers she benefits from if there are other

buyers willing to contribute to the payment (although, from the strict point of view

of stability, a buyer might be willing to transfer an amount up to her entire surplus,

independently of the transfers paid by others).

Summary of results Our results show that if cooperation is allowed then social ef-

ficiency and stability can coexists in a market presenting complex externalities, and

determining the right amount of cooperation is computationally tractable.

In Section 7.3, we show that, given any matching that maximizes the social

welfare (or SWM matching), there exist rational transfers that stabilize it (Theorem 11 in

Section 7.3). This means that efficient matchings are also stable up to suitable transfers
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(the price of stability is one, a property that is not always observed in games [108, 188]).

To prove this, we partition buyers according to their choices and surplus: on the one side,

groups of “rich” buyers getting the same discounted bundle and with a positive surplus

(i.e., willing to pay transfers); on the other side, groups of “poor” buyers with the same

product choice and negative surplus (i.e., in need of subsidy). Then, we show that there

are “rational” transfers between groups of buyers such that: each rich group subsidize

poor groups with at least one vendor in common; each rich group transfer at most their

available surplus; and each poor group receive the necessary subsidy. Group transfers

can be translated into rational and stabilizing transfers. This existence result constitutes

the main contribution of this work, and its proof is based on the construction of a graph

which encodes the transfers between groups of buyers and has no edges if and only if the

transfers are rational.

In Section 7.4, we show how transfers that are rational and fair and stabilize

the market can be efficiently computed given a SWM matching. First, group transfers

are computed via the Ford-Fulkerson algorithm for the maximum flow on a network

such that rational group transfers and feasible flows are in one-to-one correspondence

(Section 7.4.1). Then, rational and fair transfers who stabilize the SWM matching are

computed (Section 7.4.2). For a market with N buyers, M vendors and c product types,

group transfers are computed in time O(McT ),1 where T is the total subsidy needed. If

prices and buyers’ valuations do not depend on N and M, this is O(NMc). Transfers

between buyers are computed in additional O(N2 +NMc−1), for a cumulative time of

O(N2 +NMc). If the the number of vendors is constant (or grows as Mc = O(N)) then

the overall complexity is dominated by the N2 term.

1Consider two functions f (x) and g(x) of a vector x = (x1, . . . ,xn). We say that f (x) = O(g(x))
if there exist constants C,M such that f (x) ≤ Cg(x) for all x such that min1≤i≤n xi ≥ M. We say that
f (x) = Ω(g(x)) if there exist constants C,M such that f (x)≥Cg(x) for all x such that min1≤i≤n xi ≥M.
We say that f (x) = Θ(g(x)) if both f (x) = O(g(x)) and f (x) = Ω(g(x)).



212

Section 7.5 deals with the computation of SWM matchings. A natural approach

consists in a mixed integer program, see [185], requiring time exponential in N and M,

and whose relaxation is not guaranteed to have integral solutions (i.e., corresponding to

valid matchings). Conditional on the number of buyers assigned to each pair of vendors,

we compute a SWM matching in time Θ(N2Mc) via the Ford-Fulkerson algorithm for

the maximum flow with minimum cost on a network such that maximum flows and

feasible matchings are in one-to-one correspondence. Computing a SWM matching

requires to consider a number of cases of the order of NMc
, and this term dominates the

computational complexity. Getting rid of the exponential dependency on M does not

seem possible, due to the theoretical hardness of the problem. However, the overall time

complexity is polynomial in N, and usually M can be assumed much smaller than N or

even constant.

We conclude with a discussion in Section 7.6.

Related work Matching models have always received considerable attention by com-

puter scientists [185, 175, 107, 117] and economists [186, 78, 184, 98, 97, 17], as they

constitute the abstraction of many real world strategic scenarios in which choice requires

mutual agreement. Examples are retail markets, the labor market, college admissions,

and the assignment of residents to hospitals. When externalities are present in the market,

stability often becomes problematic [98, 191]. In our model, the externalities are the

numbers of buyers purchasing each product from each vendor, as they determine who

benefits from discounts.

Online retailing has seen a continuous growth during the last two decades [137],

and recently “deal of the day” websites such as Groupon and Living Social have intro-

duced a new form of buying, in which enough buyers must sign up for a deal to be valid.

An overview of the literature on group-buying in the web is given by [7] and by [119].
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Due to the interdependencies between buyers’ choices and utility, the core of the market

is nonempty only under specific assumptions about preferences or discounts [100, 47].

This paper is also related to and motivated by [149], that considers a more basic

model with a single product on the market and where each vendor activates multiple

discounts at increasing demand volumes. The novelty of our contribution with respect

to [149] is twofold. On the one hand, we extend their model to the more general case of

multiple products on the market and to the possibility for vendors to activate discount on

bundles of items rather then single items. As discounts can be triggered by buyers who

do not necessarily benefit from them, proving the existence of (rational) transfers that

stabilize the market is nontrivial and necessitates an inductive argument on the market

size (see Section 7.3). We remark that our model, results and algorithms can be extended

to the case of more than two products on the market and of more complex discount

schedules (see Section 7.6), therefore including [149] as a special case. On the other

hand, we also consider the computational side of stability, by proposing a simple and

efficient algorithm to compute transfers that stabilize the market and enjoy desirable

properties of rationality and fairness.

7.2 The model

We consider a market M consisting in a set of N buyers B and a set of M vendors

S . Each vendor sells items (or products) of c types denoted by 1, . . . ,c, and we assume

supplies are unlimited. Let C = {1, . . . ,c}. Each buyer is willing to purchase a single

unit of each item type, possibly from two or more different vendors2. As a remark, a

vendor s⊥ ∈S , called the null vendor, might represent the choice not to buy (i.e., buyer

b choosing item k from s⊥ means that b does not buy item k). In what follows, prices,

2We do not make any assumption about the nature of the products, which are not assumed to be
complements or substitutes. We only assume that buyers assign zero or negative valuation to sets of
products involving multiple units of any single item.
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discounts and valuations corresponding to such vendor s⊥ will be pointed out. Let S c

denote the cartesian product of c copies of S .

A matching is a set of tuples µ ⊂B×S c such that each b∈B appears in exactly

a single tuple. A matching represents buyers’ choices and, for s̄ = (s1,s2, . . . ,sc) ∈S c,

(b, s̄) ∈ µ denotes that b ∈B purchases item k from vendor sk for k = 1, . . . ,c. We write

µ(b) = s̄, and µk(b) = sk for k ∈C.

Given a matching µ , for each s̄ ∈S c, let µ̂(s̄) = {b ∈B : µ(b) = s̄} be the set

of buyers who purchase item k from vendor sk for all k ∈C, and let n(s̄) = |µ̂(s̄)| be its

cardinality. Given a matching µ , for each s∈S and k ∈C, let µ̂k(s) = {b∈B : µk(b) =

s} be the set of buyers who purchase item k from vendor s and nk(s) = |µ̂A(s)|. We refer

to n(s) = (n1(s), . . . ,nc(s)) ∈ Nc as the demand vector of vendor s (where N is the set of

nonnegative integers).

Prices Vendors are nonstrategic. The prices offered by a vendor are determined by her

demand vector, according to a price schedule defined as follows. Each vendor s ∈S has

a base price pk
s for each item k ∈C (we let pk

s⊥ = 0 for the null vendor s⊥). Moreover,

s activates discounted prices on the bundle of all items C when certain thresholds are

met, as we explain next. Let p(0)s = ∑k∈C pk
s the base price of all items offered by s. We

assume that s has h vectors τi(s) = (τ1
i (s), . . . ,τ

c
i (s)) for i = 1 . . .h, called the demand

thresholds vectors of s, such that τk
i+1(s)≥ τk

i (s) and ∑k∈C τk
i+1(s)> ∑k∈C τk

i (s) for all

k ∈C and i = 0 . . .h− 1.3 Let τ0(s) = (0, . . . ,0). Let τ1(s⊥) = (∞, . . . ,∞) for the null

vendor s⊥. We also assume that s has h prices p(i)s for i = 1 . . .h such that p(i+1)
s < p(i)s

for all i = 0 . . .h−1.

Given a matching µ , with corresponding demand vector n(s) = (n1(s), . . . ,nc(s))

3The constraints on the demand thresholds can be written as τk
i+1(s)≥ τk

i (s) for all k ∈C and τk
i+1(s)>

τk
i (s) for some k ∈C.
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for vendor s, s offers the bundle of all items C at a cumulative price p(i
∗)

s where

i∗ = max
0≤i≤h

{i : nk(s)≥ τ
k
i (s),∀k ∈C}.

That is, s offers the bundle of all products at the price corresponding to the largest demand

threshold vector that is met component-wise.

If s activates one of her discounts, then a buyer b such that µk(b) = s for all k ∈C

(i.e., b buys all items from s) pays a price p(i
∗)

s instead of p(0)s .

Let

T (µ) = {s ∈S : ∃i > 0 s.t. nk(s)≥ τ
k
i (s),∀k ∈C} ⊆S

be the set of vendors who activate a discount under the matching µ .

Utility Each buyer b ∈B has a valuation for each possible product choice s̄ ∈S c. The

valuation vb of buyer b∈B is a mapping from S c to R+, such that, for s̄ = (s1, . . . ,sc)∈

S c, vb(s̄) is the valuation b assigns to purchasing product k from vendor sk for each

k ∈C. For each b ∈B, let vb(s̄) = 0 for s̄ = (s⊥, . . . ,s⊥) (i.e., the choice not to buy any

item has zero valuation).

Given a matching µ , each b ∈B has quasi-linear utility function given by

ub(µ) = vb(µ(b))− pb(µ),

where pb(µ) is the price paid by b under the matching µ . Given a matching µ , the price

pb(µ) is computed as follows. If µk(b) = s for some s ∈ T (µ) and all k ∈ C then b

pays the price p(i
∗)

s corresponding to the largest threshold that is met. Otherwise b pays

∑k∈C pµk(b)
s , that is, the sum of the base price for each single item.
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Buyers play strategically, and each tries to maximize her utility. The social

welfare SW (µ) of a matching µ is the sum of all buyers’ utilities.

SW (µ) = ∑
b∈S

ub(µ).

Definition 14 Matching µ is social welfare maximizing (SWM) if SW (µ)≥ SW (µ ′) for

every matching µ ′.

Transferable utility We consider markets with transferable utility. That is, utility can

be transferred between buyers in the form of side-payments, made in order to induce

cooperation. To illustrate the potential benefit of side-payments, consider a scenario in

which the best option for buyer b is to buy all items from vendor s at a discounted price.

In order to purchase the desired products at a low price, b might be willing to bear some

of the cost incurred by other users purchasing one or multiple items from s, which would

otherwise choose other vendors.

For each b,b′ ∈B, let tb→b′ ≥ 0 denote the transfer from b to b′. Let t denote

the vector of transfers between all pairs of buyers. Given matching µ and transfer

vector t, let (µ, t) be the market configuration in which buyers choose items according

to µ and transfers t are exchanged. The utility of b ∈ B under (µ, t) is given by

ub(µ, t) = ub(µ)+∑b′∈B(tb′→b + tb→b′), where the sum is the net amount of transfer

received by b. Under the assumption of transferable utility, given a matching µ , we ask

whether there exist transfers t such that (µ, t) is stable, according to a suitable notion of

stability.

As a remark, transfers are not equivalent to buyers becoming intermediaries. In

fact, a buyer might in general subsidize only a fraction of the transfer needed by another

buyer, and a buyer might receive transfer from multiple other buyers.
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Stability The strongest notion of stability for a market configuration is to exhibit the

core property [167]. A matching-transfer pair (µ, t), has the core property if no coalition

of buyers can increase their total utility by deviating from µ . Maximizing the social

welfare is necessary condition for the core property (otherwise all buyers can increase

their social welfare by deviating to a SWM matching). However, the core of a market

M (the set of matching-transfer pairs with the core property) can be empty (refer to the

example in Section 7.7). We therefore turn our attention to a notion of stability which

looks at deviations by single users rather than groups of users Given a matching-transfer

pair (µ, t), there are two ways a buyer b can deviate from it. First, b might deviate by

changing her product choice (resulting in a matching µ ′ such that µ ′(b) 6= µ(b) and

µ ′(b′) = µ(b′) for each b′ 6= b). In this case b’s utility would be given by the difference

between her valuation of the newly chosen product pair and the price paid. We assume

that, after defection, b will not be involved in any transfer (as this would not constitute

an unilateral action by b), and that she cannot enjoy any discount (as other buyers might

not allow b to enjoy discounts without paying transfers). Therefore, we assume that after

deviation, b pays the base prices of the chosen products. Second, b might deviate by

dropping her transfers in full or in part. A buyer b who enjoys a discount from s ∈T (µ)

can benefit from other buyers purchasing from vendor s as they can trigger a lower price

for b. In this case, b’s payoff after defection assumes that buyers loose incentive to buy

from vendor in s, resulting in a price increase. That is, we assume that b dropping her

transfers results in the deviation by both subsidized and non-subsidized buyers purchasing

from s. This assumption does not affect the validity of our results, as we will look at

stabilizing SWM matchings: any SWM matching minimizes the number of buyers that

need to be subsidized in order to trigger a given price, and the deviation of each of these

buyers would result in a price increase. Letting µ and µ ′ be respectively the matching

before and after defection by b, we have that ub(µ
′) = vb(µ

′(b))−∑k∈C pk
µ ′k(b), in both
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cases of µ ′(b) 6= µ(b) and µ ′(b) = µ(b). The following definition formalizes the notion

of stability just presented.

Definition 15 A matching-transfer pair (µ, t) is stable if no buyer can unilaterally and

profitably deviate from it. That is, for all b ∈B, ub(µ)+∑b′∈B(tb′→b + tb→b′)≥ ub(µ
′)

for each µ ′ such that µ ′(b′) = µ(b′) for each b′ 6= b.

Given a matching µ , let u∗b(µ) be the maximum utility b can achieve by deviating

from µ , and let σb(µ) = ub(µ)−u∗b(µ) be the surplus of b under µ . If σb(µ)< 0 then b

needs to receive a positive transfer in order not to deviate from µ(b) to her best alternative.

If σb(µ)> 0 then b might be willing to pay a subsidy to certain buyers to induce them

not to deviate from µ .

Definition 16 Given a market M and a matching µ , a transfer vector t is stabilizing if

the matching-transfer pair (µ, t) is stable.

Given a SWM matching µ , the existence of a stabilizing transfer is trivial to prove.

Observation 1 For any market M and any SWM matching µ , there exist stabilizing

transfers t.

We prove Observation 1 by contradiction. Let x = ∑b:σb(µ)>0 σb(µ) be the total transfer

available under µ , and let y = ∑b:σb(µ)<0−σb(µ) be the total transfer needed. Assume

there are no stabilizing transfers, that is, x < y. A matching in which each b such that

σb(µ)< 0 switches to her best alternatives has utility at least SW (µ)+ y− x > SW (µ),

generating a contradiction. Observe that, maximizing the social welfare is sufficient but

not necessary for the existence of stabilizing transfers (see counterexample in Section 7.8).

Rational and fair transfers We are not interested in arbitrary transfers, as they could

be undesirable for certain buyers. Observe that not all buyers are willing to pay transfers.
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Under a matching µ , a buyer b is willing to pay transfers to other buyers only if the price

paid by b under µ is strictly smaller than the sum of the base prices of the chosen items

(i.e., b buys all products from a single s ∈T (µ)) and b has positive surplus.

Consider buyers b and b′ such that b buys all products from a single s ∈T (µ),

σb(µ)> 0 and σb′(µ)< 0. If s /∈ µ(b′) = /0 then b is not willing to pay any transfer to b′

as her choice does not affect the price pb(µ). If s ∈ µ(b′) 6= /0 then b is willing to pay a

transfer transfer to buyer b′. In particular, b is willing to pay a cumulative transfer of at

most σb(µ) to all such buyers b′. The reason is that these buyers might be necessary to

trigger the discount b currently benefits of, and they might defect if they do not receive

any transfer. Moreover, if two buyers purchase the same items from the same vendors and

have the same surplus, it would be undesirable for one of them to pay a higher transfer

than the other. We consider the following definitions of rationality and fairness.

Definition 17 A transfer vector t is rational if, for all b,b′ ∈B, tb→b′ > 0 only if σb(µ)>

0, σb′(µ)< 0, µk(b) = s for all k ∈C and s ∈ µ(b′) for some s ∈T (µ).

Definition 18 A rational transfer vector t is fair if for each b,b′ ∈B such that µ(b) =

µ(b′), σb(µ) > 0 and σb′(µ) > 0, the transfers paid by b and b′ are proportional to

σb(µ) and σ ′b(µ).

7.3 Existence of rational and stabilizing transfers

Our main result states that, maximizing the social welfare is sufficient condition

for the existence of rational and stabilizing transfers.

Theorem 11 For any market M and SWM matching µ , there exist rational and stabiliz-

ing transfers.
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For each s ∈T (µ), let

P(s) =
{

b ∈B : µ
k(b) = s ∀k ∈C,σb(µ)> 0

}

be the set of buyers who purchase all items from vendor s (at a discounted price) and

have positive surplus. For s /∈ T (µ) let P(s) = /0. Each b ∈P(s) is willing to pay

transfers up to σb(µ) to buyers who have negative surplus and purchase at least a product

k ∈C from s, for a total of

P(s) = ∑
b∈P(s)

σb(µ).

For s /∈T (µ), let P(s) = 0.

For each subset of vendors x⊆S , let

N (x) =
{

b ∈B : µ
k(b) ∈ x} ∀k ∈C,σb(µ)< 0

}

be the set of buyers who purchase items from all and only the vendors in x and have

negative surplus. Observe that N (x) = /0 for all |x| > c, so we will implicitly assume

|x| ≤ c. In order not to deviate from µ by switching to her best alternative, each b∈N (x)

must receive a transfer of −σb(µ), for a total of

N(x) =− ∑
b∈N (x)

σb(µ).

According to Definition 17, given rational transfers t, if b ∈P(s) and b′ ∈N (x)

for some x⊆S such that s /∈ x then tb→b′ = 0.

As a remark, given a SWM matching µ , if s /∈ T (µ) for all s ∈ x ⊆ S then

N (x) = /0, otherwise, a matching with higher social welfare is obtained if buyers N (x)
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switch to their best alternatives.4

Group transfers In the proof of Theorem 11, we will consider transfers between

groups of buyers rather than transfers between single buyers. This is enough as transfers

between single buyers can be computed from group transfers in arbitrary ways (we

provide a computationally efficient way which also guarantees fairness in Section 7.4.2).

In particular, for s ∈S and x⊆S , let

t̄s→x = ∑
b∈P(s)

∑
b′∈N (x)

tb→b′

be the total transfer from buyers P(s) to buyers N ({s}). If transfers t are rational

then t̄s→x = 0 whenever s /∈ x (and the group transfers are said to be rational). To prove

Theorem 11, we need to show that there exist group transfers t̄ such that


P(s)≥ ∑x:s∈x t̄s→x ∀s ∈S

N(x) = ∑s∈x t̄s→x ∀x⊆S

t̄s→x = 0 s /∈ x.

(7.1)

The first two constraints require that the matching µ can be stabilized by group transfers

t̄, while the third constraint requires t̄ to be rational. Group transfers t̄ satisfying (7.1) are

said rational and stabilizing. We consider the following definition of cross-transfer.

Definition 19 For s ∈S and x⊆S , group transfers t̄s→x is a cross-transfer if s /∈ x.

Group transfer t̄ are rational if all cross-transfers are zero. Transfers t (between buyers)

are rational if and only if all cross-transfers (between groups) are zero.

4In particular, if s /∈ T (µ), then N ({s}) = /0. Buyers N ({s}) are the ones who purchase all items
from s and have negative surplus. When we restrict our attention to rational transfers, buyers N ({s}) can
only receive transfer from buyers P(s).
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Group transfers t̄ and t̄ ′ are equivalent if buyers P(s) pay the same transfer and

buyers N (x) receive the same transfer under t̄ and t̄ ′.

Definition 20 Group transfers t̄ and t̄ ′ are equivalent if

 ∑x⊆S t̄s→x = ∑x⊆S t̄ ′s→x ∀s ∈S

∑s∈S t̄s→x=∑s∈S t̄ ′s→x ∀x⊆S .

Proof of Theorem 11 We assume µ is a SWM matching. We proceed by contradiction,

making the following assumption.

Assumption 2 There are no stabilizing and rational group transfers t̄. That is, for any

stabilizing group transfer t̄, there are no equivalent and rational group transfers t̄ ′.

Given a SWM matching µ and stabilizing group transfers t̄, we construct a graph G(t̄)

(called the cross-transfer graph) which encodes all cross-transfers in t̄ and has no edges if

and only if group transfers t̄ are rational. We then show that, given group transfers t̄, there

exist equivalent group transfers t̄ ′ such that the corresponding graph G(t̄ ′) is directed

and acyclic. Assumption 2 implies that any such G(t̄ ′) has edges, and we complete the

proof by showing that a matching µ ′ with SW (µ ′)> SW (µ) can be obtained, generating

a contradiction with the assumption that µ is a SWM matching.

Definition 21 Given group transfers t̄, the cross-transfer graph G(t̄) is the directed

graph with node set equal to S , and directed edge (s,s′) if and only if there exist x⊆ S

such that s /∈ x,s′ ∈ x, t̄s→x > 0.

In words, in G(t̄) there is an edge from s ∈S to s′ ∈S if buyers P(s) pay a

cross-transfer to buyers N (x) for some x ⊆S such that s /∈ x,s′ ∈ x. An example of

cross-transfer graph is given in FIgure 7.1.
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Figure 7.1. Example of cross-transfer graph. Let that S = {s1,s2,s3,s4}, and that
the only nonzero cross-transfers are t̄s1→x′ > 0 for x′ = {s3,s4} and t̄s2→x′ > 0 for x′′ =
{s4}. According to Definition 21, G(t̄) has nodes {s1,s2,s3,s4} and directed edges
{(s1,s4),(s1,s4),(s2,s4)}.

The following results state that rational group transfers correspond to cross-

transfer graphs with no edges, and that we can restrict our attention to directed acyclic

graphs.

Lemma 21 Group transfers t̄ are rational if and only if G(t̄) has no edge.

Lemma 22 Given group transfers t̄, there exist equivalent group transfers t̄ ′ such that

the corresponding cross-transfer graph G(t̄ ′) is acyclic.

The proof of Lemma 21 follows by the definition of cross-transfer graph and is therefore

omitted. The proof of Lemma 22 is given in Section 7.9.

Without loss of generality, consider stabilizing group transfers t̄ and assume

that G(t̄) is a directed acyclic graph. By Assumption 2, there are no equivalent group

transfers t̄ ′ such that G(t̄ ′) has no edge. A vendor s ∈S is called a source node if there

is no edge (s′,s) in G(t̄ ′), and an internal node otherwise. Let S SRC ⊆S be the set of

vendors corresponding to source nodes in G(t̄ ′). Let S IN ⊆S be the set of vendors

corresponding to internal nodes in G(t̄ ′). Let

N IN =
⋃
{N (x) s.t. x⊆S IN}
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be the set of buyers who purchase products only from vendors S IN (and possibly some

product from the null vendor s⊥) and have negative surplus. By Lemma 22, we can

assume without loss of generality that all buyers who receive transfer purchase products

only from vendors S IN . Let

P IN =
⋃
{P(s) s.t. s ∈S IN}

be the set of buyers who buy all items C from a single vendor in S IN and have positive

surplus. Similarly, let

PSRC =
⋃
{P(s) s.t. s ∈S SRC}.

According to G(t̄ ′), buyers P IN are not able to pay the total amount of transfer needed

by buyers N IN , and additional transfer from PSRC is needed (observe that the latter

buyers get no benefit from the product choice of buyers N IN). Under Assumption 2,

letting

X = ∑
b∈P IN

σb(µ) and Y =− ∑
b∈N IN

σb(µ),

be the amounts of transfer made available by P IN and needed by N IN respectively, we

have that X < Y . Consider the matching µ ′ in which all buyers N IN and P IN deviate

to their best alternatives5. Buyers N IN incur a cumulative gain of at least Y (the gain

would be strictly greater than Y if some new threshold is activated for these buyers, after

deviation6). Buyers P IN can either gain or loose utility after deviation, but each cannot

5Matching µ ′ is the results of a deviation from µ by multiple buyers. We do not directly use this
deviation to proof the stability of a matching-transfer pair (whose definition looks at unilateral deviations).
We use µ ′ to derive a contradiction on the assumption that µ is a SWM matching.

6Even if for the sake of stability buyers cannot enjoy discounts after deviation, here we consider that
discount thresholds might be triggered as we are interested in computing the social welfare of µ ′.
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incur a loss larger than σb(µ), resulting in an upper bound of X on the cumulative loss.7

Buyers PSRC cannot loose utility, as no buyer deviates from sellers S SRC as we consider

deviations by buyers N IN . All remaining buyers are the ones in N (x) for x⊆S such

that x∩S SRC 6= /0 (i.e., buyers with negative surplus who do not buy all items from

S IN) and all buyers with nonnegative surplus who are not enjoying any discount. Since

these buyers do not enjoy the discounts by vendors S IN , they cannot loose utility in

µ ′ with respect to µ . We have that SW (µ ′) ≥ SW (µ)+Y −X > SW (µ), generating a

contradiction with the assumption that µ is a SWM matching.

7.4 Computation of fair transfers

Given a market M and a SWM matching µ , Theorem 11 guarantees the existence

of rational and stabilizing transfers. In this section we present an efficient procedure to

compute rational and stabilizing transfers that are also fair according to Definition 18.

Recall that N, M and c are the numbers of buyers, sellers and product types, respectively.

We assume that a SWM matching µ is given, and we proceed as follows. In Section 7.4.1

we show how to compute rational and stabilizing group transfers t̄s→x from P(s) to

N (x) for all s ∈S , x⊆S (|x| ≤ c), via the max-flow Ford-Fulkerson algorithm on a

flow network such that feasible flows are in one-to-one correspondence with rational

group transfers. Let T = ∑x N(x) be the total transfer needed by buyers with negative

surplus (that is, all b such that σb(µ)< 0) and who are not purchasing both items from

the same vendor. Assuming that prices and valuations are constant in N and M, and

observing that | ∪x N (x)| ≤ N, we have that T = O(N), and rational and stabilizing

group transfers can be computed in time O(T Mc) = O(NMc).

Given rational and stabilizing group transfers, in Section 7.4.2 we show how

7It is necessary to assume that also buyers P IN deviate to their best alternatives, as their surplus σb(µ)
depends on their best alternatives given the matching-transfer pair (µ, t).
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to compute rational and stabilizing transfers between buyers that are fair according to

Definition 18. This requires time O(N2 +NMc−1), for an overall time O(N2 +NMc).

7.4.1 Step 1: rational and stabilizing group transfers

We consider the following flow network G (refer to Figure 7.2). Nodes are as

follows.

– A single source node r, and a single sink node t.

– A node vx for each x ⊆S , |x| ≤ c, corresponding to N (x). There are O(Mc) such

nodes.

– A node us for each s ∈S , corresponding P(s). There are M such nodes.

Edges and capacities are as follows.

– For each node vx, an edge from r to vx with capacity N(x). Flow from s to vx represents

the total transfer to N (x). There are O(Mc) such edges.

– For each node vx, and edge from vx to us for all s ∈ x, each with capacity N(x). Flow

from vx to us represents the group transfer from P(s) to N (x). There are O(Mc) such

edges (as each node vx has at most a constant number c of outgoing edges).

– For each node us, an edge from us to t with capacity P(s). Flow from us to t represents

the total transfer given by P(s). There are M such edges.

Given a flow f on the network G , f (x,y) represents the flow from node x to node

y. Let F (N ) be the set of all feasible flows on G and T (M ) be the set of all rational

group transfers in the market M (given the SWM matching µ). Consider the mapping

ω : F (N )→T (M ) such that a feasible flow f ∈F (N ) is mapped to group transfers

t̄ = ω( f ) such that:

 t̄s→x = f (vx,us) x⊆S , |x| ≤ c,s ∈S such that there is edge (vx,us) in G

t̄s→x = 0 otherwise.
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Figure 7.2. Scheme of the flow network G . A single node vx for a set x = {s1,s2,s3} ⊆
S is represented. There is an edge from the source r to vx with capacity N(x), to
accommodate the total transfer needed by N (x). For i = 1,2,3, there is an edge from
vx to usi with capacity N(x), to accommodate the transfer from P(si) to N (x). For
i = 1,2,3, there is an edge from usi to the sink t with capacity P(si), to accommodate the
total transfer from P(si) (transfer not only to N(x)).

Observe that the capacity constraints on edges (us, t),s ∈S imply that ∑x t̄s→x ≤ P(s)

for all s ∈S . t̄ is rational as in G there is no edge (vx,us) for s /∈ x.

Proposition 1 The mapping ω : F (N )→T (M ) is a bijection. Let f ∗ be a maximum

flow on G . Then, ω( f ∗) defines rational and stabilizing group transfers.

The proof is given in Section 7.10. We can therefore compute rational and stabilizing

group transfers via the Ford-Fulkerson algorithm for the maximum flow (see for exam-

ple [130]). To bound the running time of the algorithm, we assume that the capacities of

all edges in G are integer, that is, all terms P(s) and N(x) are integer. This is the case if

valuations and prices are multiples of the same unit (e.g., dollars or cents). For a network

with n nodes, e edges, integer capacities, and the total capacity of the edges exiting the

source equal to T , the running time of the algorithm is O((m+n)T ). In G , we have that

n = O(Mc), e = O(Mc), and T = ∑x N(x). Therefore, stabilizing group transfers can be

computed in time O(T Mc). If we assume that prices and valuations are O(1) (that is,

constant in the market size N, M), we have that T = O(N) (as |∪x N (x)| ≤ N) and that

O(T Mc) = O(NMc).
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7.4.2 Step 2: transfer between buyers

In this section we show how rational, fair and stabilizing transfers between buyers

can be computed from rational and stabilizing group transfers. Observe that each buyer

b ∈B belongs at most to a single set P(s) for some s ∈S or to a single set N (x) for

some x ⊆S , |x| ≤ c. We consider the following definition of fairness, equivalent to

Definition 18 when we restrict our attention to stabilizing transfers.

Definition 22 Given a market M and a SWM matching µ , rational and stabilizing

transfers t (with corresponding group transfers t̄) are fair if, for each s ∈S such that

P(s) 6= /0 and each b ∈P(s), the total transfer paid by b is

∑
b′∈B

tb→b′ = σb(µ) ∑
k∈S

t̄s→x/P(s).

Observe that all buyers P(s) are required to pay a cumulative transfer of ∑x t̄s→x to

buyers
⋃

x N (x), out of an available cumulative surplus of P(s) = ∑b∈P(s)σb(µ). Under

rational, fair and stabilizing group transfers t̄, Condition (7.1) guarantees that no buyer

with σb(µ)> 0 pays more than σb(µ), and that each buyer with σb(µ)< 0 can receive

the required side-payment.

We now present our algorithm to compute rational and fair stabilizing transfers

from rational and stabilizing group transfers. First, tb→b′ is initialized at zero for each

b,b′ ∈B. Fair transfers from buyers P(s) (for a fixed s ∈S such that P(s) 6= /0) are

computed by algorithm A1 (in Table 4), as follows.

Assume that t̄s→x > 0 for x = x1, . . . ,xh (with s ∈ xk for all k = 1, . . . ,h), as output

by the algorithm in Section 7.4.1. Observe that h = O(Mc−1) as we are considering sets

x such that |x| ≤ c and s ∈ x.

For each b∈P(s), at any given point in the execution of the algorithm, σ̃b denotes

b’s residual surplus, that is, the amount b has still available to make side-payments. At
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ALGORITHM 4: Algorithm A1, transfers from buyers in P(s)
Input: t̄ j→ jk for all k = 0, . . . ,M, σb(µ) for all b ∈B.
Initialize: σ̃b = σb(µ) for each b ∈P(s);
for k = 0, . . . ,M do

if t̄ j→ jk > 0;
then

s← ∑b∈P(s) σ̃b;
α ← t̄ j→ jk/s;
β ← t̄ j→ jk/(t̄ j→ jk + t̄k→ jk);
Algorithm A2 with input {ασ̃b : b ∈P(s)}, {−βσ̃b′ : b′ ∈N ( j,k)};
for b ∈P(s) do

σ̃b← (1−α)σ̃b;
end

end
end

initialization, let σ̃b = σb(µ)> 0. Transfers to buyers N (xk) are computed in phases,

in increasing order of k. At each phase k = 0, . . . ,h, let α = t̄s→xk/∑b∈P(s) σ̃b(µ) be the

ratio between the group transfer from P(s) to N (xk) and the residual surplus of P(s),

and let β = t̄s→xk/N(xk) be the fraction of transfer that N (xk) receives from P(s), out

of the total transfer from ∪s′∈xkP(s′). Algorithm A2 in Table 5 computes transfers

between buyers P(s) to buyers N (xk) such that each b ∈P(s) transfers ασ̃b(µ) and

each b′ ∈N (xk) receives −βσb′(µ). Before increasing the value of k, each b ∈P(s)

updates her residual surplus to (1−α)σ̃b(µ).

The correctness of algorithm A2 is straightforward. Given this, the correctness

of algorithm A1 follows by observing that, for each s ∈S and b ∈P(s), b’s transfer

in each instance of algorithm A2 never exceed σ̃b, and that for each x⊆S , |x| ≤ c and

b′ ∈N (x), b′ receives a total of −σb(µ) in the (at most) c instances of algorithm A2 she

is involved in.

Time complexity Let TA1(s) and TA2(s,x) be the number of operations required, re-

spectively, by algorithm A1 for buyers in P(s), and by algorithm A2 to compute transfers
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ALGORITHM 5: Algorithm A2, transfers from buyers in P(s) to buyers in
N ( j,k)

Input: amounts offered {x1, . . . ,xn} by {bh1 , . . . ,bhn}; requested {y1, . . . ,ym} by
{bk1 , . . . ,bkm}.

Output: transfers thi→k` for i = 1, . . . ,n and `= 1, . . . ,m
Initialize: i = 1, `= 1;
while (`≤ m) and (y` > 0) do

if xi ≥ y` then
thi→k` ← y`;
xi← xi− y`;
`← `+1;

else
thi→k` ← xi;
y`← y`− xi;
i← i+1;

end
end

from P(s) to N (x). The total time to compute fair, rational and stabilizing transfers is

T (M,N) = O(N2)+∑s∈S TA1(s), where the first terms accounts for the initialization of

t.

We have that TA2(s,x) = O(|P(s)|+ |N (x)|), as during each iteration of the

while loop, one of the indexes i and ` increases by one, and each iteration requires a

constant number of operations.

To upper bound TA1(s), each iteration of the for loop requires O(|P(s)|) opera-

tions to compute s, and TA2(s,x) operations for the execution of algorithm A2. Therefore,
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the cumulative running time is upper bounded by

T (M,N) = O(N2)+ ∑
s∈S

TA1(s)

= O(N2)+ ∑
s∈S

∑
|x|≤c:s∈x

(
TA2(s,x)+O(|P(s)|)

)
= O(N2)+ ∑

s∈S
∑

|x|≤c:s∈x
O(|P(s)|+ |N (x)|)

= O(N2)+ ∑
s∈S

O(Mc−1)O(|P(s)|)+ ∑
s∈S

∑
|x|≤c:s∈x

O(|N (x)|)

= O(N2)+O(Mc−1N)+O(N) = O(N2 +Mc−1N)

as ∑s∈S |P(s)| ≤ N, ∑s∈S ∑|x|≤c:s∈x |N (x)| ≤ cN, and |{x⊆S : s ∈ x}|= O(Mc−1).

Combining with the result in Section 7.4.1, fair, rational and stabilizing transfers

between buyers can be computed in time O(N2 +NMc) given a SWM matching.

7.5 Computation of social welfare maximizing match-
ing

A natural approach to compute a SWM matching is to formulate a mixed integer

program (see [185]) in which, for each b ∈B and s̄ ∈S c, a binary assignment variable

xb,s̄ indicates whether µ(b) = s̄, and, for each s ∈ S , a binary variable zs,i indicates

whether the demand of vendor s meets the threshold τi(s) (and the corresponding discount

is triggered). These would account to NMc +H integer variables, where H ≥M is the

total number of discount thresholds of all vendors, and a running time exponential in

this quantity. A relaxation of the problem by letting each assignment variable lay in the

interval [0,1] would leave only H integer variables (and the computational complexity

exponential in M). However, the existence of an integral solution (corresponding to a

valid matching) is an open question.
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Instead, we follow a different approach, similar to [149]. Conditional on the

number of buyers n(s̄) = |µ̂(s̄)| for each s̄ ∈S c (which we refer to as a partition of

the buyers), we compute a SWM matching via the Ford-Fulkerson algorithm for the

max-flow with min-cost in time O(N2Mc). Then by considering all feasible allocations

{n(s̄) : s̄ ∈S c} (that are however exponential in Mc), we determine the SWM matching.

Let Π = {{n(s̄) : s̄ ∈S c} : ∑s̄∈S c n(s̄) = N} be the set of all feasible partitions,

that is, partitions such that each of the N buyers can be assigned to a single pair of

vendors.

Fix π ∈Π, and define a flow network G (π) as follows (see Figure 7.3). Nodes

are the following.

– A single source node r, and a single sink node t.

– For each b ∈B, a node b. There are N such nodes.

– For each s̄ ∈S c, a node s̄. There are Mc such nodes.

The edges, with corresponding capacities and costs, are as follows.

– For each b ∈B, an edge from r to b, with capacity 1 and cost 0. A unit of flow on this

edge represents b being assigned to some product choice. There are N such edges.

– For each b ∈B and s̄ ∈S c, an edge from b to s̄ with capacity 1 and cost −vb(s̄), that

is, the opposite of the valuation buyer b gives to product choice s̄. A unit flow on this

edge represents buyer µ(b) = µ . There are NMc such edges.

– For each s̄ ∈S c, an edge from s̄ to t with capacity n(s̄) and cost 0. An integral flow

on this edge represents the total number of buyers choosing s̄. There are (M+1)c such

edges.

Feasible integral flows on G (π) are in one-to-one correspondence with matchings

conditional on π . Let µ( f ) be the matching corresponding to flow f . Given an integral

flow f on G (π), its value equals the number of buyers that are matched to vendor pairs

in µ( f ), and its cost equals the negative of the total valuation by buyers under µ( f ).
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Figure 7.3. Scheme for the flow network G (π). Nodes for a single buyer b ∈B and
a single set s̄ ∈S c are represented. The cost of −vb(s̄) of the edge from b to s̄ is the
opposite of the valuation buyer b gives to product choice s̄.

Every max-flow f on G (π) has value N, that is, each buyer is matched to a vendor pair

under µ( f ). Given π ∈Π, the total price paid by buyers is constant for each max-flow

f on G (π). Therefore, maximizing the social welfare of a matching conditional on π

corresponds to minimizing the cost of an integral max-flow on G (π). The total numbers

of nodes and edges in G (π) are respectively n = Θ(N +Mc) and e = Θ(NMc), and the

total capacity of the edges exiting the source is T = N. Since all capacities are integer,

the Ford-Fulkerson algorithm finds an integral max-flow with minimum cost in time

Θ(T (n+m)) = Θ(N2Mc).

To determine the SWM matching of M , for each π ∈Π we need to determine,

a SWM matching conditional on π , for an overall time Θ(N2Mc|Π|). However, this is

dominated by a term NMc
(see Section 7.11).

Getting rid of the exponential dependency in M does not seem possible, due to

the theoretical hardness of the problem. In fact, fixed x > 0, deciding whether there

exists a matching µ with SW (µ) ≥ x is NP-hard, (by a reduction from the Knapsack

problem, as noted by [149]). Even if computationally demanding even for small M, the

proposed solution requires time polynomial in the number of buyers N. Our solution

is significantly more efficient than both the exhaustive maximization of social welfare

over all M2N matchings, and solving the integer problem above (both exponential in N).

Moreover, M could in general be considered much smaller than N, or even constant.
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7.6 Discussion

It is an open question whether Theorem 11 holds in the case of arbitrary price

schedules, where a vendor might have several discounted prices on sets of products, as

described next. Let C = {x ⊆C} be the partition of C (i.e., the set of all 2c subsets of

C). The price schedule ps of vendor s ∈S is a mapping from Nc×C to R+ (the set

of nonnegative real numbers), such that, for n ∈ Nc and x ∈ C , ps(n,x) is the price for

the bundle of products x offered by s under demand n. Let ps(n, /0) = 0 for each s and

n. We require that ps(m,x) ≤ ps(n,x) for all x ∈ C if m ≥ n component-wise. Letting

ek be the unit vector with the k-th component equal to one and all other components

equal to zero, we refer to pk
s = ps(ek,{k}) as the base price of item k offered by s.

The price paid by b under matching µ is determined as follows. For each s ∈S , let

xb(s) = {k ∈C : µk(b) = s} be the set of items b purchases from s. Recalling that n(s)

denotes the demand vector of s under the matching µ ,

pb(µ) = ∑
s∈S

ps(n(s),xb(s)).

Buyers b such that pb(µ)< ∑k∈C pk
µk(b) might be willing to pay transfers.

Finally, we observe that buyers might benefit from misreporting their product

valuations. For example, consider a SWM matching µ and a buyer b with negative

surplus σb(µ). Let v be b’s true valuation of the products she is matched to. If b reports

a valuation of v′ = v− x, for x > 0 such that µ remains a SWM matching under the

untruthful reporting, then she can receive a higher subsidy of −σb(µ)+ x (Theorem 11

guarantees the existence of rational and stabilizing transfers). We leave this issue to

future research.
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7.7 Emptiness of the core

Consider a market with two product types A and B, vendors S = {s1,s2,s3},

buyers B = {b1,b2,b3}, and valuations

b1 : vb1(s1,s1) = 8, vb1(s2,s2) = 1, vb1(s3,s3) = 1,

b2 : vb2(s2,s2) = 8, vb2(s3,s3) = 1, vb2(s1,s1) = 1,

b3 : vb3(s3,s3) = 8, vb3(s1,s1) = 1, vb3(s2,s2) = 1,

and vb(s,s′) = 0 for each b and s 6= s′. Assume that pA
s = pB

s = 3 for each s ∈ S .

Each s ∈S activates a discounted price of pAB
s = 2 when thresholds τA

s = τB
s = 2 on

the demand of A and B are met. There are three SWM matchings, symmetric with

respect to each other. Consider one of them, for example µ(b1) = µ(b2) = (s1,s1) and

µ(b3) = (s3,s3), with individual utilities ub1(µ) = 6, ub2(µ) = −1, ub3(µ) = 2. Since

ub1(µ)+ ub2 = 5, any transfer between them would leave one with a net utility of at

most 2.5. If ub1(µ)+ tb2→b1 ≤ 2.5, then b1 and b3 can profitably deviate by agreeing on

purchasing both items from s3, receiving a cumulative utility of 5, and allocating for

example 2.9 units to b1 and 2.1 units to b3. If instead ub1(µ)+ tb2→b1 > 2.5, then b2 and

b3 can profitably deviate by agreeing on purchasing from s2. The analysis for all other

SWM matchings is similar.

7.8 Maximizing the social welfare is not necessary for
stability

Consider a variation of the example in Section 7.7 above, in which b2’s valuations

are given by

b2 : vb2(s2,s2) = 8, vb2(s3,s3) = 1, vb2(s1,s1) = 0.5,
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The matching µ such that µ(b1) = µ(b2) = (s1,s1) and µ(b3) = (s3,s3) has SW (µ) =

13/2 and is not SWM (the matching µ ′ such that µ ′(b2) = µ ′(b3) = (s2,s2) and µ ′(b1) =

(s1,s1) has SW (µ) = 7). However, a transfer of 15/4 from b1 to b2 makes µ stable.

7.9 Proof of Lemma 22

First we assume that G(t̄) contains a cycle of length two, that is edges (s1,s2)

and (s2,s1) for s1,s2 ∈ S . We show that there exist equivalent group transfers t̄ ′

such that either G(t̄) = G(t̄ ′)−{(s1,s2)} or G(t̄) = G(t̄ ′)−{(s2,s1)} or G(t̄) = G(t̄ ′)−

{(s1,s2),(s2,s1)}.

Then, we assume that the shortest cycles in G(t̄) have length K > 2 and let

K = s1, . . . ,sK,sK+1 (with sK,sK+1) be such a cycle. We show that there exist equivalent

group transfers t̄ ′ such that G(t̄ ′) has a cycle of length K−1 obtained by replacing two

adjacent edges of K with a single edge. This completes the proof as each cycle can be

reduced to a length-two cycle by iterating the argument and finally to a single edge.

Assume G(t̄) contains edges (s1,s2) and (s2,s1). Let

X1 = {x⊆S : s1 /∈ x,s2 ∈ x, t̄s1→x > 0},

X2 = {x⊆S : s2 /∈ x,s1 ∈ x, t̄s2→x > 0}.

Let

ts1 = ∑
x∈X1

t̄s1→x,

ts2 = ∑
x∈X2

t̄s2→x

be respectively the total amount of cross-transfer that buyers P(s1) pay to all buyers

N (x),x ∈X1 and that buyers P(s2) pay to buyers N (x),x ∈X2.
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Suppose that ts1 ≤ ts2 . We define equivalent group transfers t̄ ′ such that

t̄ ′s1→x = 0 for each x ∈X1, (7.2)

where buyers P(s1) switch a cumulative amount of transfer ts1 from buyers N (x),x ∈

X1 to buyers N (x),x ∈X2,

∑
x∈X2

t̄ ′s1→x = ts1 + ∑
x∈X2

t̄s1→x. (7.3)

Each group N (x),x ∈X1 receives the missing amount of transfer from buyers P(s2),

t̄ ′s2→x = t̄s2→x + t̄s1→x for each x ∈X1, (7.4)

for a total of ts1 . Buyers P(s2) decrease the cross-transfer to buyers N (x),x ∈X2 by

total amount ts1 ,

∑
x∈X2

t̄ ′s2→x = ts2− ts1. (7.5)

The existence of equivalent group transfers t̄ ′ such that (7.2)-(7.5) hold is straightforward.

Observe that t̄ ′s1→x = 0 for all x ∈X1, and therefore (s1,s2) /∈ G(t̄ ′). If ts2− ts1 > 0 then

t̄ ′s2→x > 0 for some x ∈X2 and (s1,s2) ∈ G(t̄ ′), otherwise (s1,s2) /∈ G(t̄ ′). The proof in

the case of ts1 > ts2 similarly follows.

Assume now that the shortest cycles in G(t̄) have length K > 2, and let K be a

shortest cycle. That is, K is formed by edges (si,si+1) for i = 1, . . . ,K, with sK+1 = s1.
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For each k = 1, . . . ,K let

Xk = {x⊆S : sk /∈ x,sk+1 ∈ x, t̄sk→x > 0},

tsk = ∑
x∈Xk

t̄sk→x.

Without loss of generality, assume that s1 ∈ argminsk∈K tsk , that is ts1 ≤ tsk for all

k = 2, . . . ,K (which is always true up to node relabeling). By the assumption that

K is a cycle of minimum length, there is no chord in G(t̄ ′), that is (sk,s j) /∈ G(t̄ ′) if

sk,s j ∈K ,s j 6= sk+1. We build group transfers t̄ ′ which are equivalent to t̄ and such that

(s1,s2) /∈ G(t̄ ′) and (si,si+1) for i = 2, . . . ,K with sK+1 = s2 is a cycle of length K−1 in

G(t̄ ′).

Group transfers t̄ ′ are defined such that

t̄ ′s1→x = 0 for each x ∈X1, (7.6)

and buyers P(s1) switch a cumulative amount of transfer ts1 from buyers N (x),x ∈X1

to buyers N (x),x ∈XK ,

∑
x∈XK

t̄ ′s1→x = ts1 + ∑
x∈XK

t̄s1→x. (7.7)

Each group N (x),x ∈X1 receives the missing amount of transfer from buyers P(sK),

t̄ ′sK→x = t̄sK→x + t̄s1→x for each x ∈X1, (7.8)

for a total of ts1 . Buyers P(sK) decrease the cross-transfer to buyers N (x),x ∈XK by
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total amount ts1 ,

∑
x∈XK

t̄ ′sK→x = tsK − ts1. (7.9)

The existence of equivalent group transfers t̄ ′ such that (7.6)-(7.9) hold is straightforward.

Observe that t̄ ′s1→x = 0 for all x ∈X1, and therefore (s1,s2) /∈ G(t̄ ′). Buyers P(sK)

pay a transfer of ts1 to groups N (x),x ∈X1. This last contribution is a cross-transfer

as sK /∈ x,s2 ∈ x for each x ∈X1 because (s1,sK) /∈ G(t̄). Therefore (sK,s2) ∈ G(t̄ ′).

Moreover, if tsK − ts1 > 0 then t̄ ′sK→x > 0 for some x ∈XK and (sK,s1) ∈G(t̄ ′), otherwise

(sK,s1) /∈ G(t̄ ′). This completes the proof.

7.10 Proof of Proposition 1

It is straightforward to see that ω is a bijection, so we only prove the second part

of the claim. Let t̄ = ω( f ∗). t̄ are rational group transfers (as ω is a bijection). Suppose

by contradiction that t̄ is not stabilizing, that is, condition (7.1) does not hold for t̄. Recall

that condition (7.1) reads as


P(s)≥ ∑x:s∈x t̄s→x ∀s ∈S

N(x) = ∑s∈x t̄s→x ∀x⊆S

t̄s→x = 0 s /∈ x.

First, suppose that P(s)< ∑x:s∈x t̄s→x for some s ∈S . This would imply that the flow

entering node us is larger than the capacity of the edge (us, t), generating a contradiction

with the feasibility of the maximum flow f ∗. Second, suppose that N(x)> ∑s∈x t̄s→x for

some x⊆S , |x| ≤ c. This would imply that every flow f ′ on G is smaller than ∑x N(x),

and therefore there exist no group transfers t̄ ′ such that N(x) = ∑s∈x t̄s→x∀x⊆S for all

x⊆S , generating a contradiction with Theorem 11 (as feasible flows and rational group
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transfers are in one-to-one correspondence). Rationality of t̄ implies that t̄s→x = 0 if

s /∈ x.

7.11 Computational complexity for determining SWM
matchings

We have that |Π| =
(N+Mc−1

Mc−1

)
. To prove this, observe that computing |Π| is

equivalent to counting the number of ways in which N (indistinguishable) balls can

be distributed among a sorted list of Mc set. Consider a line with N +Mc− 1 empty

positions. There are
(N+Mc−1

Mc−1

)
ways to place Mc−1 stones on the available positions.

The occupied positions (in ascending order) represent the boundaries between the Mc sets,

and the cardinality of each set is the number of empty positions between two successive

stones (if the first position is occupied by a stone, then the first set is empty; if the `-th

and (`+1)-th positions are both occupied, then the (`+1)-th set is empty).

Using Stirling’s approximation n!v (n/e)n(2πn)1/2, considering M constant, we

have that

|Π|v
(

N
Mc +1

+1
)Mc+1(Mc +1

N
+1
)N( 1

2πN
+

1
2π(Mc−1)

)1/2

.

Considering M as a constant, we need time Θ(N2Mc|Π|), that is,

Θ

(
N2Mc

(
N

Mc−1

)Mc−1
)
,

By the upper bound
(n

k

)
≤ (en/k)k, the time to compute a SWM matching is

Θ

(
N2Mc

(
eN

Mc−1

)Mc−1
)
,
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dominated by a term NMc
.
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Pastor-Satorras, and Alessandro Vespignani. Random walks and search in time-
varying networks. Physical review letters, 109(23):238701, 2012.

[175] Seth Pettie and Peter Sanders. A simpler linear time 2/3-ε approximation for
maximum weight matching. Information Processing Letters, 91(6):271–276,
2004.

[176] Xuan-Hieu Phan, Le-Minh Nguyen, and Susumu Horiguchi. Learning to classify
short and sparse text & web with hidden topics from large-scale data collections.



256

In Proceedings of the 17th international conference on World Wide Web, pages
91–100. ACM, 2008.

[177] Galen Pickard, Wei Pan, Iyad Rahwan, Manuel Cebrián, Riley Crane, An-
mol Madan, and Alex Pentland. Time critical social mobilization. Science,
334(6055):509–512, 2011.

[178] Chiara Poletto, MF Gomes, A Pastore y Piontti, Luca Rossi, L Bioglio, Denis L
Chao, Ira M Longini, M Elizabeth Halloran, Vittoria Colizza, Alessandro Vespig-
nani, et al. Assessing the impact of travel restrictions on international spread of
the 2014 west african ebola epidemic. Eurosurveillance, 19(42), 2014.

[179] John W Pratt. Risk aversion in the small and in the large. Econometrica: Journal
of the Econometric Society, pages 122–136, 1964.

[180] Anatol Rapoport. Spread of information through a population with socio-structural
bias: I. assumption of transitivity. The bulletin of mathematical biophysics,
15(4):523–533, 1953.

[181] Jonathan M Read, Ken TD Eames, and W John Edmunds. Dynamic social
networks and the implications for the spread of infectious disease. Journal of The
Royal Society Interface, 5(26):1001–1007, 2008.

[182] Daniel M Romero, Brendan Meeder, and Jon Kleinberg. Differences in the
mechanics of information diffusion across topics: idioms, political hashtags, and
complex contagion on twitter. In Proceedings of the 20th international conference
on World wide web, pages 695–704. ACM, 2011.

[183] J Niels Rosenquist, James H Fowler, and Nicholas A Christakis. Social network
determinants of depression. Molecular psychiatry, 16(3):273–281, 2011.

[184] Alvin E Roth. The evolution of the labor market for medical interns and residents:
a case study in game theory. The Journal of Political Economy, pages 991–1016,
1984.

[185] Alvin E Roth, Uriel G Rothblum, and John H Vande Vate. Stable matchings, opti-
mal assignments, and linear programming. Mathematics of Operations Research,
18(4):803–828, 1993.

[186] Alvin E Roth and Marilda A Oliveira Sotomayor. Two-sided matching: A study in
game-theoretic modeling and analysis. Cambridge Univ Press, 1992.

[187] Alvin E Roth and John H Vande Vate. Random paths to stability in two-sided
matching. Econometrica: Journal of the Econometric Society, pages 1475–1480,
1990.



257

[188] Tim Roughgarden and Eva Tardos. Introduction to the inefficiency of equilibria.
Algorithmic Game Theory, 17:443–459, 2007.
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