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EPIGRAPH

Dr. Ford: You think it’s sabotage? Imagine someone’s been diddling with our creations?

Bernard: It’s the simplest solution.

Dr. Ford: Ah, Mr. Occam’s razor. The problem, Bernard, is that what you and I do is so

complicated. We practice witchcraft. We speak the right words. Then we create life itself out of

chaos. William of Occam was a 13th century monk. He can’t help us now, Bernard. He would

have us burned at the stake.

Westworld, Chestnut
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ABSTRACT OF THE DISSERTATION

Communication and security in cyber-physical systems

by
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Professor Massimo Franceschetti, Chair

Recent technological advances in networking, communication, and computation tech-

nologies have enabled the development of cyber-physical systems and cloud robotics, where

computing, communication, and control are tightly coupled and integrated into a single distributed

platform. These systems open the door to a myriad of new and exciting applications in trans-

portation, health care, agriculture, energy, and many others. The need for the tight integration

of different components, requirements, and time scales means that the modeling, analysis, and

design of these systems present new challenges. We focus on two aspects of emerging systems

architecture. Firstly, we investigate the presence of finite-rate, digital communication channels

xv



with delays in the feedback loop. In this context, we study event-triggering strategies that utilize

timing information by transmitting in a state-dependent fashion. The proposed event-triggering

strategies utilize the available communication resources more efficiently compared to existed

time-triggering setups. Secondly, the distributed nature of cyber-physical systems and cloud

robotics is their Achilles’ heel, as it is a source of vulnerability to cyber-attacks. In this regard, we

introduce the problem of learning-based attacks in these systems, and we show how the controller

can impede these attacks by superimposing a carefully crafted privacy-enhancing signal upon its

control policy.
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Chapter 1

Introduction

Cyber-physical systems (CPS) are engineering systems that integrate computing, com-

munication, and control; see Figure 1.1. They arise in a wide range of areas such as energy,

civil infrastructure, manufacturing, transportation, and robotics [97, 136]. In particular, CPS are

closely tied to cloud robotics, an emerging field in robotics and automation systems. The cloud

enables robots to utilize wireless networking, powerful cloud computing and storage, machine

learning, big data, and many other shared resources to enhance their performances [7,29,81,195];

see Figure 1.2. Using the cloud resources is of specific interest for mobile robots [180], where

strong on-board computation resources reduce the operating duration, restrict robot mobility, and

Figure 1.1: Recent technological advances in networking, communication, and compu-
tation technologies have enabled the development of cyber-physical systems.
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Figure 1.2: Cloud robots and automation systems

increase costs.

The need for tight integration of different components, requirements, and time scales

means that the modeling, analysis, and design of these systems present new challenges. We focus

on two aspects of these emerging systems architectures, described next.

1.1 Communication

The first issue that we address in these networks of interacting elements is the presences

of digital communication channels in the feedback loop, as demonstrated in Figure 1.3.

To use the available resources efficiently, the event-triggering control techniques have

emerged as a way of trading computation and decision-making for other services, such as commu-

nication, sensing, and actuation. In the context of communication, event-triggered control seeks

to prescribe information exchange between the controller and the plant in an opportunistic manner.

In this way, communication occurs only when needed for the task at hand (e.g., stabilization,

tracking), and the primary focus is on minimizing the number of transmissions while guaranteeing

the control objectives and the feasibility of the resulting real-time implementation.

In the same way that subsequent pauses in spoken language are used to convey information,

2



Figure 1.3: Dynamical system abstraction of CPS and cloud robots

it is also possible to transmit information in communication systems not only by message content

(data payload), but also with its timing. In this context, the encoding process consists of choosing

the timing and data payload of the packet, as shown in Figure 1.4. In other words, in the sensor

block, the quantized version of the state is encoded in a packet containing data payload as

well as its timing. In Chapters 2 and 3 we investigate event-triggering strategies that utilize

timing information by transmitting in a state-dependent fashion. We show that using intrinsic

timing information in communication in an event-triggered design; our design can outperform the

traditional existed time-triggered control.

To develop theoretical results, we first start with low-complexity models; continuous-time

scalar systems without disturbances. Then, to make the results more practical, we escalate the

Encoder

Timing Data Payload

Figure 1.4: Representation of information transmission using data payload and trans-
mission time of the packet in a digital channel. The encoding process consists of
choosing the data payloads and their transmission times. Here, the sensor determines
the transmission time using our event-triggering strategy in a state-dependent manner.

3



Figure 1.5: Architecture and components of the prototype.

complexity of the model by studying the effect of system disturbances, vector, and nonlinear

systems. Eventually, we implement the proposed event-triggering control design and demonstrate

the utilization of timing information to stabilize a laboratory-scale inverted pendulum over a

digital communication channel with bounded unknown delay. Figure 1.5 depicts the different

components of the system.

Finally, in Chapter 4 we extend these results from an information-theoretic perspective,

as we explicitly quantify the value of the timing information independent of any transmission

strategy.

1.2 Security

The distributed nature of cyber-physical systems is their Achilles’ heel, as it is a source

of vulnerability to cyber-attacks [22, 134, 165]. Also, the connectivity inherent in the cloud

makes the cloud robotics systems vulnerable to these attacks [81]. These cyber-attacks can have

catastrophic consequences ranging from hampering the economy through financial scams, to

possible losses of human lives through hijacking autonomous vehicles and drones, and all the way

to terrorist acts by manipulating large industrial infrastructures [19, 25, 67, 100, 129]. Real-world

examples of security breaches in these systems include the revenge sewage attack in Maroochy
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Figure 1.6: Ensuring physical security in CPS requires safe operation in the presence
of malicious agents that might have compromised some sensor and actuation signals.

Shire, Australia [181], the Ukraine power attack [111], the German steel mill cyber-attack [106],

the Davis-Besse nuclear power plant Slammer worm attack in Ohio, USA [20], and the Iranian

uranium enrichment facility attack via the Stuxnet malware [26, 52, 57, 104, 126]. In all of these

cases, physical damage has been performed by hackers tampering with the CPS. Despite studying

and preventing security breaches via control-theoretic methods has received considerable attention

in recent years [1, 11, 18, 21, 24, 47, 55, 59, 133, 146, 170, 178, 179], providing enhanced security

remains a critical open problem, which is made particularly challenging by the complexity of the

interconnections and the dynamical nature of the system.

We will concentrate on an important and widely used class of attacks called the “man-in-

the-middle” (MITM) [8]. In this setting, an attacker takes over the physical plant’s control and

sensor signals and acts as a malicious controller for the plant and fictitious plant for the controller,

see Figure 1.7. The MITM attack has been extensively studied in two special cases [127, 135,

Figure 1.7: The man in the middle attack: the attacker acts as a malicious controller for
the plant and a fictitious plant for the controller
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169, 182, 216]. The first case is the replay attack, in which the attacker observes and records the

legitimate system behavior for a given time window and then replays this recording periodically

at the controller’s input [127, 135, 216]. This attack is reminiscent of the notorious attack

of video surveillance systems, in which previously recorded surveillance footage is replayed

during a heist. A well-known example is that of the Stuxnet malware, which used an operating

system vulnerability to enable a replay attack during which the attacker has driven the speed

of the centrifuges at a uranium enrichment facility toward excessively high and destructive

speed levels [105]. The second case is the statistical-duplicate attack, which assumes that the

attacker has acquired complete knowledge of the dynamics and parameters of the system, and

can construct arbitrarily long fictitious sensor readings that are statistically identical to the actual

signals [169, 182]. The replay attack assumes no knowledge of the system parameters—and

as a consequence, it is relatively easy to detect it. The statistical-duplicate attack assumes full

knowledge of the system dynamics—and as a consequence, it requires a more sophisticated

detection procedure, as well as additional assumptions on the attacker or controller behavior to

ensure it can be detected.

In many practical situations, the attacker does not have full knowledge of the system

and cannot simulate a statistically indistinguishable copy of the system. On the other hand, the

attacker can carry out more sophisticated attacks simply replaying previous sensor readings, by

attempting to “learn” the system dynamics from the observations. For this reason, in Chapter 5,

we study learning-based attacks and show that they can outperform replay attacks by analyzing

the performance using a specific learning algorithm. By utilizing tools from information theory

and statistics, we bound the asymptotic detection and deception probabilities for any measurable

control policy when the attacker uses an arbitrary learning algorithm to estimate the dynamic of

the plant. We also show how the controller can impede the learning process of the attacker by

superimposing a carefully crafted privacy-enhancing signal upon its control policy. Since both

the attacker and the controller need to perform optimal on-line decision making in a feedback
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loop fashion, in the last part of Chapter 5, we use active decision theory to study the interplay

between control and attacker.

1.3 Dissertation Overview

The rest of this dissertation is organized as follows.

In Chapter 2, we study event-triggered control for stabilization of unstable linear plants

over rate-limited communication channels subject to unknown, bounded delay. On one hand,

the timing of event triggering carries implicit information about the state of the plant. On the

other hand, the delay in the communication channel causes information loss, as it makes the state

information available at the controller out of date. Combining these two effects, we show a phase

transition behavior in the transmission rate required for stabilization using a given event-triggering

strategy. For small values of the delay, the timing information carried by the triggering events

is substantial, and the system can be stabilized with any positive rate. When the delay exceeds

a critical threshold, the timing information alone is not enough to achieve stabilization, and the

required rate grows. When the delay equals the inverse of the entropy rate of the plant, the implicit

information carried by the triggering events perfectly compensates the loss of information due

to the communication delay, and we recover the rate requirement prescribed by the data-rate

theorem. We also provide an explicit construction yielding a sufficient rate for stabilization, as

well as results for vector systems. Finally results for event triggering strategies are presented are

compared with the data-rate theorem for time-triggered control, that is extended here to a setting

with unknown delay. Finally, the developed results for event triggering strategies are compared

with the data-rate theorem for time-triggered control, which is extended here to a setting with

unknown delay.

In Chapter 3, we study to what extent the implicit timing information in the triggering

events, which is studied in Chapter 2, is still useful in the presence of plant disturbances. Beyond
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the uncertainty due to the unknown delay in communication, disturbances add an additional

degree of uncertainty to the state estimation process, whose effect needs to be properly accounted

for. We then demonstrate this in the context of stabilization of a laboratory-scale inverted

pendulum around its equilibrium point over a digital communication channel with bounded

unknown delay. Through experimental results, we show that as the delay in the communication

channel increases, a higher data payload transmission rate is required to fulfill the proposed

event-triggering policy requirements. This confirms the theoretical intuition that a larger delay

brings a larger uncertainty about the value of the state at the controller, as less timing information

is carried in the communication. Our results also provide a novel encoding-decoding scheme to

achieve input-to-state practically stability (ISpS) for nonlinear continuous-time systems under

appropriate assumptions.

In Chapter 4, we consider the problem of stabilizing an undisturbed, scalar, linear system

over a “timing” channel, namely a channel where information is communicated through the

timestamps of the transmitted symbols. Each symbol transmitted from a sensor to a controller in a

closed-loop system is received subject to some to random delay. The sensor can encode messages

in the waiting times between successive transmissions and the controller must decode them from

the inter-reception times of successive symbols. This set-up is analogous to a telephone system

where a transmitter signals a phone call to a receiver through a “ring” and, after the random delay

required to establish the connection, the receiver is aware of the “ring” being received. Since

there is no data payload exchange between the sensor and the controller, the set-up provides an

abstraction for performing event-triggering control with zero-payload rate. We show the following

requirement for stabilization: for the state of the system to converge to zero in probability, the

timing capacity of the channel should be at least as large as the entropy rate of the system.

Conversely, in the case the symbol delays are exponentially distributed, we show a tight sufficient

condition using a coding strategy that refines the estimate of the decoded message every time a

new symbol is received. Our results generalize previous zero-payload event-triggering control
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strategies, revealing a fundamental limit in using timing information for stabilization, independent

of any transmission strategy.

In Chapter 5, we study the problem of learning-based attacks in a abstraction of cyber-

physical systems— the case of a discrete-time, linear, time-invariant plant that may be subject

to an attack that overrides the sensor readings and the controller actions. The attacker attempts

to learn the dynamics of the plant and subsequently override the controller’s actuation signal, to

destroy the plant without being detected. The attacker can feed fictitious sensor readings to the

controller using its estimate of the plant dynamics and mimic the legitimate plant operation. The

controller, on the other hand, is constantly on the lookout for an attack; once the controller detects

an attack, it immediately shuts the plant off. For this setting, we derive impossibility bounds on

the asymptotic detection and deception probabilities for any measurable control policy when

the attacker uses an arbitrary learning algorithm to estimate the system dynamics. We further

derive achievability bounds by proposing a specific authentication test that inspects the empirical

variance of the system disturbance. We also show how the controller can impede the learning

process of the attacker by superimposing a carefully crafted privacy-enhancing signal on top

of the nominal control policy. Finally, we study the trade-off between the performance of the

learning algorithm, and the performance of arbitrary detection and control strategies adopted by

the controller, providing a tight bound on the scaling of the expected time required to detect the

attack, as the probability of detection tends to one.

1.4 Notation

The notation used in this thesis is aimed to be as intuitive as possible. One may skip this

section and refer back to it, if any notation is confusing.

Let R, Z and N denote the set of real numbers, integers, and positive integers, respectively.

We denote by B(r) the ball centered at 0 of radius r. We let log and ln denote the logarithm with

9



bases 2 and e, respectively. We let bxc denote the greatest integer less than or equal to x, and

dxe denote the smallest integer greater than or equal to x. We denote by mod(x, y) the modulo

function, whose value is the remainder left after dividing x by y. We let sign(x) be 1, −1, or 0

when x is positive, negative, or zero, respectively. We let m denote the Lebesgue measure on Rn,

which for n = 2 and n = 3 can be interpreted as area and volume, respectively.

We let Mn,m(R) be the set of n×m matrices over the field of real numbers. Given A =

[ai,j]1≤i,j≤n ∈ Mn,n(R), we let Tr(A) =
∑n

i=1 aii and det(A) denote its trace and determinant,

respectively. We use the † sign to represent the transpose of a matrix. A � B means that

A−B is a positive semidefinite matrix, namely � is the Loewner order of Hermitian matrices.

λmax(A) denotes the largest eigenvalue of the matrix A. We consider the two-norm, which is

denoted by ‖ · ‖, for the vector spaces, and we denote the operator norm induced by it with

‖ · ‖op. We also use ‖.‖ to denote complex absolute value. Any Q ∈ C can be written as

Q = Re(Q) + i Im(Q) = ‖Q‖eiφQ , and for any y ∈ R we have ‖eQy‖ = eRe(Q)y.

An event happens almost surely (a.s.) if it occurs with probability one. We write Xn
P−→ X

ifXn converges in probability toX . Similarly, we writeXn
a.s.−−→ X ifXn converges almost surely

to X . We use H(X) to denote the Shannon entropy of a discrete random variable X and h(X)

to denote the differential entropy of a continuous random variable X . For real numbers a and b,

a� b means a is much less than b, in some numerical sense, while for probability distributions P

and Q, P� Q means P is absolutely continuous w.r.t. Q. dP/dQ denotes the Radon–Nikodym

derivative of P w.r.t. Q. The Kullback–Leibler (KL) divergence between probability distributions

PX and PY is defined as

D(PX‖PY ) ,


EPX

[
log

dPX
dPY

]
, PX � PY ;

∞, otherwise,

where EPX denotes the expectation w.r.t. probability measure PX . The conditional KL di-
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vergence between probability distributions PY |X and QY |X averaged over PX is defined as

D
(
PX|Y

∥∥QY |X
∣∣PX) , EPX̃

[
D
(
PY |X=X̃

∥∥∥QY |X=X̃

)]
, where (X, X̃) are independent and iden-

tically distributed (i.i.d.). The mutual information between random variables X and Y is defined

as I(X;Y ) , D (PXY ‖PXPY ). The conditional mutual information between random variables

X and Y given random variable Z is defined as I(X;Y |Z) , EPZ̃

[
I(X;Y |Z = Z̃)

]
, where

(Z, Z̃) are i.i.d.

For a function f : R → Rn and t ∈ R, we let f(t+) denote the limit from the right,

namely lims↓t f(s). For two real valued functions g and h, g(x) = O (h(x)) as x → x0 means

lim supx→x0
|g(x)/h(x)| <∞, and g(x) = o (h(x)) as x→ x0 means limx→x0 |g(x)/h(x)| = 0.

For any set X and any n ∈ N we let πn : X N → X n be the truncation operator, namely the

projection of a sequence in X N into its first n symbols. For a scalar continuous-time signal w(t),

we define

|w|t = sup
s∈[0,t]

|w1(s)|.

Finally, to formulate the stability properties, for non-negative constants d and d′ we define

K(d) := {f : R≥0 → R≥0|f continuous, strictly increasing, and f(0) = d},

K∞(d) := {f ∈ K(d)| f unbounded},

K2
∞(0, d′) := {f : R≥0 × R≥0 → R≥0| ∀t ≥ 0, f(., t) ∈ K∞(0), and ∀r > 0 f(r, .) ∈ K∞(d′)}

L := {f : R≥0 → R≥0| f continuous, strictly decreasing, and lim
s→∞

f(s) = 0},

KL := {f : R≥0 × R≥0 → R≥0| f continuous, ∀t ≥ 0, f(., t) ∈ K(0), and ∀r > 0 f(r, .) ∈ L}.
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Chapter 2

The value of timing information in

event-triggered control

2.1 Introduction

One key aspect in the modeling, analysis, and design of CPS is the presence of finite-rate,

digital communication channels in the feedback loop. Data-rate theorems quantify the effect

that communication has on stabilization by stating that the communication rate available in the

feedback loop should be at least as large as the intrinsic entropy rate of the system (corresponding

to the sum of the logarithms of the unstable modes). In this way, the controller can compensate

for the expansion of the state occurring during the communication process. Early formulations

of data-rate theorems appeared in [12, 40, 206], followed by the key contributions in [141, 191].

More recent extensions include time-varying rate, Markovian, erasure, additive white and colored

Gaussian, and multiplicative noise feedback communication channels [5, 46, 84, 86, 121, 128, 130,

132,184], formulations for nonlinear systems [36,113,142], for optimal control [83,101,192], for

systems with random parameters [140, 156], and for switching systems [114, 208]. Connections

with information theory are highlighted in [123, 131, 138, 142, 164]. Extended surveys of the
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literature appear in [60, 139] and in the book [212].

Another key aspect of CPS to which we pay special attention here is the need to efficiently

use the available resources. Event-triggering control techniques [9, 68, 96, 145, 186, 188, 203, 211]

have emerged as a way of trading computation and decision-making for other services, such

as communication, sensing, and actuation. In the context of communication, event-triggered

control seeks to prescribe information exchange between the controller and the plant in an

opportunistic manner. In this way, communication occurs only when needed for the task at

hand (e.g., stabilization, tracking), and the primary focus is on minimizing the number of

transmissions while guaranteeing the control objectives and the feasibility of the resulting real-

time implementation. While the majority of this literature relies on the assumption of continuous

availability and infinite precision of the communication channel, recent works also explore event-

triggered implementations in the presence of data-rate constraints [99,107,109,147,187,210], and

packet drops [41, 154, 189]. In this context, one important observation raised in [99] is that using

event-triggering it is possible to “beat” the data-rate theorem. Namely, if the channel does not

introduce any delay and the controller knows the triggering mechanism, then an event-triggering

strategy can achieve stabilization for any positive rate of transmission. This apparent contradiction

can be explained by noting that the timing of the triggering events carries information, revealing

the state of the system. When communication occurs without delay, the controller can track

the state with arbitrary precision, and transmitting a single data payload bit at every triggering

event is enough to compute the appropriate control action. The works [99] take advantage of

this observation to show that any positive rate of transmission is sufficient for stabilization when

the delay is sufficiently small. In contrast, the work in [187] studies the problem of stabilization

using an event-triggered strategy, but it does not exploit the implicit timing information carried

by the triggering events. The recent work in [119] studies the required information transmission

rate for containability [206] of scalar systems, when the delay in the communication channel

is at most the inverse of the intrinsic system’s entropy rate. Finally, [88] compares the results
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presented here with those of a time-triggered implementation.

The main contribution of this chapter is the precise quantification of the amount of

information implicit in the timing of the triggering events across the whole spectrum of possible

communication delay values, and the use of both timing information and data payload for

stabilization. For a given event-triggering strategy, we derive necessary and sufficient conditions

for the exponential convergence of the state estimation error and the stabilization of the plant,

revealing a phase transition behavior of the transmission rate as a function of the delay. Key to

our analysis is the distinction between the information access rate, that is the rate at which the

controller needs to receive information, conveyed by both data payload and timing information

and regulated by the classic data-rate theorem; and the information transmission rate, that is the

rate at which the sensor needs to send data payload, that is affected by channel delays, as well as

design choices such as event-triggering or time-triggering strategies. We show that for sufficiently

low values of the delay, the timing information carried by the triggering events is large enough and

the system can be stabilized with any positive information transmission rate. At a critical value of

the delay, the timing information carried by the triggering events is not enough for stabilization,

and the required information transmission rate begins to grow. When the delay reaches the inverse

of the entropy rate of the plant, the timing information becomes completely obsolete, and the

required information transmission rate becomes larger than the information access rate imposed

by the data-rate theorem. We also provide necessary conditions on the information access rate for

asymptotic stabilizability and observability with exponential convergence guarantees; necessary

conditions on the information transmission rate for asymptotic observability with exponential

convergence guarantees; as well as a sufficient condition with the same asymptotic behavior. We

consider both scalar and vector linear systems without disturbances.
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2.2 Problem formulation

Here we describe the system evolution, the model for the communication channel, and

the event-triggering strategy.

2.2.1 System model

We consider the standard networked control system model composed of the plant-sensor-

channel-controller tuple depicted in Figure 2.1. We start with a scalar, continuous-time, linear

time-invariant (LTI) system, and then extend the model to the vector case.

Figure 2.1: System model. The sensor can measure the full state of the system and the
controller applies the input with infinite precision and without delay. The communica-
tion channel only supports a finite rate and is subject to delay.

The plant dynamics are described by

ẋ(t) = Ax(t) +Bu(t), (2.1)

where x(t) ∈ R and u(t) ∈ R for t ∈ [0,∞) are the system state and control input, respectively.

Here, A is a positive real number, B is a nonzero real number, and |x(0)| < L is any bounded

initial condition, where L is known to both sensor and controller. The sensor can measure the

state of the system perfectly, and the controller can apply the control input with infinite precision

and without delay. However, the sensor and the controller communicate through a channel that

can support only a finite communication rate and is subject to delay. At each triggering event, the
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sensor can transmit a packet composed of a finite number of bits, representing a quantized version

of the state, through the communication channel, which is received by the controller entirely and

without error, after an unknown, bounded delay, as described next.

2.2.2 Triggering strategy and controller dynamics

We denote by {tks}k∈N the sequence of times at which the sensor transmits to the controller

a packet composed of g(tks) bits representing the state of the plant. For every k ∈ N, we let tkc

be the time at which the controller receives the packet that the sensor transmitted at time tks . We

assume a uniform upper bound, known to both the sensor and the controller, on the unknown

communication delays

∆k = tkc − tks ≤ γ, (2.2)

and denote the kth triggering interval by

∆′k = tk+1
s − tks .

We assume the upper bound on the communication delays in (2.2) to be independent of the packet

size. When referring to a generic triggering time or reception time, for notational convenience

we omit the superscript k in tks and tkc . Our model does not assume any a priori probability

distribution for the delay, and our results hold for any random communication delay with bounded

support.

From the data received from the sensor, and from the timing at which the data is received,

the controller maintains an estimate x̂ of the plant state, which starting from x̂(tk+
c ) evolves during
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the inter-reception times as

˙̂x(t) = Ax̂(t) +Bu(t), t ∈ [tkc , t
k+1
c ]. (2.3)

The controller then computes the control input u(t) based on this estimate. The sensor can

compute the same estimate x̂(t) for the plant state at the controller via communication through

the control input [164]. Namely, assuming that the input has been computed by the controller

as u(t) = µ(x̂(t)), where µ an invertible function known to both parties, the sensor can first

compute u(t) = (ẋ(t)− Ax(t))/B and then compute x̂(t) by inversion.

The state estimation error computed at the sensor is then

z(t) = x(t)− x̂(t).

Initially, we let x(0)− x̂0 = z(0). Without updated information from the sensor, this error grows,

and the system can potentially become unstable. The sensor should, therefore, select the sequence

of transmission times {tks}k∈N, the packet sizes {g(tks)}k∈N and the corresponding quantization

strategy used to determine the data payload, so that the controller can ensure stability. This choice

requires a certain communication rate available in the channel, which we wish to characterize.

To select the transmission times, we adopt an event-triggering approach. Consider the

event-triggering function known to both sensor and controller

v(t) = v0e
−σt, (2.4)

where v0 and σ are positive real numbers. A transmission occurs whenever

|z(t)| = v(t). (2.5)
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Upon reception of the packet, the controller updates the estimate of the state according to the

jump strategy

x̂(t+c ) = z̄(tc) + x̂(tc), (2.6)

where z̄(tc) is an estimate of z(tc) constructed by the controller knowing that |z(ts)| = v(ts), the

bound (2.2), and the decoded packet received through the communication channel. It follows that

|z(t+c )| = |x(tc)− x̂(t+c )| = |z(tc)− z̄(tc)|.

We also point out that if the control law is not invertible, the sensor can perform the same

computation of the controller to obtain x̂(t+c ), provided that it can infer the reception times from

jumps in the control input.

By transmitting when the state estimation error |z(t)| reaches the threshold |v(t)|, the

sensor effectively encodes information in timing using the event-triggering rule (2.5). On the

other hand, the data payload of the transmissions also carries information, and the sensor can

choose any arbitrary, finite-precision quantization of the state to construct the data payload as

long as it ensures that, for all tc ∈ [ts, ts + γ],

|z(t+c )| = |z(tc)− z̄(tc)| ≤ ρ(ts) := ρ0e
−σγv(ts), (2.7)

where 0 < ρ0 < 1 is a given design parameter. Note that v(tc) = v0e
−σtc ≥ v0e

−σtse−σγ =

v(ts)e
−σγ , and hence (2.7) ensures that at each triggering event the estimation error drops below

the triggering function, namely

|z(t+c )| ≤ ρ0v(tc).
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Consequently, the sequence of transmission times {tks}k∈N is monotonically increasing, i.e.,

∆′k > 0 for all k ∈ N. Moreover, based on ż = Az and (2.5), a new transmission occurs only

after the previous packet has been delivered to the controller, that is tk+1
s > tkc . Additionally,

using ż = Az and (2.2), we deduce

|z(tc)| ≤ v(ts)e
Aγ ≤ v0e

−σ(tc−γ)eAγ

= v0e
(A+σ)γe−σtc . (2.8)

From (2.7) and (2.8), it follows that the described triggering strategy ensures an expo-

nentially decaying estimation error. The design parameter ρ0 regulates the resolution of the

quantization, and hence the size of the transmitted packets; as well as the magnitude of the jumps

below the triggering function, and hence the triggering rate. These also depend on the delay,

which governs the amount of overshoot of the estimation error above the triggering function, see

Figure 2.2.

The design parameter v0 determines the initial condition of the estimation error when the

first triggering event occurs. For any given 0 < ρ0 < 1, and 0 < v0 < ∞, our objective is to

determine the rate required to achieve these exponential bounds for all possible delay realizations,

and then provide an explicit quantization strategy that satisfies these bounds.

2.2.3 Information transmission rate

To define the transmission rate, we take the viewpoint of the sensor and examine the

amount of information that it needs to transmit so that the controller is able to stabilize the system.

Let bs(t) be the number of bits in the data payload transmitted by the sensor up to time t, and

define the information transmission rate as

Rs = lim sup
t→∞

bs(t)

t
.
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Figure 2.2: Evolution of the state estimation error |zld(t)| for a larger delay upper bound
γ = 1.2, and |zsd(t)| for a smaller delay upper bound γ = 0.9. Here, A = 1, σ = 0.1,
and ρ0 = 0.1. The dashed exponential decaying curve represents the triggering function
v(t) = 0.27e−σt. A larger delay corresponds to a larger overshoot of the estimation error
above the triggering function and higher uncertainty about the state at the controller.
Since γ regulates the resolution of the quantization (2.7) in an exponential manner,
larger delay corresponds to larger jumps under the triggering function upon reception of
the packet.

Since at every triggering time, tks the sensor sends g(tks) data payload bits, we have

Rs = lim sup
N→∞

∑N
k=1 g(tks)∑N
k=1 ∆′k

. (2.9)

We now make two key observations. First, in the presence of unknown communication delays,

the state estimate received by the controller might be out of date so that the sensor might need to

send data at a higher rate than what is needed on a channel without delay. Second, in the presence

of event-triggered transmissions, the timing of the triggering events carries implicit information.

For example, if the communication channel does not introduce any delay, and assuming that

the sensor and the controller can keep track of time with infinite precision, then the time of a

triggering event reveals the system state up to a sign, since according to (2.5),

x(t) = x̂(t)± v(t).
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It follows that in this case, the controller can stabilize the system even if the sensor uses the

channel very sparingly, transmitting a single data payload bit at a triggering event, that is at a

much smaller rate than what needed in any time-triggered implementation. In general, there is a

trade-off between the information gain due to triggering timing, and the information loss due to

the delay. As we shall see below, this leads to a phase transition in the minimum rate required to

satisfy (2.7) and as a consequence (2.8).

Finally, it is worth pointing out that the exponential convergence of the state estimation

error to zero implies the asymptotic stabilizability of the system.

2.2.4 Information access rate

We now consider the viewpoint of the controller and examine the amount of information

that it needs to receive from the plant to be able to stabilize the system. We define bc(t) to be the

amount of information, measured in bits, conveyed by both data payload and timing information,

received by the controller up to time t. We define the information access rate as

Rc = lim sup
t→∞

bc(t)

t
.

Remark1.We do not consider the bounded delays (2.2) to be chosen from any specific distribution.

Thus, the information that can be gained about the triggering time ts from the reception time tc

may be quantified by the Rényi 0th-order information functional I0 [138, 177]. Assuming the

controller has received N packet by time t, we deduce bc(t) =
∑N

k=1

(
g(tks) + I0(tks ; t

k
c )
)
. •

Classic data-rate theorems describe the information access rate required to stabilize the system.

They are generally stated for discrete-time systems, albeit similar results hold in continuous time

as well, see e.g. [70]. They are based on the fundamental observation that there is an inherent
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entropy rate

h =
A

ln 2
,

at which the system generates information. It follows that for the system to be stabilizable the

controller must have access to state information at a rate

Rc ≥ h. (2.10)

This result indicates what is required by the controller, and it does not depend on the feedback

structure — including aspects such as communication delays, information pattern at the sensor

and the controller, and whether the times at which transmissions occur are state-dependent, as in

event-triggered control, or periodic, as in time-triggered control.

2.3 Necessary condition on the access rate

In this section, we quantify the amount of information that the controller needs to ensure

exponential convergence of the state estimation error or the state to zero, independently of the

feedback structure used by the sensor to decide when to transmit. The result obtained here

generalizes (2.10) and establishes a common ground to compare later against the results for the

information transmission rate, which depend on the given policy adopted by the sensor. The

proof follows, with minor modifications, the argument in [191, Propositions 3.1 and 3.2] for

discrete-time systems.

Theorem1. Consider the plant-sensor-channel-controller model described in Section 2.2.1, with

plant dynamics (2.1), and state estimation error z(t), and let σ > 0. The following necessary

conditions hold:
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1. If the state estimation error satisfies

|z(t)| ≤ |z(0)| e−σt,

then

bc(t) ≥ t
A+ σ

ln 2
+ log

L

|z(0)|
. (2.11)

2. If the system is stabilizable and

|x(t)| ≤ |x(0)| e−σt,

then

bc(t) ≥ t
A+ σ

ln 2
. (2.12)

In both cases, the necessary information access rate is

Rc ≥
A+ σ

ln 2
. (2.13)

Proof. From (2.1), we have

x(t) = eAtx(0) + α(t), (2.14a)

α(t) = eAt
∫ t

0

e−AτBu(τ)dτ . (2.14b)
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Using (2.14a) we define the uncertainty set at time t

Γt = {x ∈ R : x = eAtx(0) + α(t) and x(0) ∈ B(L)}.

The state of the system can be any point in this uncertainty set. Letting ε(t) = |z(0)| e−σt, we can

then find a lower bound on bc(t) by counting the number of one-dimensional balls of radius ε(t)

that cover Γt. Specifically,

bc(t) ≥ log
m(Γt)

m(B(ε(t)))
= log

eAtm(B(L))

2|z(0)| e−σt

= t log eA+σ + log
L

|z(0)|
,

which proves (i).

To prove (ii), for any given control trajectory {u(τ)}τ∈[0,t], define the set of initial condi-

tions for which the plant state x(t) tends to zero exponentially with rate σ, i.e.,

Π{u(τ)}τ∈[0,t]
= {x(0) ∈ B(L) : |x(t)| ≤ |x(0)| e−σt}.

By (2.14b) x(t) depends linearly on {u(τ)}τ∈[0,t], so that all the sets Π{u(τ)}τ∈[0,t]
are linear

transformations of each other. The measure of Π{u(τ)=0}τ∈[0,t]
is 2|x(0)|e−Ate−σt, which is upper

bounded by 2Le−Ate−σt. Hence, this quantity also upper bounds the measure of each Π{u(τ)}τ∈[0,t]
.

It follows that we can determine a lower bound for bc(t) by counting the number of sets of

measure 2Le−Ate−σt required to cover the ball |x(0)| ≤ L, and we have

bc(t) ≥ log
2L

2Le−(A+σ)t
= t

A+ σ

ln 2
,

showing (ii). Finally, (2.13) follows by dividing (2.11) and (2.12) by t and taking the limit for

t→∞.
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Remark2. Theorem 1 is valid for any control scheme, and the controller does not necessarily

have to compute the state estimate following (2.3). This result can be viewed as an extension of

the data-rate theorem with exponential convergence guarantees. It states that to have exponential

convergence of the estimation error and the state, the access rate should be larger than the

estimation entropy, the latter concept having been recently introduced in [116]. A similar result

for continuous-time systems appears in [187], but only for linear feedback controllers. In fact, this

work shows that the bound in (2.13) is also sufficient for scalar systems when the controller does

not use any timing information about the triggering events. The classic formula of the data-rate

theorem (2.10) [141, 191], can be derived as a special case of Theorem 1 by taking σ → 0 and

using continuity. •

2.4 Necessary and sufficient conditions on the transmission

rate

In this section, we determine necessary and sufficient conditions on the transmission rate

for the exponential convergence of the estimation error under the event-triggered control strategy

described in Section 2.2.1. We start by observing that in an event-triggering implementation, the

transmission times and the packet sizes are state-dependent. Thus, there may be some initial

conditions and delay realizations for which both the necessary and sufficient transmission rates

are arbitrarily small. For this reason, we provide results that hold in worst-case conditions, namely

accounting for all possible realizations of the delay and initial conditions, without assuming any a

priori distribution on these realizations.
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2.4.1 Necessary condition on the transmission rate

Here we quantify the necessary rate at which the sensor needs to transmit to ensure the

exponential convergence of the estimation error to zero under the given event-triggering strategy.

This rate depends on the number of bits that the sensor transmits at each triggering event, as well

as the frequency with which transmission events occur, according to the triggering rule. Our

strategy to obtain a necessary rate consists of appropriately bounding each of these quantities.

To obtain a lower bound on the number of bits transmitted at each triggering event,

consider the uncertainty set of the sensor about the estimation error at the controller, z(tc), given

ts

Ω(z(tc)|ts) = {y : y = ±v(ts)e
A(tc−ts), tc ∈ [ts, ts + γ]}.

On the other hand, consider the uncertainty from the point of view of the controller about z(tc),

given tc

Ω(z(tc)|tc) = {y : y = ±v(t̄r)e
A(tc−t̄r), t̄r ∈ [tc − γ, tc]}.

Clearly, for any tc ∈ [ts, ts + γ], we have Ω(z(tc)|tc) 6= Ω(z(tc)|ts), namely there is a mismatch

between the uncertainties at the controller and at the sensor. The next result shows that the

uncertainty at the sensor is always smaller than the one at the controller.

Lemma1. Consider the plant-sensor-channel-controller model described in Section 2.2.1, with

plant dynamics (2.1), estimator dynamics (2.3), event-triggering function (2.4), triggering strat-

egy (2.5), and jump strategy (2.6). Then, Ω(z(tc)|ts) ⊆ Ω(z(tc)|tc).

Proof. The uncertainty set of the sensor can be expressed as

Ω(z(tc)|ts) = [v(ts), v(ts)e
Aγ] ∪ [−v(ts)e

Aγ,−v(ts)].
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Noting that for any tc ∈ [ts, ts + γ], v(t̄r)e
A(tc−t̄r) is a decreasing function of t̄r, we have

Ω(z(tc)|tc) =

[v(tc), v(tc)e
(A+σ)γ] ∪ [−v(tc)e

(A+σ)γ,−v(tc)].

The result now follows by noting that, since v is a decreasing function, for all tc ∈ [ts, ts + γ] we

have v(ts) ≥ v(tc) and v(ts)e
Aγ ≤ v(tc)e

(A+σ)γ .

To ensure that (2.7) holds, the controller needs to reduce the state estimation error z(tc)

to within an interval of radius ρ(ts). From Lemma 1, this implies that the sensor needs to cover at

least the uncertainty set Ω(z(tc)|ts) with one-dimensional balls of radius ρ(ts). This observation

leads us to the following lower bound on the number of bits that the sensor must transmit at every

triggering event.

Lemma2. Under the assumptions of Lemma 1, if (2.7) holds for all k ∈ N, then the packet size

at every triggering event must satisfy

g(tks) ≥ max

{
0, log

(eAγ − 1)

ρ0e−σγ

}
. (2.15)

Proof. We compute the number of bits that must be transmitted to guarantee that the sensor

uncertainty set Ω(z(tc)|ts) is covered by balls of radius ρ(ts). Define χγ = {y : y = eAt, t ∈

[0, γ]}. Since g(ts) is the packet size, it is non-negative. Hence, g(ts) ≥ max
{

0, Hρ(ts)

}
, where

Hρ(ts) := log
m(Ω(z(tc)|ts))
m(B(ρ(ts)))

= log
2v(ts)m(χγ)

2ρ0e−σγv(ts)

= log
2v(ts)(e

Aγ − 1)

2ρ0e−σγv(ts)
, (2.16)

and the result follows.
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Our next goal is to characterize the frequency with which transmission events are triggered.

We define the triggering rate

Rtr = lim sup
N→∞

N∑N
k=1 ∆′k

. (2.17)

First, we provide an upper bound on the triggering rate that holds for all initial conditions and

possible communication delays upper bounded by γ.

Lemma3. Under the assumptions of Lemma 1, if (2.7) holds for all k ∈ N, then the triggering

rate is upper bounded as

Rtr ≤
A+ σ

− ln(ρ0e−σγ)
. (2.18)

Proof. Consider two successive triggering times tks and tk+1
s and the reception time tkc . We have

tks ≤ tkc ≤ tk+1
s . From (2.1) and (2.3), we have ż(t) = A(x(t)− x̂(t)) = Az(t). The triggering

time tk+1
s is defined by

|z(tk+
c )eA(tk+1

s −tkc )| = v(tk+1
s ). (2.19)

From (2.7), we have

ρ0e
−σγv(tks)e

A(tk+1
s −tkc ) ≥ v(tk+1

s ).

Using (2.4) and tks ≤ tkc , it follows that

ρ0e
−σγv0e

−σtkseA(tk+1
s −tks ) ≥ v0e

−σtk+1
s ,
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and after some algebra we obtain

(A+ σ)(tk+1
s − tks) ≥ − ln(ρ0e

−σγ).

We then have the uniform lower bound for all k ∈ N

∆′k = tk+1
s − tks ≥

− ln(ρ0e
−σγ)

A+ σ
, (2.20)

which substituted into (2.17) leads to the desired upper bound on the triggering rate.

Remark3. In addition to providing an upper bound on the triggering rate, Lemma 3 also shows

that our event-triggered scheme does not exhibit “Zeno behavior” [79], namely the occurrence of

infinitely many triggering events in a finite time interval. This follows from the uniform lower

bound for all k ∈ N on the size of triggering interval in (2.20). •

If ∆k = 0 and |z(tk+
c )| = ρ0e

−σγv(ts) for all k ∈ N, then the upper bound on the

triggering rate in Lemma 3 is tight. Our next goal is to provide a lower bound on the triggering

rate that holds for a given initial condition and delay value. To obtain a nontrivial lower bound,

we need to restrict the class of allowed quantization policies used to construct the data payload.

We assume that, at each triggering event, there exists a delay such that the sensor can reduce

the estimation error at the controller to at most a fraction of the maximum value ρ(ts) required

by (2.7). This is a natural assumption, and in practice corresponds to assuming an upper bound

on the size of the packet that the sensor can transmit at every triggering event and hence on the

precision of the quantization strategy. Without such a bound, a packet may carry an unlimited

amount of information, the quantization error may become arbitrary small, and |z(t+c )| may

become arbitrarily close to zero for all delay values, resulting in a triggering rate arbitrarily close

to zero. The next assumption precludes such an unrealistic scenario.

Assumption 1 The controller can only achieve ν-precision quantization. Formally, letting
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β = 1
A

ln(1 + 2ρ0e
−σγ), we assume there exists a delay realization {∆k ≤ β}k∈N, an initial

condition x(0), and a real number ν ≥ 1, such that for all k ∈ N

|z(tkc )− z̄(tkc )| ≥
ρ(tks)

ν
. (2.21)

The upper bound β on the delay in Assumption 1 corresponds to the time required for the

state estimation error to grow from z(ts) to z(ts) + 2ρ(ts). In fact,

z(tc) = z(ts)e
Aβ = z(ts)(1 + 2ρ0e

−σγ),

from which it follows that

z(tc)− z(ts) = 2z(ts)ρ0e
−σγ,

and since z(ts) = ±v(ts), we have

|z(tc)− z(ts)| = 2ρ(ts).

To ensure (2.7), the size of the quantization cell should be at most 2ρ(ts). As the delay takes

values in [0, β], the value of z(tc) sweeps an area of measure 2ρ(ts). It follows that Assumption 1

corresponds to the existence of a value of the communication delay for which the uncertainty ball

about the state shrinks from having a radius at most ρ(ts) to having a radius at least ρ(ts)/ν. With

this assumption in place, we can now compute the desired lower bound on the triggering rate.

Lemma4. Under the assumptions of Lemma 1, if (2.7) holds with ν-precision for all k ∈ N, then

there exists a delay realization {∆k}k∈N and an initial condition such that

Rtr ≥
A+ σ

ln ν + ln(2 + eσγ

ρ0
)
.
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Proof. By Assumption 1, for all k ∈ N there exists a delay ∆k ≤ β such that

|z(tk+
c )| ≥ (1/ν)ρ0v(tks)e

−σγ.

From the definition of the triggering time tk+1
s in (2.19), we also have

(1/ν)ρ0e
−σγv(tks)e

A(tk+1
s −tks−∆k) ≤ v(tk+1

s ).

Noting that for all k ∈ N, ∆k ≤ β, we have

(1/ν)ρ0e
−σγv(tks)e

A(tk+1
s −tks−β) ≤ v(tk+1

s ).

By dividing both sides by (1/ν)ρ0e
−σγ and using the definition of triggering function, we obtain

e(A+σ)(tk+1
s −tks ) ≤ 1

(1/ν)ρ0e−σγe−Aβ
.

Taking the logarithm, we get

∆′k = tk+1
s − tks ≤

− ln((1/ν)ρ0e
−σγ) + Aβ

A+ σ
. (2.22)

By substituting (2.22) into (2.17), we finally have

Rtr ≥ lim
N→∞

1
− ln((1/ν)ρ0e−σγ)

A+σ
+ A

A+σ
β

=
A+ σ

ln ν − ln(ρ0e−σγ) + ln(1 + 2ρ0e−σγ)

=
A+ σ

ln ν + ln(2 + eσγ

ρ0
)
.
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We can now combine Lemma 2 and Lemma 4 to obtain a lower bound on the information

transmission rate.

Theorem2. Under the assumptions of Lemma 1, if (2.7) holds with ν-precision for all k ∈ N,

then there exists a delay realization {∆k}k∈N and an initial condition such that

Rs ≥
A+ σ

ln ν + ln(2 + eσγ

ρ0
)

max

{
0, log

(eAγ − 1)

ρ0e−σγ

}
. (2.23)

Remark4. Theorem 2 provides a necessary transmission rate for the exponential convergence of

the estimation error to zero using our event-triggering strategy. By noting that the lower bound

in (2.23) does not depend on v0, it is easy to check that as σ → 0, this result also gives a necessary

condition for asymptotic stability, although it does not provide an exponential convergence

guarantee of the state. •

2.4.2 Phase transition behavior

We now show a phase transition for the rate required for stabilization expressed in Theorem

2. By combining Lemmas 3 and 4, we have

A+ σ

ln ν + ln(2 + 1
ρ0e−σγ

)
≤ Rtr ≤

A+ σ

− ln(ρ0e−σγ)
.

It follows that if ρ0 � eσγ/max{2, ν}, we can neglect the value of 2 inside the logarithm in the

left-hand side, as well as ln ν, and we have

Rtr ≈
A+ σ

− ln(ρ0e−σγ)
.
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γ

Rs

γeq =
ln 2

A

A+ σ

ln 2

γc

Figure 2.3: Illustration of the phase transition behavior in (2.24). Rs is measured in
bits/sec, and γ is measured in sec. The plot is valid for a generic system and design
parameters. In this specific example, we have chosen A = 5, σ = 3, and ρ0 = 0.7.
Consequently, (A+ σ)/ ln 2 = 11.5416, ln 2/A = 0.1386, and γc = 0.0864.

In this case, the necessary condition on the transmission rate can be approximated as

Rs ≥
A+ σ

ln 2
max

{
0, 1 +

log(eAγ − 1)

− log(ρ0e−σγ)

}
. (2.24)

We use this approximation to discuss the phase transition behavior. The approximation clearly

holds for large values of the delay upper bound γ. It also holds for small values of γ, since in this

case both (2.23) and (2.24) tend to zero. For intermediate values of γ, the approximation holds

for large values of the convergence rate σ. The phase transition is illustrated in Figure 2.3.

We make the following observations. For small values of γ, the amount of timing

information carried by the triggering events is higher than what is needed to stabilize the system

and the value of Rs is zero. This means that if the delay is sufficiently small, then only a positive

transmission rate is required to track the state of the system and the controller can successfully

stabilize the system by receiving a single bit of information at every triggering event. This

situation persists until a critical value γ = γc is reached. This critical value is the solution of the
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Figure 2.4: Illustration of the phase transition behavior in (2.24) for different values of
ρ0. Rs is measured in bits/sec, and γ is measured in sec. The plots are valid for a generic
system and design parameters. In this specific example, we have chosen A = 1, and
σ = 0.5. Therefore, (A+ σ)/ ln 2 = 2.1640, ln 2/A = 0.6931, A+σ

ln 2
(1 + A

σ
) = 6.4921

.

equation

eAγ − ρ0e
−σγ = 1.

For this level of delay, the timing information of the triggering events becomes so much out of

date that the transmission rate must begin to increase.

When γ reaches the equilibrium point γeq = ln 2/A, which equals the inverse of the

intrinsic entropy rate of the system, the timing information carried by the triggering events

compensates exactly the loss of information due to the delay introduced by the communication

channel. This situation is analogous to having no delay, but also no timing information. It follows

that in this case the required transmission rate matches the access rate in Theorem 1, and we have

Rs = (A+ σ)/ ln 2.

When γ is increased even further, then the timing information carried by event triggering
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is excessively out of date and cannot fully compensate for the channel’s delay. The required

transmission rate then exceeds the access rate imposed by the data-rate theorem. In this case, a

more precise estimate of the state must be sent at every triggering time to compensate for the

larger delay. Another interpretation of this behavior follows by considering the definition Hρ(ts)

in (2.16). The value γ = γeq = ln 2/Amarks a transition point forHρ(ts) from negative to positive

values. For γ > γeq event triggering does not supply enough information and Hρ(ts) presents a

positive information balance in terms of the number of bits required to cover the uncertainty set.

On the other hand, for γ < γeq, event triggering supplies more than enough information, and

Hρ(ts) presents a negative information balance. We can then think of event triggering as a “source”

supplying information, the controller as a “sink” consuming information, and Hρ(ts) as measuring

the balance between the two, indicating whether additional information is needed in terms of

quantized observations sent through the channel.

Finally, Figure 2.4 illustrates the phase transition for different values of ρ0. For γ < γeq,

since according to (2.18) smaller values of ρ0 imply fewer triggering events, it follows that curves

associated to smaller values of ρ0 must have larger transmission rates to compensate for the lack

of timing information. On the other hand, for γ > γeq the situation is reversed. The timing

information carried by the triggering events is now completely exhausted by the delay, and the

controller relies only on the state information contained in the quantized packets. Since, according

to (2.15), smaller values of ρ0 imply larger packets sent through the channel and, for each value of

the delay, the information in the larger packets becomes out of date at a slower rate than that in the

smaller packets, it follows that in this case curves associated to smaller values of ρ0 correspond to

smaller transmission rates. Finally, we observe that all curves have the same asymptotic behavior

for large values of γ, which is independent of ρ0. This occurs because as γ increases, more

information needs to be sent through the channel and also the triggering rate decreases. Taking

both effects into account yields the asymptotic value of the transmission rate A+σ
ln 2

(1 + A
σ

).

Remark5. The value of γc is a threshold distinguishing whether (2.23) is zero or strictly positive.
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This threshold tends to γeq = ln 2/A as σ → 0 and ρ0 → 1. This is consistent with the fact that

in this case there is only an asymptotic convergence guarantee (not an exponential one), and

when the delay upper bound γ is at most the inverse of entropy rate of the system only a positive

transmission rate is necessary for stabilization. •

2.4.3 Sufficient condition on the transmission rate

We now determine a sufficient transmission rate for the exponential convergence of the

state estimation error using the event-triggering strategy described in Section 2.2.2.

In our strategy, we let the sensor send a packet consisting of the sign of z(ts) and a

quantized version of ts to the controller. Using the bound (2.2), and the decoded packet, the

controller constructs q(ts), a quantized version of ts. The controller then estimates z(tc) as

follows

z̄(tc) = sign(z(ts))v(q(ts))e
A(tc−q(ts)). (2.25)

The next result provides a bound on the error in the time quantization that guarantees that the

requirements of the design are satisfied.

Lemma5. Under the assumptions of Lemma 1, using (2.25), if

|ts − q(ts)| ≤
1

A+ σ
ln(1 + ρ0e

−(σ+A)γ) (2.26)

then (2.7) holds.
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Proof. Using (2.25), it follows that

|z(tc)−z̄(tc)| (2.27)

= v(ts)e
A(tc−ts)

∣∣∣∣1− v(q(ts))

v(ts)
eA(ts−q(ts))

∣∣∣∣
= v(ts)e

A(tc−ts)
∣∣∣∣1− v0e

−σq(ts)

v0e−σts
eA(ts−q(ts))

∣∣∣∣
= v(ts)e

A(tc−ts)
∣∣1− e(A+σ)(ts−q(ts))

∣∣ .
As a consequence, (2.7) may be expressed as

|1− e(A+σ)(ts−q(ts))| ≤ ρ0e
−σγe−A(tc−ts).

The smallest possible value of e−A(tc−ts) for (tc − ts) ∈ [0, γ] is e−Aγ . Therefore, by ensuring

∣∣1− e(A+σ)(ts−q(ts))
∣∣ ≤ ρ0e

−(σ+A)γ, (2.28)

we can also ensure (2.7). The condition in (2.28) can be rewritten as

1− ρ0e
−(σ+A)γ ≤ e(A+σ)(ts−q(ts)) ≤ 1 + ρ0e

−(σ+A)γ.

Taking logarithms and dividing by (A+ σ), we obtain

1

A+ σ
ln(1− x′) ≤ ts − q(ts) ≤

1

A+ σ
ln(1 + x′),

where x′ = ρ0e
−(σ+A)γ . It follows that to satisfy (2.7) for all delay values it is enough that

|ts − q(ts)| ≤ min{| 1

A+ σ
ln(1− x′)|, | 1

A+ σ
ln(1 + x′)|}.
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The result now follows.

The next result presents a sufficient transmission rate, along with the design that meets it.

Theorem3. Under the assumptions of Lemma 1, if the state estimation error satisfies |z(0)| < v0,

then for any information transmission rate

Rs ≥
A+ σ

− ln(ρ0e−σγ)
max

{
0, 1 + log

bγ(A+ σ)

ln(1 + ρ0e−(σ+A)γ)

}
, (2.29)

where b > 1, there exists a quantization policy that achieves (2.7) for all k ∈ N (and consequently

|z(t)| ≤ v0e
(A+σ)γe−σt).

Proof. Our proof strategy is as follows. We design a quantizer to construct a packet of length g(ts)

that the sensor sends to the controller. Using this packet, the decoder reconstructs the quantized

version q(ts) of ts satisfying (2.26). The result then follows from Lemma 5 and quantifying the

associated transmission rate.

In our construction, the first bit of the packet determines the sign of z(ts), i.e., whether

z(ts) = +v(ts) or z(ts) = −v(ts). For quantizing ts, we first divide the whole positive time

line in sub-intervals of length bγ. Recall that the controller receives a packet at time tc, and

ts ∈ [tc − γ, tc]. Noting that bγ > γ, upon the reception of the packet at time tc the decoder

identifies two consecutive sub-intervals of length bγ that ts can belong to — the second bit of the

packet is mod
(
b ts
bγ
c, 2
)

, which informs the decoder that ts ∈ [ιbγ, (ι + 1)bγ] for some fixed ι.

The encoder divides this interval uniformly into 2g(ts)−2 sub-intervals, one of which contains ts.

After receiving the packet, the decoder determines the correct sub-interval and chooses q(ts) as

the middle point of it. With this strategy, we have

|ts − q(ts)| ≤
bγ

2g(ts)−1
. (2.30)
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Hence, from Lemma 5, it is enough to ensure

bγ

2g(ts)−1
≤ 1

A+ σ
ln(1 + ρ0e

−(σ+A)γ),

to guarantee that (2.7) holds. This is equivalent to

g(ts) ≥ max

{
0, 1 + log

bγ(A+ σ)

ln(1 + ρ0e−(σ+A)γ)

}
. (2.31)

The characterization (2.29) of the transmission rate now follows from using this bound and the

uniform upper bound on the triggering rate (2.18).

Theorem 3 ensures the exponential convergence of the state estimation error. The follow-

ing result shows that (2.29) is sufficient for asymptotic stabilizability when employing a linear

controller.

Corollary1. Under the assumptions of Theorem 3, (2.29) is also a sufficient condition for

asymptotic stabilizability.

Proof. With u(t) = −Kx̂(t), we can rewrite (2.1) as

ẋ(t) = (A−BK)x(t) +BKz(t).

As a consequence, we have

x(t) = e(A−BK)tx(0) + e(A−BK)t

∫ t

0

e−(A−BK)τBKz(τ)dτ.

According to Theorem 3, (2.29) is sufficient to guarantee limt→∞ z(t) = 0. Since B 6= 0 one

can choose K such that A − BK < 0, and it follows that criterion (2.29) is also sufficient for

limt→∞ x(t) = 0. Stability can also be guaranteed from the above expression.

It should be clear that if the quantization policy designed for establishing Theorem 3
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satisfies Assumption 1, then the number of bits transmitted at each triggering time is finite.

We conclude this section by providing a condition under which the designed policy satisfies

Assumption 1.

Theorem4. Under the assumptions of Lemma 1, let ν ≥ 2, and let the number of bits in each

transmitted packet be a constant g(tks) = g. If g satisfies the lower bound (2.31) and the upper

bound

g ≤ log
bγ(A+ σ)∣∣∣∣∣∣∣∣ln

1− 1

(ν−1)

2+
1

ρ0e−σγ




∣∣∣∣∣∣∣∣
, (2.32)

and
1− e−(A+σ) δ

2

1− e−(A+σ) δ
4

≥ e(A+σ) 3δ
4 , (2.33)

where δ = bγ/2g−2, then the quantization policy used in Theorem 3 satisfies Assumption 1 at

every triggering time.

Proof. The proof follows from the following two claims.

Claim (a): For all k ∈ N, if tks satisfies

−δ
2

= − bγ

2g−1
≤ tks − q(tks) ≤ −

bγ

2g
= −δ

4
, (2.34)

then there exists a delay ∆k ≤ β such that (2.21) is satisfied.

Claim (b): The sequence of transmission times {tks} is uniquely determined by the initial

condition z(0) and there exists a z(0) such that for each k ∈ N, tks satisfies (2.34).

We first prove Claim (a). Note that when the sensor transmits g bits, lower bounded

by (2.31), the upper bound on the quantization error (2.30) holds and thus (2.34) is well defined.
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From (2.34) and (2.32), we have

tks − q(tks) ≤
1

A+ σ
ln

(
1− 1

(ν − 1)(2 + 1
ρ0e−σγ

)

)
,

where we have used the fact that ν ≥ 2 to simplify the absolute value. We rewrite this inequality

as

1− e(A+σ)(tks−q(tks )) ≥ ρ0e
−σγ

(ν − 1)(1 + 2ρ0e−σγ)
> 0.

Thus, from (2.27), we see that

|z(tkc )− z̄(tkc )| ≥ v(tks)e
A∆k

ρ0e
−σγ

(ν − 1)(1 + 2ρ0e−σγ)

≥ ρ(tks)

ν
eA(∆k−β+ln( ν

ν−1
))

≥ ρ(tks)

ν
, ∀∆k ∈

[
β − ln

(
ν

ν − 1

)
, β

]
,

where in the second inequality, we have used the definition of ρ(tks) in (2.7). This proves Claim (a).

We now prove Claim (b). First, we need to determine the dependence of tk+1
s on tks and

∆k. Recall the triggering rule (2.5), which we express as v(tks)e
−σ∆′k = |z(tk+

c )|eA(∆′k−∆k) =

v(tks)|1 − e(A+σ)(tks−q(tks ))|eA∆′k , where we have used the fact ∆′k = tk+1
s − tks and (2.27). On

simplification, we obtain

∆′k = h(tks − q(tks)), (2.35)

where, for convenience, we have defined h(t) := − 1
A+σ

ln(|1−e(A+σ)t|). Notice that tk+1
s depends

only on tks and not on ∆k and. We show next that tks − q(tks) uniquely determines tk+1
s − q(tk+1

s ).

To show this, recall that according to the proof of Theorem 3, the quantization policy has

the encoder divide the interval [ιbγ, (ι+ 1)bγ] for some fixed ι uniformly into 2g−2 sub-intervals,
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one of which includes tks . The decoder chooses as q(tks) the middle point of the sub-interval that

contains tks . Thus, we have

q(t) =

⌊
t

δ

⌋
δ +

δ

2
, δ =

bγ

2g−2
. (2.36)

Letting yk = tks − q(tks), we obtain

yk+1 = tks + ∆′k − q(tks + ∆′k)

= yk +

⌊
tks
δ

⌋
δ + ∆′k −

yk +
⌊
tks
δ

⌋
δ + δ

2
+ ∆′k

δ

 δ
= yk + h(yk)−

⌊
yk + δ

2
+ h(yk)

δ

⌋
δ =: H(yk),

where in the second step we have used tks = yk + q(tks) and (2.36), and in the third step we have

used (2.35). From the conditions on g, we know that (2.30) is satisfied and hence H is a map

from the interval [− δ
2
, δ

2
] onto itself. We also notice thatH is a piecewise continuous function. In

fact, it is easy to verify that on [− δ
2
, 0), the function is piecewise strictly increasing. Further, note

that ifH is discontinuous at w < 0, then the left limit ofH at w is δ/2 while the right limit ofH

at w is −δ/2.

Next, (2.33) implies that

ln(1− e−(A+σ) δ
2 )− ln(1− e−(A+σ) δ

4 ) ≥ (A+ σ)
3δ

4
,

which, after rearranging the terms, we see that it implies

−δ
4

+ h

(
−δ

4

)
≥ −δ

2
+ h

(
−δ

2

)
+ δ.

Now, observe that if w1, w2 ∈ [− δ
2
, δ

2
] are such that w2 + h(w2) = w1 + h(w1) + nδ for some

n ∈ Z, thenH(w1) = H(w2). As a result, we conclude that there exists an interval I ∈ [− δ
2
,− δ

4
]
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Figure 2.5: Comparison between the sufficient and necessary conditions. Rs is mea-
sured in bits/sec, and γ is measure in sec. Here, A = 1.3, σ = 1, b = 1.0001, and
ρ0 = 0.9. The dashed line represents the asymptote ((A+σ)/ ln 2)(1+A/σ) = 7.6319.

such that the restriction H : I → [− δ
2
, δ

2
] is continuous, one-to-one and onto. Hence the

inverse mapping of this restriction is continuous and is a contraction and hence using the Banach

contraction principle [153], there exists a fixed point of the original mapH in I . Finally, note that

as we sweep z(0) through (0, v(0)], t1s varies continuously from∞ to 0. Thus, there exists a z(0)

such that y1 = t1s − q(t1s) is the fixed point in I . This proves Claim (b).

Remark6. We use the assumption in (2.33) in the proof of Theorem 4 to be able to apply the

Banach contraction principle in establishing the existence of a suitable initial condition. We use

the assumption ν ≥ 2 to ensure that the upper bound in (2.32) is well defined. •

Remark7. Figure 2.5 illustrates the gap between the sufficient conditiont (2.29) and the supre-

mum over σ of the necessary condition (2.23). For small values of γ, both conditions reduce

to Rs > 0. As γ grows to infinity, both conditions converge to the same asymptote with value

A+σ
ln 2

(1 + A
σ

). While (2.24) reaches the asymptote monotonically increasing for all ρ0 values, the

sufficient condition has an overshoot behavior for larger values of ρ0 as depicted in Figure 2.6.
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Figure 2.6: Illustration of the sufficient transmission rate for asymptotic observability
versus the upper bound of delay for different values of ρ0. Rs is measured in bits/sec,
and γ is measure in sec. Here, A = 1, σ = 1, and b = 1.0001. The dashed line
represents the asymptote n((A+ σ)/ ln 2)(1 + A/σ) = 5.7708.

For intermediate values of γ, the gap can be explained noticing that the exact value of the com-

munication delay is unknown to the sensor and the controller, and hence there can be a mismatch

between the uncertainty sets at the controller and the sensor. In addition, the sensor and the

controller lack a common reference frame for the quantization of the transmission time. •

2.4.4 Simulation

In this section, we illustrate an execution of our design for deriving the sufficient condition

on the transmission rate. Using Theorem 3, we choose the size of the packet to be

g(ts) = max

{
1, d1 + log

bγ(A+ σ)

ln(1 + ρ0e−(σ+A)γ)
e
}
, (2.37)

where the ceiling operator ensures that the packet size is an integer number (we take the maximum

between this quantity and 1 to make sure to send at least one bit of data payload at each
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Figure 2.7: An example realization of our design. (a) shows the evolution of the
absolute value of the state estimation error, the value of the event-triggering function,
and the upper bound on the state estimation error. (b) shows the corresponding evolution
of the state and state estimation. The continuous-time dynamics is discretized with step
size 0.0002. Because of this, a triggering happens when z(t) becomes larger than the
triggering function and there is no packet in the communication channel. In fact, since
the sampling time is small, a triggering happens when z(t) becomes approximately
equal v(t).

transmission).

We illustrate the execution of our design for the system

ẋ(t) = x(t) + 0.2u(t), u(t) = −8x̂(t).

The event-triggering function is v(t) = 0.2671e−0.1t. The upper bound on the communication

delay is γ = 1.2. The design parameter are b = 1.0001, ρ0 = 0.1, and the initial condition

x(0) = 0.2, and x̂(0) = 0.1. Figure 2.7(a) shows the evolution of the state estimation error. The

triggering strategy ensures that the state estimation error z(t) converges exponentially to zero

and triggering occurs every time the state estimation error crosses the triggering function v(t).

The overshoots observed in the plot are due to the unknown delay in the communication channel.

Clearly, |z(t)| is upper bounded by v0e
(A+σ)γe−σt = e−0.1t. Figure 2.7(b) shows the corresponding
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Figure 2.8: Information transmission rate versus the upper bound of the delay in the
communication channel. Rs is measured in bits/sec, and γ is measured in sec. Here,
A = 2.4, B = 1, u(t) = −8x̂(t), σ = 0.2, b = 1.0001, ρ0 = 0.1, v0 = 0.0442,
x(0) = 0.201, and x̂(0) = 0.2. The value of γ ranges from 0.0005 to 2.0005, in steps of
0.2. For each value of γ, we compute the transmission rate over an interval of 7 seconds
of simulation.

evolution of x(t) and x̂(t). The values of x(t) and x̂(t) become close to each other at the reception

times because of the jump strategy, while the distance between x(t) and x̂(t) grows during the

inter-reception interval.

Finally, Figure 2.8 shows the information transmission rate of a simulation versus the

delay upper bound γ in the channel. The packet size is chosen according to (2.37). We calculate

the information transmission rate by multiplying the packet size and the number of triggering

events in the simulation time interval divided by its length. One can observe from the plot that, for

small delay upper bound γ, the system is stabilized with an information transmission rate smaller

than the data-rate theorem (3.75 bits/sec in this example). Instead, for larger γ, the transmission

rate becomes greater than the threshold determined by the data-rate theorem.
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2.5 Extension to vector systems

We generalize here our results to vector systems, building on the scalar case. Consider the

plant-sensor-channel-controller tuple in Figure 2.1, and let the plant dynamics be described by a

continuous-time, linear time-invariant (LTI) system

ẋ = Ax(t) +Bu(t), (2.38)

where x(t) ∈ Rn and u(t) ∈ Rm for t ∈ [0,∞) are the plant state and the control input,

respectively. Here, A ∈ Mn,n(R), B ∈ Mn,m(R), and ‖x(0)‖ < L, where L is known to both

sensor and controller. We assume all the eigenvalues of A are real. Without loss of generality,

we also assume that they are positive (since stable modes do not need any actuation and we can

disregard them). In this setting, the intrinsic entropy rate of the plant is

hv =
Tr(A)

ln 2
=

∑n
i=1 λi
ln 2

. (2.39)

Hence, to guarantee stability it is necessary for the controller to have access to state information

at a rate

Rc ≥ hv.

Using the Jordan block decomposition [152], we can write the matrix A ∈Mn,n(R) as ΦΨΦ−1,

where Φ is a real-valued invertible matrix and Ψ = diag[J1, . . . , Jq], where each Jj is a Jordan

block corresponding to the real-valued eigenvalue λj of A. We let pj indicate the order of each

Jordan block. For simplicity of exposition, we assume from here on that A is equal to its Jordan

block decomposition, that is, A = diag[J1, . . . , Jq].

In the following, we deal with each state coordinate separately. This corresponds to

treating the n-dimensional system as n scalar, coupled systems. When a triggering occurs for

47



one of the coordinates, the controller should be aware of which coordinate the received packet

corresponds to. Accordingly, we assume there are n parallel finite-rate digital communication

channels between each coordinate of the system and the controller, each subject to unknown,

bounded delay.

We use the same notation of Section 2.2.1, but add subindex i and superindex j to specify

the ith coordinate of the j th Jordan block. So, for instance, {tk,js,i }k∈N, {tk,jc,i }k∈N, g(tk,js,i ) denote the

sequences of transmission times, reception times, and number of bits that the sensor transmits at

each triggering time. Similarly, the kth communication delay ∆j
k,i and kth triggering interval ∆′jk,i

can be specified for each coordinate. The communication delays for all coordinates are uniformly

upper-bounded by γ, a non-negative real number known to both the sensor and the controller. The

transmission rate for each coordinate is then

Rj
s,i = lim sup

Nj
i→∞

∑Nj
i

k=1 g(tk,js,i )∑Nj
i

k=1 ∆′jk,i

.

Assuming n parallel communication channels between the plant and the controller, each devoted

to a coordinate separately, we have

Rs =

q∑
j=1

pj∑
i=1

Rj
s,i.

Using the same notation of Section 2.2.1, when referring to a generic triggering or reception time,

we omit the superscript k.

The controller maintains an estimate x̂ of the state, which evolves according to

˙̂x(t) = Ax̂(t) +Bu(t), (2.40)

during the inter-reception times. The state estimation error is z(t) = x(t)− x̂(t), which initially

is set to z(0) = x(0) − x0. For the ith coordinate of the j th Jordan block, we consider an
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event-triggering function as in (2.4) with different initial values vj0 for each coordinate, namely

vji (t) = vj0,ie
−σt. (2.41)

For each coordinate, we employ the triggering rule (2.5) and the jump strategy (2.6). When a

triggering occurs for the ith coordinate of the j th Jordan block, we assume that the sensor sends a

packet large enough to ensure

|zji (t
j+
c,i )| ≤ ρ0e

−σγv(tjs,i). (2.42)

When referring to a generic Jordan block, we omit the superscript and subscript j.

Although each Jordan block is effectively independent of each other, the vector case is

not an immediate extension of the scalar one. Specifically, from (2.38) and (2.40), we have that

ż1(t) = λz1(t) + z2(t) (2.43)

...

żp−1(t) = λzp−1(t) + zp(t)

żp(t) = λzp(t),

where p denotes the order of the Jordan block. This shows that the evolution of the coordinates

is coupled and hence, even assuming parallel communication channels, care must be taken in

generalizing the results for the scalar case.

Our first result generalizes Theorem 1 on the necessary condition for the information

access rate.

Theorem5. Consider the plant-sensor-channel-controller model described in Section 2.2.1, with

plant dynamics (2.38), and state estimation error z(t). Let σ ∈ R be positive, then the following
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necessary conditions hold:

1. If the state estimation error satisfies

‖z(t)‖ ≤ ‖z(0)‖ e−σt,

then

bc(t) ≥ t
Tr(A) + nσ

ln 2
+ n log

L

‖z(0)‖
. (2.44)

2. If the system in (2.38) is stabilizable and

‖x(t)‖ ≤ ‖x(0)‖ e−σt,

then

bc(t) ≥ t
Tr(A) + nσ

ln 2
. (2.45)

In both cases, the information access rate is

Rc >
Tr(A) + nσ

ln 2
. (2.46)

Proof. Note that (2.46) immediately follows by dividing (2.44) and (2.45) by t and taking the

limit for t→∞. Regarding (i), let us write the solution to (2.38) as

x(t) = eAtx(0) + α(t), α(t) = eAt
∫ t

0
e−AτBu(τ)dτ. (2.47)
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We then define,

Γt = {x(t) : x(t) = eAtx(0) + α(t) ; ‖x(0)‖ ≤ L}, (2.48)

that is a set which represents the uncertainty at time t given the bound L on the norm of the initial

condition x(0) and α(t). The state of the system can be any point in this uncertainty set. We can

find a lower bound on bc(t) by counting the number of balls of radius ε(t), that cover Γt, where

ε(t) = ‖z(0)‖ e−σt. The Lebesgue measure of a sphere of radius ε in Rn is knεn where kn is a

constant that changes with dimension. Therefore bc(t), the number of bits of information that the

controller must have access to by time t, should satisfy

bc(t) ≥ log
m(Γt)

m(B(ε(t)))

= log
| det((eA)t)|m(‖x(0)‖ ≤ L)

kd‖z(0)‖n e−nσt

= t log | det(eA)enσ|+ log
Ln

‖z(0)‖n

= t log |eTr(A)+nσ|+ n log
L

‖z(0)‖
.

With access to bc(t) bits of information, the controller can at best identify x(t) up to a ball of

radius ε(t). Consequently, (i) follows.

Recall that ‖x(0)‖ ≤ L. For any given control trajectory {u(τ)}τ=t
τ=0 define

Π{u(τ)}τ=t
τ=0

= {x(0) : ‖x(t)‖ < ε(t)},

where ε(t) = ‖x(0)‖ e−σt. These are the sets of all initial conditions for which by choosing

the control trajectory {u(τ)}τ=t
τ=0, the plant state at time t, x(t), will be in a ball of radius

ε(t). x(t) depends linearly on {u(τ)}τ=t
τ=0. As a consequence, all of the sets Π{u(τ)}τ=t

τ=0
, are

linear transformation of each other. So, the measure of all of them are upper bounded by
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| det(e−At)kn‖x(0)‖ne−nσt| = kn‖x(0)‖ne−(Tr(A)+nσ)t. We can then determine a lower bound

for bc(t) by counting the number of Π sets (for different control trajectories {u(τ)}τ=t
τ=0) which

takes to cover the ball ‖x(0)‖ ≤ L.

Thus, the controller must have access to at least bc(t) bits by time t, where

bc(t) ≥ log
m(‖x(0)‖ ≤ L)

m(Π)

= log
knL

n

kn‖x(0)‖ne−(Tr(A)+nσ)t

= t
Tr(A) + nσ

ln 2
+ n log

L

‖x(0)‖
,

and this proves (ii).

We next generalize the necessary condition on the information transmission rate. If A is

diagonalizable, then the necessary and sufficient bit rate for the vector system is equal to the sum

of the necessary and sufficient bit rates that we provide in Section 2.4 for each coordinate of the

system. We now generalize this idea to any matrix with real eigenvalues.

Theorem6. Consider the plant-sensor-channel-controller model with plant dynamics (2.38),

where all eigenvalues of A are real, estimator dynamics (2.40), event-triggering strategy (2.5),

event-triggering function (2.41), and packet sizes such that zji (t
k,j
c,i ) is determined at the controller

within a ball of radius ρ(tk,js,i ) = ρ0e
−σγv(tk,js,i ) with ν-precision, ensuring (2.42) via the jump

strategy (2.6) for all k ∈ N, i = 1, . . . , pj , and j = 1, . . . , q. Then, there exists a delay realization

and initial condition, such that

Rs ≥
q∑
j=1

pj(λj + σ)

ln ν + ln(2 + eσγ

ρ0
)

max

{
0, log

(eλjγ − 1)

ρ0e−σγ

}
.

Proof. Since there is no coupling across different Jordan blocks in (2.38), the inherent entropy

52



rate (2.39) is

hv(A) = hv(J1) + · · ·+ hv(Jq).

Therefore, it is enough to prove the result for one of the Jordan blocks. Let J be a Jordan block

of order p with associated eigenvalue λ. Note that the part of the vector z(t) which corresponds

to J is governed by (2.43). The solution of the first differential equation in (2.43) is

z1(t) = eλtz1(0) + eλt
∫ t

0

e−λτz2(τ)dτ.

If for the first coordinate a triggering event occurs at time ts,1, then z1(tc,1) belongs to the set

Ω(z(tc,1)|ts,1) = {y = y1 + y2 : y1 = ±v1(ts,1)eλ(tc,1−ts,1),

y2 =

∫ tc,1

ts,1

eλ(tc,1−τ)z2(τ)dτ ; tc,1 ∈ [ts,1, ts,1 + γ],

z2(τ) ∈ ζs,2τ for τ ∈ [ts,1, tc,1]},

where ζs,2τ is the uncertainty set for z2(τ) at the sensor. We define

Y1 = {y1 : y1 = ±v(ts,1)eλ(tc,1−ts,1), tc,1 ∈ [ts,1, ts,1 + γ]},

which is the uncertainty set of z1(tc,1) given ts,1 for the differential equation ż1 = λz1. By

comparing the definitions of the sets Ω(z(tc,1)|ts,1) and Y1, we have

m(Ω(z(tc,1)|ts,1)) ≥ m(Y1).

Finally, we apply Lemmas 2 and 4 for each coordinate separately, so that the necessary bit rate
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for each must satisfy

Rs,i ≥
λ+ σ

ln ν + ln(2 + eσγ

ρ0
)

max

{
0, log

(eλγ − 1)

ρ0e−σγ

}

for i = 1, . . . , p. The result now follows.

Note that, when ρ0 � eσγ/max{2, ν}, the result in Theorem 6 can be simplified to

Rs ≥
q∑
j=1

pj(λj + σ)

ln 2
max

{
0, 1 +

log(eλjγ − 1)

− log(ρ0e−σγ)

}
.

Our next result generalizes the sufficient condition of Theorem 3 to vector systems.

Theorem7. Consider the plant-sensor-channel-controller model with plant dynamics (2.38),

where all eigenvalues of A are real, estimator dynamics (2.40), event-triggering strategy (2.5),

and event-triggering function (2.41). For the j th Jordan block choose the following sequence of

design parameters

0 < ρj1 < . . . < ρjpj−1 < ρjpj = ρ0 < 1.

If the state estimation error satisfies |zji (0)| ≤ vj0,i, then we can achieve (2.42) and

|zji (t)| ≤ vj0,i((ρ0 − ρji ) + e(λj+σ)γ)e−σt

for i = 1, . . . , pj and j = 1, . . . , q, with an information transmission rate, Rs, at least equal to

j=q∑
j=1

i=pj∑
i=1

(λj + σ)

− ln(ρ0e−σγ)
max

(
0, 1 + log

bγ(λj + σ)

ln(1 + ρjie
−(σ+λj)γ)

)
,
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where

0 < vj0,i ≤
vj0,i−1(λj + σ)(ρ0 − ρji )

((ρ0 − ρji ) + e(λj+σ)γ)(e(λj+σ)γ − 1)
, (2.49)

for i = 2, . . . , pj and j = 1, . . . , q, and b > 1.

Proof. It is enough to prove the result for one Jordan block. The solution of the last two equations

in (2.43) is

zp−1(t) = eλtzp−1(0) + eλt
∫ t

0

e−λτzp(τ)dτ, (2.50)

zp(t) = eλtzp(0).

The differential equation that governs zp(t) is similar to what we considered in Theorem 3. It

follows that if the transmission rate for coordinate p is lower bounded as (2.29) and |zp(0)| ≤ v0,p,

then we can ensure |zp(t)| ≤ v0,pe
(σ+λ)γe−λt.

Assume now that a triggering happens for coordinate p − 1 at time ts,p−1, namely

|zp−1(ts,p−1)| = v(ts,p−1), and the controller receives the packet related to coordinate p − 1

at time tc,p−1. Then the uncertainty set for zp−1(tc,p−1) at the controller is

Ω(z(tc,p−1)|tc,p−1) = {wp−1 = w
(1)
p−1 + w

(2)
p−1 :

w
(1)
p−1 = ±vp−1(t̄r,p−1)eλ(tc,p−1−t̄r,p−1),

w
(2)
p−1 =

∫ tc,p−1

t̄r,p−1

eλ(tc,p−1−τ)zp(τ)dτ ;

t̄r,p−1 ∈ [tc,p − γ, tc,p−1],

zp(τ) ∈ ζc,pτ for τ ∈ [t̄r,p−1, tc,p−1]}, (2.51)

where ζc,pτ is the uncertainty set for zp(τ) at the controller. Clearly, the measure of Ω(z(tc,p−1)|tc,p−1)
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is larger whenw(1)
p−1 andw(2)

p−1 in (2.51) have the same sign. Hence, we can assume that zp−1(t̄r,p−1)

and zp(τ) for τ ∈ [t̄r,p−1, tc,p−1] and t̄r,p−1 ∈ [tc,p−1 − γ, tc,p−1] are positive. Define

Wp−1 = {wp−1 = w
(1)
p−1 + w

(2)
p−1 :

w
(1)
p−1 = ±vp−1(t̄r,p−1)eA(tc,p−1−t̄r,p−1),

w
(2)
p−1 =

∫ tc,p−1

t̄r,p−1

eλ(tc,p−1−τ)zp(τ)dτ ;

t̄r,p−1 ∈ [tc,p − γ, tc,p−1],

|zp(τ)| ≤ v0,pe
(σ+λ)γe−στ for τ ∈ [t̄r,p−1, tc,p−1]}.

Clearly, we have

m(Ω(z(tc,p−1)|tc,p−1)) ≤ m(Wp−1). (2.52)

Hence, a sufficient condition for Wp−1 will also be a sufficient condition for Ω(z(tc,p−1)|tc,p−1).

We note that Wp−1 is the Brunn-Minkowski sum of the following sets

W
(1)
p−1 = {w(1)

p−1 : w
(1)
p−1 = ±vp−1(t̄r,p−1)eA(tc,p−1−t̄r,p−1),

t̄r,p−1 ∈ [tc,p − γ, tc,p−1]}

W
(2)
p−1 = {w(2)

p−1 : w
(2)
p−1 =

∫ tc,p−1

t̄r,p−1

eλ(tc,p−1−τ)zp(τ)dτ ;

|zp(τ)| ≤ v0,pe
(σ+λ)γe−στ for τ ∈ [t̄r,p−1, tc,p−1],

t̄r,p−1 ∈ [tc,p − γ, tc,p−1]}.

By the Brunn-Minkowski inequality [62], we have

m(Wp−1) ≥ m(W
(1)
p−1) +m(W

(2)
p−1).
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The operators in the definition of W (1)
p−1 and W (2)

p−1 are continuous and the operator in the definition

of W (2)
p−1 is integral. Hence, even if during the time interval [t̄r,p−1, tc,p−1] the value of zp(τ)

jumps according to (2.6), W (2)
p−1 remains a connected compact set. Therefore, W (1)

p−1 and W (2)
p−1 are

closed intervals that are translation and dilation of each other. In this case, the inequality (2.5) is

tight [98], and by (2.52) we have

m(Ω(z(tc,p−1)|tc,p−1)) ≤ m(W
(1)
p−1) +m(W

(2)
p−1). (2.53)

This allows us to deal with each coordinate, p − 1 and p, separately as follows. If there is no

coupling in the differential equation that governs zp−1(t), we have

żp−1(t) = λzp−1(t).

Using Theorem 3, and equation (2.53) with the rate

Rs,p−1 ≥ (2.54)

λ+ σ

− ln(ρp−1e−σγ)
max

{
0, 1 + log

bγ(λ+ σ)

ln(1 + ρp−1e−(σ+λ)γ)

}
,

we can ensure

Υc
t+c,p−1

≤ ρp−1vp−1(tc,p−1) +m(W
(2)
p−1), (2.55)

where Υc
t+c,p−1

is the uncertainty set for zp−1(t+c,p−1) at the controller.

We now find an upper bound for m(W
(2)
p−1) as follows. Since, Rs,p is lower bounded
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as (2.29), we can ensure |zp(t)| ≤ v0,pe
(σ+λ)γe−σt, and

m(W
(2)
p−1) =

∫ tc,p−1

tc,p−1−γ
eλ(tc,p−1−τ)zp(τ)dτ

≤ v0,pe
(σ+λ)γeλtc,p−1

∫ tc,p−1

tc,p−1−γ
e−(λ+σ)τdτ

=
v0,pe

(σ+λ)γe−σtc,p−1

λ+ σ
(e(λ+σ)γ − 1). (2.56)

From (2.49), we have

v0,p ≤
v0,p−1(λ+ σ)(ρ0 − ρp−1)

e(λ+σ)γ(e(λ+σ)γ − 1)
.

Hence,

v0,pe
(σ+λ)γe−σtc,p−1

λ+ σ
(e(λ+σ)γ − 1) ≤ (ρ0 − ρp−1)v0,p−1e

−σtc,p−1

= (ρ0 − ρp−1)vp−1(tc,p−1).

Consequently, from (2.56) we have

m(W
(2)
p−1) ≤ (ρ0 − ρp−1)vp−1(t). (2.57)

Therefore, using (2.55) and (2.57) we have m(Υc
t+c,p−1

) ≤ ρ0vp−1(tc,p−1) and |zp−1(t+c )| ≤

ρ0vp−1(tc,p−1). When Rs,p is lower bounded as (2.29) and Rs,p−1 is lower bounded as (2.54), we

can ensure

|zp−1(t)| ≤ ((ρ0 − ρp−1) + e(λ+σ)γ)vp−1(tc,p−1)

because the solution of the differential equation that governs zp−1 is given in (2.50), and us-
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ing (2.57) we have

|z(tc,p−1)| ≤

vp−1(tc,p−1 − γ)eλγ + (ρ0 − ρp−1)vp−1(tc,p−1)

= ((ρ0 − ρp−1) + e(λ+σ)γ)vp−1(tc,p−1).

With the same procedure we can find the sufficient rate Rs,i for i = p − 2, . . . , 1, and this

concludes the proof.

Remark8. In a Jordan block of order pj , the inequality (2.49) provides an upper bound on the

value of the triggering function for coordinate i using the value of the triggering function for

coordinate i− 1, where i = 2, . . . , pj . This is a natural consequence of the coupling among the

coordinates in a Jordan block, cf. (2.43), which makes the error in coordinate i affect the error in

coordinates 1 to i− 1, for each i = 2, . . . , pj . •

Corollary 1 can be generalized, provided (A,B) is stabilizable, using a linear control

u(t) = −Kx̂(t) with A−BK Hurwitz. This is a consequence of Theorem 7 which guarantees

that, using the stated communication rate, the state estimation error for each coordinate converges

to zero exponentially fast.

Remark9. In our discussion, we have assumed that x̂(t) is known to both controller and

sensor. Since the sensor has access to the state, using the system dynamics, it can deduce u(t),

and then obtain x̂(t), cf. [164]. Note that the controller design for our sufficient condition is

linear u(t) = −Kx̂(t), and thus the sensor can deduce x̂(t) assuming that BK is invertible.

Alternatively, the controller can directly signal the acknowledgment of the reception of the packet

(and as a result tkc ) to the sensor by applying a control input to the system that excites a specific

frequency of the state each time a symbol has been received, and the sensor can construct x̂(t) at

all time t if it knows the decoding rule at the controller. On the other hand, assuming knowledge
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of x̂(t) at the sensor does not affect the generality of the necessary condition. •

2.6 Time-triggering versus event-triggering control over com-

munication channels

In this section, we compare the presented event-triggered results with those of a time-

triggered implementation, for which we provide a formulation of the data-rate theorem for

continuous-time systems in the presence of delay. This comparison leads to additional insights on

the value of information in event triggering.

We now derive a data-rate theorem for the information transmission rate in two different

time-triggered scenarios and in the presence of unknown communication delays.

In the first scenario, we assume the following time-triggered implementation: the sensor

transmits at all times {tks}k∈N, where

tks = kT, (2.58)

and T denotes the transmission period. Note that in this setting, the sensor transmits without

considering whether the previous packets have been received and decoded or not. Consequently,

the communication delay is upper bounded as (2.2) only when there is not another packet in the

communication channel. In this setting, we have the following theorem.

Theorem8. Consider the plant-sensor-channel-controller model described in Section 2.2.1 with

plant dynamics (2.1). Assume that the communication delays upper bounded as (2.2) when there

is no other packet in the channel, and assuming that the packets are received and decoded by the

controller in the order they are transmitted by the sensor. Then, there exists a delay realization
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{∆k}k∈Z such that a rate

Rs >


Tr(A)

ln 2
if γ < T,

Tr(A) γ
T

ln 2
if γ ≥ T.

is necessary for asymptotic observability and asymptotic stabilizability.

Proof. Consider an observer that can receive the packets transmitted by the sensor without any

delay, and that has the same knowledge about the system as the controller. Let ζot and ζct be the

uncertainty sets for the state x(t), at the observer and controller, respectively. We have ζo0 = ζc0.

We write the solution to (2.1) as As a consequence, we have

m(ζo
t
(k+1)−
s

) = eTr(A)Tm(ζotks ).

Since the observer receives packets without delay, we have

m(ζo
tk+1
s

) ≥ 1

2g(tks )
m(ζo

t
(k+1)−
s

) =
1

2g(tks )
eTr(A)Tm(ζotks ).

By iterating from k = 1 to k = η, we have

m(ζo
tη−s

) ≥ 1

2
∑k=η−1
k=1 g(tks )

eTr(A)ηTm(ζo0).

However, the controller does not necessarily receive packets immediately. Indeed, in the worst

case, if γ > T the controller receives packets that have been sent in the time interval [0, ηT ) by
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the time ηT + η(γ − T ) = ηγ. While, for T > γ we have

m(ζc
tη−c

) ≥ m(ζo
tη−s

), (2.59)

for T ≤ γ we have

sup
{∆k}≤γ

m(ζc
tη−c

) ≥ m(ζo
tη−s

)eTr(A)η(γ−T ). (2.60)

It follows that the right-hand side of (2.59) and (2.60) tends to infinity as η → ∞, making it

impossible to stabilize or track the state, if

∞ = lim
η→∞

1

2
∑k=η−1
k=1 g(tks )

eTr(A)ηT

= lim
η→∞

exp

{
Tη

(
Tr(A)− ln 2

∑k=η−1
k=1 g(tks)

Tη

)}

for T > γ, and

∞ = lim
η→∞

1

2
∑k=η−1
k=1 g(tks )

eTr(A)ηγ

= lim
η→∞

exp

{
Tη

(
Tr(A)

γ

T
− ln 2

∑k=η−1
k=1 g(tks)

Tη

)}

for T < γ. The result now follows.

Remark10. Theorem 8 provides a data-rate theorem for the information transmission rate without

imposing exponential convergence guarantees. It shows the existence of a critical delay value

γ = T , at which the rate begins to increase linearly with the delay. •

We next consider a different time-triggered scenario. Let

t0s = 0, tk+1
s = tks + (b∆k/T c+ 1)T, (2.61)
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where T is a fixed non-negative real number. In this case, the sensor transmits only at integer

multiples of the period T , after the previous packet is received. It follows that there is no delay

accumulation, and for all packets the delay satisfies (2.2). In this setting, we have the following

result for exponential convergence of the estimation error to zero.

Theorem9. Consider the plant-sensor-channel-controller model described in Section 2.2.1 with

plant dynamics (2.1), and state estimation error z(t). Let σ ∈ R be positive. If using the

time-triggered implementation (2.61) the state estimation error satisfies

‖z(tks)‖ ≤ ‖z(0)‖ e−σtks , (2.62)

for all k ∈ Z, then there exists a delay realization {∆k}k∈Z which requires

Rs ≥
(Tr(A) + nσ)(b γ

T
c+ 1)

ln 2
. (2.63)

Proof. Using (2.47) we know the state of the system can be any point in Γt, cf. (2.48), then, we

have

m(Γtkc ) = eTr(A)∆km(Γtks ),

and

m(Γtk+1
s

) ≥ m(Γtkc )e
Tr(A)

(
(b∆k

T
c+1)T−∆k

)
.

Iterating from k = 0 to k = η, we have

m(Γtη−s ) ≥ e
∑k=η−1
k=0 Tr(A)(b∆k

T
c+1)Tm(ζ0) = eTr(A)tηsm(ζ0).
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We can now obtain a lower bound on
∑k=η−1

k=0 g(tks) by counting the number of balls of radius

‖z(0)‖ e−σt
η
s , that cover Γtη−s . Recall that the Lebesgue measure of a sphere of radius r in Rn is

knr
n where kn is a constant that depends on the dimension. We have

k=η−1∑
k=0

g(tks) ≥ log
eTr(A)tηsm(ζ0)

kn‖z(0)‖n e−nσtηs

= log
e(Tr(A)+nσ)tηsm(ζ0)

kn‖z(0)‖n
.

Hence,

k=η−1∑
k=0

g(tks) ≥ log
e(Tr(A)+nσ)η(b γ

T
c+1)Tm(ζ0)

kn‖z(0)‖n
,

because the sensor, not having any fore-knowledge of the delay, must send at least the number

of bits required when ∆k = γ for all k ∈ Z, to ensure that (2.62) holds. However, the actual

realization of the delay may be ∆k = 0 for all k ∈ Z, so that we have

Rs ≥ lim
η→∞

1

ηT
log

e(Tr(A)+nσ)η(b γ
T
c+1)Tm(ζ0)

kn‖z(0)‖n
,

and the result follows.

Remark11. In the time-triggered setting governed by (2.58), a packet is transmitted without

considering whether the previous packets have been received and decoded. On the other hand,

in the time-triggered setting governed by (2.61) a packet is transmitted only after the previous

packet is received. Letting σ → 0, for γ < T both Theorems 8 and 9 reduce to Rs ≥ Tr(A)/ ln 2.

Namely, for low values of the delay, and without imposing exponential convergence guarantees,

we recover the critical value of the data-rate theorem for the access rate in Theorem 1. •

Figure 2.9 compares the results of Theorem 9 and Theorem 2. For small values of γ, the necessary
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γ

Rs

ln 2

A

A+σ

ln 2

 

 

Event−triggered 
Time−triggered 

Figure 2.9: Illustration of the necessary bit rate for time-triggering control of a scalar
plant (2.63) and approximation of the necessary bit rate for event-triggering control of a
scalar plant (2.24) versus the worst-case delay in the communication channel. For the
time-triggered scheme, T = ln 2/A.

transmission rate in Theorem 4 becomes,

Rs ≥ 0. (2.64)

On the other hand, the result of Theorem 9 in the scalar case and for small values of γ can be

written as

Rs ≥
A+ σ

ln 2
. (2.65)

Comparing (2.64) and (2.65), the value of the intrinsic timing information in communication

in an event-triggered design becomes evident. When the delay is small, the timing information

carried by the triggering events is substantial and ensures that controller can stabilize the system.

In contrast, for small values of the delay the information transmission rate required by a time-

triggered implementation equals the information access rate required by the classic data-rate

theorem.
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For large delay values, it can be easily shown that while both the necessary and sufficient

conditions for the event-triggered design in Theorems 2 and 3 converge to the asymptote ((A+

σ)/ ln 2)(1 + A/σ) as γ → ∞, the time-triggered result in Theorem 9 for grows linearly as

γ →∞. The reason for this difference is that the time-triggered design (2.61) depends only on

the delay while the event-triggered scheme depends on both state and delay. In both time-triggered

and event-triggered schemes the sensor does not have fore-knowledge of the delay, and the sensor

needs to send larger packets when the worst-case delay is larger. On the other hand, the triggering

rate in the event-triggering case tends to zero as γ tends to infinity. More precisely, using Lemma

3 in the event-triggering setting for all of the possible realizations we have

tk+1
s − tks ≥

− ln(ρ0e
−σγ)

A+ σ
,

which tends to infinity as γ → ∞. In contrast, in the time-triggered case for delay realization

∆k = 0 for all k ∈ Z we have

tk+1
s − tks = T,

and in this case the rate increases linearly with the delay.

2.7 Conclusions

In this chapter, we have studied event-triggered control strategies for stabilization and

exponential observability of linear plants in the presence of unknown bounded delay in the

communication channel between the sensor and the controller. Our study has been centered

on quantifying the value of the timing information implicit in the triggering events. We have

identified a necessary and a sufficient condition on the transmission rate required to guarantee

stabilizability and observability of the system for a given event triggering strategy. Our results
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reveal a phase transition behavior as a function of the maximum delay in the communication

channel, where for small delays, a positive transmission rate ensures the control objective is met,

while for large delays, the necessary transmission rate is larger than that of classical data-rate

theorems with periodic communication and no delay. We also compared our event-triggered

results with two time-triggered designs.

Future research will consider additional errors in the communication channel not caused by

quantization, extensions to the case when the communication delay is a function of thepacket size,

replacing the Assumption 1 with packet size constraints, and the study of other event-triggering

strategies.

Chapter 2, in full, is a reprint of the material as it appears in M. J. Khojasteh, P. Tallapra-

gada, J. Cortés, M. Franceschetti, “The value of timing information in event-triggered control,”

IEEE Transactions on Automatic Control, in press, and M. J. Khojasteh, P. Tallapragada, J. Cortés,

M. Franceschetti, “Time-triggering versus event-triggering control over communication channels,”

In Proc. IEEE 56th Annual Conference on Decision and Control (CDC), 2017. The dissertation

author was the primary investigator and author of this paper.
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Chapter 3

Event-triggered stabilization over digital

channels of systems with disturbances

3.1 Introduction

For many cyber-physical systems, the feedback loop is closed over a communication

channel [97]. In this context, data-rate theorems state that the minimum communication rate

to achieve stabilization is equal to the entropy rate of the plant, expressed by the sum of the

unstable modes in nats (one nat corresponds to 1/ ln 2 bits.) Key contributions by [191], [141],

and [112] consider a “bit-pipe” communication channel, capable of noiseless transmission of a

finite number of bits per unit time evolution of the plant. Extensions to noisy communication

channels are considered in [123, 164, 212]. Stabilization over time-varying bit-pipe channels,

including the erasure channel as a special case, are studied by [132]. Additional formulations

include stabilization of switched linear systems [114], uncertain systems [156], multiplicative

noise [46], optimal control [83, 101], and stabilization using event-triggered strategies [42, 87, 91,

92, 95, 108, 119, 147, 189].

A similar data-rate theorem formulation also holds for nonlinear systems. The works [36,
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115, 142] for nonlinear systems are restricted to plants without disturbances and with a bit-pipe

communication channel. The work [142] uses the entropy of topological dynamical systems

to elegantly determine necessary and sufficient bit rates for local uniform asymptotic stability.

Consequently, the results are only local and derived under restrictive assumptions. Under ap-

propriate assumptions, the work [115] extends to nonlinear but locally Lipschitz systems, the

zoom-in/zoom-out strategy of [112]. The sufficient condition proposed in this work is, however,

conservative, and does not match the necessary condition proposed in [142]. The work [174]

further extend the results in [115] to linear systems with uncertainty and under appropriate

assumptions to nonlinear systems with disturbances. Inspired by the Jordan block decomposition

employed in [191] to design an encoder/decoder pair of a vector system, the work [36] provides

a sufficient design for feed-forward dynamics that matches the necessary condition proposed

in [142]. The recent work in [166] studies the estimation of a nonlinear system over noisy com-

munication channels, providing a necessary condition over memoryless communication channels

and a sufficient condition in case of additive white Gaussian noise channel.

While the majority of communication systems transmit information by adjusting the

content of the message, it is also possible to communicate information by adjusting the trans-

mission time of a symbol [2]. In Chapter 4 we will study the fundamental limitations of using

timing information for stabilization and show that it is possible to stabilize a plant using inherent

information in the timing of the transmissions. In fact, it is known that event-triggering control

techniques encode information in the timing in a state-dependent fashion. The work [99] shows

that, in the absence of delay in the communication process, without plant disturbances, and

assuming the controller has knowledge of the triggering strategy, one can stabilize the plant with

any positive data payload transmission rate. Building upon this observation, Chapter 1 considers

transmission delays in the communication channel and quantifies the information contained in

the timing of the triggering events for the stabilization of scalar plants without disturbances. For

small values of the delay, we show that stability can be achieved with any positive information
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transmission rate (the rate at which sensor transmits data payload). However, as the delay in-

creases to values larger than a critical threshold, the timing information contained in the triggering

action itself may not be enough to stabilize the plant and the information transmission rate must

be increased. Chapter 1 also extends the treatment to the vector case, but the analysis is limited

to plants with only real eigenvalues of the open-loop gain matrix. Furthermore, the required

exponential convergence guarantees lead to a mismatch between sensor and controller about the

possible values of the state estimation error, which requires an additional layer of complexity in

the sensor’s transmission policy of the event-triggered control design. In contrast, in this chapter

we consider the weaker stability notion of input-to-state practical stability (ISpS) [78, 174], and

this allows us to simplify the treatment and design a simpler event-triggered control strategy.

The literature has not considered to what extent the implicit timing information in the triggering

events is still useful in the presence of plant disturbances. Beyond the uncertainty due to the

unknown delay in communication, disturbances add an additional degree of uncertainty to the

state estimation process, whose effect needs to be properly accounted for. With this in mind, we

study ISpS of a linear, time-invariant plant subject to bounded disturbance over a communication

channel with bounded delay.

Our contributions are fivefold. First, for scalar real plants with disturbances, we derive

a sufficient condition on the information transmission rate for the whole spectrum of possible

communication delay values. Specifically, we design an encoding-decoding scheme that, together

with the proposed event-triggering strategy, rules out Zeno behavior and ensures that there exists

a control policy which renders the plant ISpS. We show that for small values of the delay, our

event-triggering strategy achieves ISpS using only implicit timing information and transmitting

data payload at a rate arbitrarily close to zero. On the other hand, since larger values of the delay

imply that the information transmitted has become excessively outdated and corrupted by the

disturbance, increasingly higher communication rates are required as the delay becomes larger.

Our second contribution pertains to the generalization of the sufficient condition to complex
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Figure 3.1: An inverted pendulum controlled by thrust force of two propellers. The
pendulum is a plywood sheet of length l. The angle φ of the pendulum from the vertical
line and its rate of change, measured by the sensor and transmitted to the controller over
a digital channel with bounded unknown delay, are used to determine the left and right
thrust forces fL and fR of the propellers.

plants with complex open-loop gain subject to disturbances. This result sets the basis for the

generalization of event-triggered control strategies that meet the bounds on the information

transmission rate for the ISpS of vector systems under disturbances and with any real open-

loop gain matrix (with complex eigenvalues). Our third contribution is a necessary condition

on the information transmission rate for scalar real plants, assuming that at each triggering

time the sensor transmits the smallest possible packet size to achieve the triggering goal for

all realizations of the delay and plant disturbance. The majority of results on control under

communication constraints are restricted to theoretical works. Here for the first time, we examine

data-rate theorems in a practical setting, using an inverted pendulum, a classic example of an

inherently unstable nonlinear plant with numerous practical applications. Our fourth contribution

is to implement our event-triggering control design, and demonstrate the utilization of timing

information to stabilize a laboratory-scale inverted pendulum over a digital communication

channel with bounded unknown delay, see Figure 3.1. The results of our experiments show that

using the sufficient packet size on a linearized model of the inverted pendulum around its unstable

equilibrium point, the state estimation error is sufficiently small and we can stabilize the system.

We show that for small values of the delay the experimental data payload transmission rate is
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lower than the entropy rate of the plant. On the other hand, by increasing the upper bound on

the delay in the communication channel, higher data payload transmission rates are required to

satisfy the requirements of the proposed control strategy. This event-triggering policy can only

stabilize the pendulum locally around its equilibrium point, where linearization is possible. Our

final contribution is to address nonlinear systems directly, and develop a novel event-triggering

scheme that exploits timing information to render a class of continuous-time nonlinear systems

subject to disturbances ISpS.

3.2 Problem formulation

We consider a networked control system described by a plant-sensor-channel-controller

tuple, cf. Figure 2.1. The plant is described by a scalar, continuous-time, linear time-invariant

model,

ẋ = Ax(t) +Bu(t) + w(t), (3.1)

where x(t) ∈ R and u(t) ∈ R for t ∈ [0,∞) are the plant state and control input, respectively,

and w(t) ∈ R represents the plant disturbance. The latter is a Lebesgue-measurable function of

time, and upper bounded as

|w(t)| ≤M, (3.2)

where M ∈ R≥0. In (3.1), A ∈ R is positive (i.e., the plant is unstable), B ∈ R \ {0}, and the

initial condition x(0) is bounded. We assume the sensor measurements are exact and there is no

delay in the control action, which is executed with infinite precision. However, measurements

are transmitted from sensor to controller over a communication channel subject to a finite data

rate and bounded unknown delay. We denote by {tks}k∈Z the sequence of times when the sensor
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transmits a packet of length g(tks) bits containing a quantized version of the encoded state. We

let ∆′k = tk+1
s − tks be the kth triggering interval. The packets are delivered to the controller

without error and entirely but with unknown upper bounded delay. Let {tkc}k∈Z be the sequence

of times where the controller receives the packets transmitted at times {tks}k∈Z. We assume the

communication delays ∆k = tkc − tks , for all k ∈ Z, satisfy

∆k ≤ γ, (3.3)

where γ ∈ R≥0. When referring to a generic triggering or reception time, for convenience we

skip the super-script k in tks and tkc , and the sub-script k in ∆k and ∆′k.

Remark12. In our model clocks are synchronized at the sensor and the controller. In case of

using a time stamp, due to the communication constraints, only a quantized version of it can be

encoded in the packet g(ts). •

At the controller, the estimated state is represented by x̂ and evolves during the inter-

reception times as

˙̂x(t) = Ax̂(t) +Bu(t), t ∈ (tkc , t
k+1
c ), (3.4)

starting from x̂(tk+
c ), which represents the state estimate of the controller with the information

received up to time tkc with initial condition x̂(0) (the exact way to construct x̂(tk+
c ) is explained

later in Section 3.3).

Assumption 1 The sensor can compute x̂(t) for all time t ≥ 0.

Remark13. We show in Section 3.4.1 that Assumption 1 is valid for our controller design,

provided the sensor knows x̂(0) and the times the actuator performs the control action. In practice,

this corresponds to assuming an instantaneous acknowledgment from the actuator to the sensor
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via the control input, known as communication through the control input [123, 164]. To obtain

such causal knowledge, one can monitor the output of the actuator provided that the control input

changes at each reception time. In case the sensor has only access to the plant state, since the

system disturbance is bounded (3.2), assuming that the control input is continuous during inter-

reception times and jumps in the reception times such that B|u(t−c )− u(tc)| > M , the controller

can signal the reception time of the packet to the sensor via ẋ(t) (other specific constructions are

provided in [190]). Finally, we note that any necessary condition on the information transmission

rate obtained with Assumption 1 in place remains necessary without it too. •

Under Assumption 1, the state estimation error at the sensor is

z(t) = x(t)− x̂(t), (3.5)

and we rely on this error to determine when a triggering event occurs in our controller design.

We next define a modified version of input-to-state practical stability (ISpS) [78, 174], which is

suitable for our event-triggering setup with unknown but bounded delay.

Definition 1 The plant (3.1) is ISpS if there exist β ∈ KL, ψ ∈ K∞(0), d ∈ R≥0, χ ∈ K∞(d),

d′ ∈ R≥0 and ζ ∈ K2
∞(0, d′) such that for all t ≥ 0

|x(t)|≤β (|x(0)|, t)+ψ (|w|t)+χ(γ)+ζ(|w|t, γ).

Note that, for a fixed γ, this definition reduces to the standard notion of ISpS. Given that the

initial condition, delay, and system disturbances are bounded, ISpS implies that the state must be

bounded at all times beyond a fixed horizon.

Our objective is to ensure the dynamics (3.1) is ISpS given the constraints posed by the

system model of Figure 2.1. In this chapter we also use the definitions of information transmission

rate and information access rate defined in Chapter 2.
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According to the data-rate theorem, ifRc < A/ ln 2, the value of the state in (3.1) becomes

unbounded as t→∞ (the result for plants evolving in continuous time stated in [70, Theorem 1]

does not consider disturbances, but can readily be generalized to account for them), and hence (3.1)

is not ISpS. The data-rate theorem characterizes what is needed by the controller, and does not

depend on the specific feedback structure (including aspects such as information pattern at the

sensor/controller, communication delays, and whether transmission times are state-dependent, as

in event-triggered control, or periodic, as in time-triggered control). In our discussion below, the

bound Rc = A/ ln 2 serves as a baseline for our results on the information transmission rate Rs

to understand the amount of timing information contained in event-triggered control designs in

the presence of unknown communication delays.

We do not consider delays, plant disturbances, and initial condition to be chosen from any

specific distribution. Therefore, our results are valid for any arbitrary delay, plant disturbances,

and initial condition with finite support. In particular, our goal is to find upper and lower bounds

on Rs, where the lower bound is necessary at least for a realization of the initial condition, delay,

and disturbances, and the upper bound is sufficient for all realizations of the initial condition,

delay, and disturbances. In addition, our lower bound is necessary for any control policy u(t) to

render the plant (3.1) ISpS under the class of event-triggering strategies described next.

3.3 Event-triggered design

Here we introduce the general class of event-triggered policies considered for plant 3.1

in this chapter. Consider the following class of triggers: for J ∈ R positive, the sensor sends a

message to the controller at tk+1
s if

|z(tk+1
s )| = J, (3.6)
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provided tkc ≤ tk+1
s for k ∈ N and t1s ≥ 0. A new transmission happens only after the previous

packet has been received by the controller. Since the triggering time ts is a real number, its

knowledge can reveal an unbounded amount of information to the controller. However, due to

the unknown delay in the channel, the controller does not have perfect knowledge of it. In fact,

both the finite data rate and the delay mean that the controller may not be able to compute the

exact value of x(tc). To address this, let z̄(tc) be an estimated version of z(tc) reconstructed by

the controller knowing |z(ts)| = J , the bound (3.3) on the delay, and the packet received through

the channel. Using z̄(tc), the controller updates the state estimate via the jump strategy,

x̂(t+c ) = z̄(tc) + x̂(tc). (3.7)

Note that |z(t+c )| = |x(tc)− x̂(t+c )| = |z(tc)− z̄(tc)|.

We assume the packet size g(ts) calculated at the sensor is so that

|z(t+c )| = |z(tc)− z̄(tc)| ≤ J, (3.8)

is satisfied for all tc ∈ [ts, ts + γ]. This property plays a critical role in our forthcoming

developments. In particular, we will show later that our controller design for the sufficient

characterization on the transmission rate builds on identifying a particular encoding-decoding

strategy and a packet size to make (3.8) hold true. Likewise, our necessary characterization builds

on identifying the minimal packet sizes necessary to ensure (3.8).

The importance of (3.8) starts to become apparent in the following result: if this inequality

holds at each reception time, the state estimation error (3.5) is bounded for all time.

Lemma6. Consider the plant-sensor-channel-controller model with plant dynamics (3.1), es-

timator dynamics (3.4), triggering strategy (3.6), and jump strategy (3.7). Assume |z(0)| =

|x(0)− x̂(0)| < J and (3.8) holds at all reception times {tkc}k∈N. Then, for all t ≥ 0,
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|z(t)| ≤ JeAγ +
|w|t
A

(
eAγ − 1

)
. (3.9)

Proof. At the reception time, z(tk+
c ) satisfies (3.8), hence using the triggering rule (3.6), we

deduce |z(t)| ≤ J for all t ∈ (tkc , t
k+1
s ]. Since J is smaller than the upper bound in (3.9), and

z(t
(k+1)+
c ) satisfies (3.8), it remains to prove (3.9) for t ∈ (tk+1

s , tk+1
c ). From (3.1), (3.4), and (3.5),

we have ż(t) = Az(t) + w(t) during inter-reception time intervals (tkc , t
k+1
c ). Also, from (3.6) it

follows (tk+1
s , tk+1

c ) ⊆ (tkc , t
k+1
c ). Thus, for all t ∈ (tk+1

s , tk+1
c ), we have

z(t) = eA(t−tk+1
s )z(tk+1

s ) +

∫ t

tk+1
s

eA(t−τ)w(τ)dτ. (3.10)

When a triggering occurs |z(tk+1
s )| = J , hence the absolute value of the first addend in (3.10) is

upper bounded by JeA(t−tk+1
s ). Also, for the second addend in (3.10) we have

|
∫ t

tk+1
s

eA(t−τ)w(τ)dτ | (3.11)

≤ |w|t
∫ t

tk+1
s

|eA(t−τ)|dτ =
|w|t
A

(
eA(t−tk+1

s ) − 1
)
.

By (3.3), we have t− tk+1
s ≤ tk+1

c − tk+1
s ≤ γ, and the result follows.

Using (3.2), we deduce from Lemma 6 that |z(t)| ≤ JeAγ + M
A

(
eAγ − 1

)
for all t ≥ 0.

Next, we rule out Zeno behavior (an infinite amount of triggering events in a finite time interval)

for our our event-triggered control design. To do this, let 0 < ρ0 < 1 be a design parameter, and

assume the packet size g(ts) is selected at the sensor to ensure a stronger version of (3.8),

|z(t+c )| = |z(tc)− z̄(tc)| ≤ ρ0J. (3.12)

Clearly, (3.12) implies (3.8). The following result shows that given (3.12) the time between
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consecutive triggers is uniformly lower bounded.

Lemma7. Consider the plant-sensor-channel-controller model with plant dynamics (3.1), es-

timator dynamics (3.4), triggering strategy (3.6), and jump strategy (3.7). Assume |z(0)| =

|x(0)− x̂(0)| < J and (3.12) holds at all reception times {tkc}k∈N. Then for all k ∈ N

tk+1
s − tks ≥ ln

( JA+M

ρ0JA+M

)/
A.

Proof. By considering two successive triggering times tks and tk+1
s and the reception time tkc ,

from (3.6) it follows tks ≤ tkc ≤ tk+1
s . From (3.1), (3.4), and (3.5), we have ż(t) = Az(t) + w(t)

during inter-reception time intervals (tkc , t
k+1
c ), consequently using the definition of the triggering

time tk+1
s (3.6) it follows

|z(tk+
c )eA(tk+1

s −tkc )|+ |
∫ tk+1

s

tkc

eA(tk+1
s −τ)w(τ)dτ | ≥ J.

Using (3.12) and (3.11), we have

ρ0Je
A(tk+1

s −tkc ) + (M/A)(eA(tk+1
s −tkc ) − 1) ≥ J,

which is equivalent to tk+1
s − tkc ≥ 1

A
ln(

J+M
A

ρ0J+M
A

). The result follows from using tks ≤ tkc in this

inequality.

Given the uniform lower bound on the inter-event time obtained in Lemma 7, we deduce

that the event-triggered control design does not exhibit Zeno behavior. Using Lemma 7, we

deduce that the triggering rate (2.17), the frequency with which transmission events are triggered,

is uniformly upper bounded under the event-triggered control design, i.e., for all initial conditions,
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possible delay and plant noise values, we have

Rtr ≤
A

ln(
J+M

A

ρ0J+M
A

)
. (3.13)

3.4 Sufficient and necessary conditions on the information trans-

mission rate

Here we derive sufficient and necessary conditions on the information transmission

rate (2.9) to ensure (3.1) is ISpS. As mentioned above, our approach is based on the characteriza-

tion of the transmission rate required to ensure that (3.8) holds at all reception times. Section 3.4.1

introduces a quantization policy that, together with the event-triggered scheme, provides a com-

plete control design to guarantee (3.1) is ISpS and rules out Zeno behavior. Section 3.4.2 presents

lower bounds on the packet size and triggering rate required to guarantee (3.1) is ISpS, leading to

our bound on the necessary information transmission rate. We conclude the section by comparing

the sufficient and necessary bounds, and discussing their gap.

3.4.1 Sufficient information transmission rate

We start by showing that, if (3.8) holds at each reception time {tkc}k∈N, then a linear

controller renders the plant (3.1) ISpS. We note that similar results exist in the literature (e.g., [65,

68, 69, 148, 150]) and we here extend them to our event-triggering setup with quantization and

unknown delays.

Proposition1 Under the assumptions of Lemma 6, the controller u(t) = −Kx̂(t) renders (3.1)

ISpS, provided A−BK < 0.
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Proof. By letting u(t) = −K(x(t)− z(t)), we rewrite (3.1) as ẋ(t) = (A−BK)x(t)+BKz(t)+

w(t). Consequently, we have

|x(t)| ≤ e(A−BK)t|x(0)| (3.14)

+ e(A−BK)t

∫ t

0

e−(A−BK)τ (BK|z(τ)|+ |w(τ)|)dτ.

since A − BK < 0, the first summand in (3.14) is a KL function of |x(0)| and time. Thus, it

remains to prove the second summand in (3.14) is upper bounded by summation of a K∞(0)

function of |w|t, a K∞(d) function of γ, and a K2
∞(0, 0) function of |w|t and γ. The second

summand in (3.14) is upper bounded by −(1 − e(A−BK)t)(BK|z|t + |w|t)/(A − BK). Since

1− e(A−BK)t < 1, using Lemma 6 we deduce the second summand in (3.14) is upper bounded by

ψ (|w|t) + ι(γ) + ϑ(|w|t, γ), where ψ(|w|t) = (|w|t/− (A−BK)) which is a K∞(0) function

of |w|t, ι(γ) = ((BKJeAγ)/− (A−BK)) which is a K∞(d) function of γ with d = ι(0), and

ϑ(|w|t, γ) = ((BK|w|t)/− A(A−BK))(eAγ − 1) which is a K2
∞(0, 0) function of γ and |w|t.

Design of quantization policy

The result in Proposition 1 justifies our strategy to obtain a sufficient condition on the

transmission rate to guarantee (3.1) is ISpS, which consists of finding conditions to achieve (3.8)

for all reception times. Here we specify a quantization policy and determine the resulting

estimation error as a function of the number of bits transmitted. This allows us to determine

the packet size that ensures (3.12) (and consequently (3.8)) holds, thereby leading to a complete

control design which ensures (3.1) is ISpS and rules out Zeno behavior. In turn, this also yields a

sufficient condition on the information transmission rate. In our sufficient design the controller
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estimates z(tc) as

z̄(tc) = sign(z(ts))Je
A(tc−q(ts)), (3.15)

where q(ts) is an estimation of the triggering time ts constructed at the controller as described

next. According to (3.6), at every triggering event, the sensor encodes ts and transmits a packet

p(ts). The packet p(ts) consists of g(ts) bits of information and is generated according to the

following quantization policy. The first bit p(ts)[1] denotes the sign of z(ts). As shown in

p

p

p

p

Figure 3.2: The encoding-decoding algorithms in the proposed event-triggered control
scheme. In this example, we assume g(ts) = 5 and j is an even natural number. The
packet p(ts) of length 5 can be generated and sent to the controller. Recall that p(ts)[1]
encode the sign of z(ts). After reception and decoding the controller choose the center
of the smallest sub-interval as its estimation of ts, denoted by q(ts).

Figure 3.2, the reception time tc provides information to the controller that ts could fall anywhere

between tc − γ and tc. Let b > 1. To determine the time interval of the triggering event, we break

the positive time line into intervals of length bγ. Consequently, ts falls into [jbγ, (j + 1)bγ] or

[(j + 1)bγ, (j + 2)bγ], with j being a natural number. We use the second bit of the packet to

determine the correct interval of ts. This bit is zero if the nearest integer less than or equal to

the beginning number of the interval is an even number and is 1 otherwise. This can be written

mathematically as p(ts)[2] = mod
(
b ts
bγ
c, 2
)
. For the remaining bits of the packet, the encoder

breaks the interval containing ts into 2g(ts)−2 equal sub-intervals. Once the packet is complete, it
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is transmitted to the controller, where it is decoded and the center point of the smallest sub-interval

is selected as the best estimate of ts. Thus,

|ts − q(ts)| ≤ bγ/2g(ts)−1. (3.16)

We have employed this quantization policy in our previous work [95] and analyzed its behavior

in the case with no disturbances. Next, we extend our analysis to scenarios with both unknown

delays and plant disturbances. As discussed in Remark 13, we start by showing that under the

proposed encoding-decoding scheme, provided the sensor knows x̂(0) and has causal knowledge

of the delay (i.e., the controller acknowledges the packet reception times), then Assumption 1

holds.

Proposition2 Under the assumptions of Lemma 7, using the estimation (3.15) and the quantiza-

tion policy described in Figure 3.2, if the sensor knows x̂(0) and has causal knowledge of delay,

then it can calculate x̂(t) for all time t ≥ 0.

Proof. The proof is based on induction. Using x̂(0) sensor can construct the value of x̂(t) for

t ∈ (0, t1c) according to (3.4). Note that we are using the proposed quantizer in Figure 3.2, hence

given t1s, q(t
1
s) gets identified deterministically. Consequently, given t1c and using (3.15), the

sensor constructs the value of z(t1+
c ) and it determines the value of x̂(t1+

c ).

Now assuming that the sensor is aware of the value of x̂(tk+
c ) we will prove that the sensor

can find the value of x̂(t
(k+1)+
c ) too. Since the sensor is aware of the x̂(tk+

c ) and it knows that

x̂(t) evolves according to (3.4) for t ∈ (tkc , t
k+1
c ) starting from x̂(tk+

c ) sensor can calculate all the

values of x̂(t) until tk+1
c . Using our proposed quantizer and given tk+1

s , q(tk+1
s ) can be identified

deterministically, therefore by knowing the value of (k + 1)th delay the sensor can calculate the

value of z̄(t
(k+1)+
c ) from (3.15). Then using the jump strategy (3.7) it can calculate x̂(t

(k+1)+
c ).

So the result follows.
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Sufficient packet size

Our next result bounds the difference |ts − q(ts)| between the triggering time and its

quantized version so that (3.12) holds at all reception times.

Lemma8. Consider the plant-sensor-channel-controller model with plant dynamics (3.1), es-

timator dynamics (3.4), triggering strategy (3.6), and jump strategy (3.7). Assume |z(0)| =

|x(0)− x̂(0)| < J Using the estimation (3.15) and the quantization policy described in Figure 3.2,

if

|ts − q(ts)| ≤
1

A
ln(1 +

ρ0 − M
JA

(eAγ − 1)

eAγ
),

then (3.12) holds for all reception times {tkc}k∈N if J > M
Aρ0

(eAγ − 1).

Proof. Using (3.10), (3.15), and the triangular inequality, we deduce

|z(tc)− z̄(tc)| ≤

JeA(tc−ts)|(1− eA(ts−q(ts)))|+ |
∫ tc

ts

eA(tc−τ)w(τ)dτ |.

By applying the bounds (3.3), (3.2), and (3.11) on first and second addend respectively it follows

|z(tc)− z̄(tc)| ≤

|JeAγ(1− eA(ts−q(ts)))|+ M

A

(
eAγ − 1

)
.

Therefore, ensuring (3.12) reduce to

|1− eA(ts−q(ts))| ≤ η, (3.17)
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where η = e−Aγ(ρ0− M
AJ

(eAγ− 1)). Since J > M
Aρ0

(eAγ− 1), we have 0 ≤ η < 1. Consequently,

using (3.17), we deduce

ln(1− η)

A
≤ ts − q(ts) ≤

ln(η + 1)

A

It follows that to satisfy (3.12) for all delay values, requiring

|ts − q(ts)| ≤ min{| ln(1− η)|
A

,
ln(η + 1)

A
}

suffices, and the result now follows.

The next result provides a lower bound on the packet size so that (3.12) is ensured at all

reception times.

Theorem10 Consider the plant-sensor-channel-controller model with plant dynamics (3.1),

estimator dynamics (3.4), triggering strategy (3.6), and jump strategy (3.7). Assume |z(0)| =

|x(0)− x̂(0)| < J , Then there exists a quantization policy that achieves (3.12) for all reception

times {tkc}k∈N with any packet size

g(tks)≥max
{

0, 1 + log
Abγ

ln(1 + ρ0−(M/(JA))(eAγ−1)
eAγ

)

}
(3.18)

where b > 1 and J > M
Aρ0

(eAγ − 1).

The proof is a direct consequence of (3.16) and Lemma 8. The combination of the

upper bound (3.13) obtained for the triggering rate and Theorem 10 yields a sufficient bound

on the information transmission rate. To sum it up, we conclude that there exist a information
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transmission rate

Rs ≤ (3.19)

A

ln( JA+M
ρ0JA+M

)
max

{
0, 1 + log

Abγ

ln(1 + ρ0−(M/(JA))(eAγ−1)
eAγ

)

}
,

that is sufficient to ensure (3.12) and, as a consequence (3.8), for all reception times {tkc}k∈N.

Therefore, from Proposition 1, the bound (3.19) is sufficient to ensure the plant (3.1) is ISpS.

Remark14.The lower bound given on the packet size in (3.18) might not be a natural number or

might even be zero. If g(ts) = 0, this means that there is no need to put any data payload in the

packet and the plant can be stabilized using only timing information. However, in this case, the

sensor still needs to inform the controller about the occurrence of a triggering event. Thus, when

g(ts) = 0 is sufficient, the sensor can stabilize the system by transmitting a fixed symbol from

a unitary alphabet (see chapter 4 and [89, 90]). In practice, the packet size should be a natural

number or zero, so if we do not want to use the fixed symbol from a unitary alphabet, the packet

size

g(ts) = max

{
1,

⌈
1 + log Abγ

ln(1+
ρ0−(M/(JA))(eAγ−1)

eAγ
)

⌉}
, (3.20)

is sufficient for stabilization (the latter is the one used in our simulations of Section 3.6). •

3.4.2 Necessary information transmission rate

Here, we present a necessary condition on the information transmission rate required

by any control policy to render plant (3.1) ISpS under the class of event-triggering strategies

described in Section 3.3. In Section 3.4.1, to derive a sufficient bound that guarantees (3.1) is

ISpS, our focus has been on identifying a quantization policy that could handle any realization of

initial condition, delay, and disturbance. Instead, the treatment here switches gears to focus on
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any quantization policy, for which we identify at least a realization of initial condition, delay, and

disturbance that requires the necessary bound on the information transmission rate.

We start our discussion by making the following observation about the property (3.8). If

this property is not satisfied at an arbitrary reception time tkc , i.e., z(tkc ) > J , and w(t) > 0 or

w(t) < 0 for all t ≥ tkc , then tkc will be the last triggering time. In this case, after tkc , the controller

needs to estimate the inherently unstable plant in open loop. In this case, there exists a realization

of the initial condition, system disturbances, and delay for which the absolute value of the state

estimation error grows exponentially with time. Thus, for any given control policy, there exists a

realization for which the absolute value of the state tends to infinity with time and (3.1) is not

ISpS.

As a consequence of this observation, our strategy to provide a necessary condition

for (3.1) to be ISpS consists of identifying a necessary condition on the information transmission

rate Rs to have (3.8) at all reception times {tkc}k∈N. In turn, we do this by finding lower bounds

on the packet size g(ts) and the triggering rate Rtr. We do this in two steps: first, we find a lower

bound on the number of bits transmitted at each triggering event which holds irrespective of the

triggering rate. Then, we find a lower bound on the triggering rate, and the combination leads us

to the necessary condition on Rs.

Necessary packet size

We rely on (3.10) to define the uncertainty set of the sensor about the estimation error at

the controller z(tc) given ts as follows

Ω(z(tc)|ts) = {y : y = ±JeA(tr−ts) +

∫ tr

ts

eA(tr−τ)w(τ)dτ,

tr ∈ [ts, ts + γ], |w(τ)| ≤M for τ ∈ [ts, tr]}.
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Additionally, we define the uncertainty of the controller about z(tc) given tc, as follows

Ω(z(tc)|tc) = {y : y = ±JeA(tc−tr) +

∫ tc

tr

eA(tc−τ)w(τ)dτ,

tr ∈ [tc − γ, tc], |w(τ)| ≤M for τ ∈ [tr, tc]}.

We next show the relationship between these uncertainty sets.

Lemma9. Assume the plant-sensor-channel-controller model described in Section 3.2, with

plant dynamics (3.1), estimator dynamics (3.4), triggering strategy (3.6), and jump strategy (3.7).

Moreover, assume M ≤ AJ . Then Ω(z(tc)|ts) = Ω(z(tc)|tc) and m (Ω(z(tc)|tc)) = 2(M/A +

J)(eAγ − 1).

Proof. Due to symmetry, it is not difficult to show that Ω(z(tc)|ts) is the same as Ω(z(tc)|tc). We

characterize the set Ω(z(tc)|ts) as follows. We reason for the case when z(ts) = J (the argument

for the case z(ts) = −J is analogous). Clearly, z(tc) takes its largest value when tc = ts + γ

and w(τ) = M for τ ∈ [ts, tc], which is equal to z(tc) = JeAγ + (M/A)(eAγ − 1). On the other

hand, finding the smallest value of z(tc) is more challenging. First, when tc = ts we have

z(tc) = J. (3.21)

Second, by setting w(τ) = −M for τ ∈ [ts, tc] and tc = ts + ∆,

z(tc) = JeA∆ − (M/A)(eA∆ − 1). (3.22)

Taking the derivative of (3.22) with respect to ∆ results in

dz(tc)/d∆ = AJeA∆ −MeA∆ = eA∆(AJ −M). (3.23)
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If M ≤ AJ and the derivative in (3.23) is non-negative, z(tc) in (3.22) would be a non-decreasing

function of ∆. Hence, the smallest value of z(tc) in (3.22) occurs for ∆ = 0 which is equal to

the value of z(tc) in (3.21). Hence, Ω(z(tc)|ts) = [J, JeAγ + (M/A)(eAγ − 1)], and the result

follows.

Lemma 9 allows us to find a lower bound on the packet size g(ts) which is valid irrespec-

tive of the triggering rate.

Lemma10. Under the assumptions of Lemma 9, if (3.8) holds for all reception times {tkc}k∈N,

then the packet size at every triggering event must satisfy

g(tks) ≥ max

{
0, log

((
M

AJ
+ 1

)(
eAγ − 1

))}
. (3.24)

Proof. To ensure (3.8) for all reception times, we calculate a lower bound on the number of bits

to be transmitted to ensure the sensor uncertainty set Ω(z(tc)|ts) is covered by quantization cells

of measure 2J . Therefore, we have

g(ts) ≥ max

{
0, log

m(Ω(z(tc)|ts))
m(B(J))

}
,

where B(J) is a ball centered at 0 of radius J , and we have incorporated the fact that the packet

size g(ts) must be non-negative. From Lemma 9 we have

log
m(Ω(z(tc)|ts))
m(B(J))

≥ log
2(M/A+ J)(eAγ − 1)

2J
.

Lower bound on the triggering rate

Having found a lower bound on the packet size, our next step is to determine a lower

bound on the triggering rate.
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Lemma11. Under the assumptions of Lemma 9, for all the quantization policies which en-

sure (3.8) at all reception times {tkc}k∈N, if there exists a delay realization {∆k ≤ α}k∈N, a

disturbance realization, and an initial condition such that

|z(tk+
c )| = |z(tkc )− z̄(tkc )| ≥ Υ, (3.25)

for all k ∈ N, then there exists a delay realization, a disturbance realization, and an initial

condition such that

Rtr ≥ A
(
ln
(
eAα(JA+M)

/
(ΥA+M)

))−1
. (3.26)

Proof. Using the definition of the triggering time (3.6), (3.25), tkc = tks + ∆k, and (3.10), we have

ΥeA(tk+1
s −tks−∆k) + (M/A)

(
eA(tk+1

s −tks−∆k) − 1
)
≤ J , which is equivalent to

eA(tk+1
s −tks ) ≤ eA∆k(JA+M)

/
(ΥA+M). (3.27)

By hypothesis, (3.25) occurs for all k ∈ N when ∆k ≤ α. Hence, by (3.27), we upper bound the

triggering intervals as

∆′k= tk+1
s − tks≤A−1 ln

(
eAα(JA+M)

/
(ΥA+M)

)
. (3.28)

The result follows by substituting (3.28) into (2.17).

If we do not limit the collection of permissible quantization policies, a packet may carry

an unbounded amount of information, which can bring the state estimation error arbitrarily close

to zero at all reception times and for all delay and disturbance values. This would give rise to a

conservative lower bound on the transmission rate. Specifically, using ∆k ≤ γ, cf. (3.3), putting

Υ = 0, and combining (3.26) and (3.24) we deduce there exists a delay realization, disturbance
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realization, and initial condition such that

Rs ≥ A
max

{
0, log

((
M
AJ

+ 1
) (
eAγ − 1

))}
ln
(
eAγ JA+M

M

) , (3.29)

is necessary for all quantization policies. To find a tighter necessary condition we instead limit

the collection of permissible quantization policies. Since ensuring (3.8) at each reception time

is equivalent to dividing the uncertainty set at the controller Ω(z(tc)|tc) by quantization cells of

measure of at most 2J , our approach is to restrict the class of quantization policies to those that

use the minimum possible number of bits to ensure (3.8).

Assumption 2 We assume at each triggering time the sensor transmits the smallest possible

packet size (data payload) to ensure (3.8) at each reception time for all initial conditions and all

possible realizations of the delay and plant disturbance. Moreover, to simplify our analysis in the

encoding-decoding scheme, we choose the center of each quantization cell as z̄(tc).

Based on this assumption, the sensor brings the uncertainty about z(tc) at the controller

down to a quantization cell of measure at most 2J , using the smallest possible packet size. The

following result, shows that, for this class of quantization policies, there exists a delay realization

such that the sensor can only shrink the estimation error for the controller to at most half of the

largest value of J dictated by (3.8).

Lemma12. Let β = ln (1 + 2AJ/(AJ +M))
/
A ≤ γ.

β =
1

A
ln

(
1 +

2

1 + M
AJ

)
≤ γ.

Under the assumptions of Lemma 9, for all the quantization policies ensuring (3.8) at all reception

times {tkc}k∈N with Assumption 2 in place, there exists a delay realization {∆k ≤ β}k∈N, initial
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condition, and plant disturbance such that

|z(tk+
c )| = |z(tkc )− z̄(tkc )| ≥ J/2. (3.30)

Proof. Without loss of generality assume that z(ts) = J throughout this proof. We also consider

the realization of w(t) = M for all time t. We first show β is the time needed for the state

estimation error to grow from z(ts) to z(ts) + 2J . From (3.10), we deduce at delay β we have

z(tc) = eAβJ + (M/A)
(
eAβ − 1

)
. (3.31)

By combining (3.31), the bound on β, and z(ts) = J it follows z(tc) = z(ts) + 2J . Hence, the

value of z(tc) sweeps an area of measure 2J when the delay takes values in [0, β].

We continue by distinguishing between two classes of quantization cells. We call a

quantization cell perfect, if its measure is equal to 2J , and when the measure of a quantization

cell is less than 2J we call it defective. Using these definitions we now prove the occurrence

of (3.30) with delay of at most β, in three different cases. First, when z(ts) is in a perfect cell,

clearly for a delay of at most β we have |z(tkc )− z̄(tkc )| ≥ J , and (3.30) follows. Second, when

z(ts) is in a defective cell which is adjacent to a perfect cell, for a delay of at most β the value

of z(tc) sweeps the area of the defective cell and z(tc) inters the adjacent perfect cell. Thus,

with delay at most β we have |z(tkc ) − z̄(tkc )| ≥ J/2, where z̄(tkc ) is the center of the adjacent

perfect cell with radius J , and (3.30) follows. It remains to check the assertion when z(ts) is in a

defective quantization cell which is adjacent to another defective quantization cell. Due to the

restriction on the quantization policies as in Assumption 2, the sensor transmits the minimum

required bits to divide the uncertainty set at the controller to quantization cell of measure of at

most 2J . If the measure of union of two adjacent cells is at most 2J , these two balls could be

replaced by one quantization cell to reduce the number of quantization cells. As a consequence,

under Assumption 2, the measure of union of two adjacent quantization cells is greater than 2J .
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Assume the defective quantization cell that contain z(ts) is of the measure µ1 and the measure of

the adjacent defective cell is µ2. As a result, we have µ1 + µ2 > 2J . Therefore, at least one of the

µ1 or µ2 is at least J , thus with a delay of at most β, we have |z(tkc )− z̄(tkc )| ≥ J/2, and (3.30)

follows.

Combining Lemmas 11 and 12, we deduce there exists a delay realization, disturbance

realization, and initial condition such that

Rtr ≥ A

(
ln

((
1 +

2AJ

AJ +M

)
JA+M

0.5JA+M

))−1

(3.32)

is valid for all quantization policies that use the minimum required packet size according to

Assumption 2. Finally, the combination of the bounds on the packet size (cf. Lemma 10) and on

the triggering rate (cf. (3.32)) yields the next result.

Theorem11. Under the assumptions of Lemma 9, for all the quantization policies which ensure

(3.8) at all reception times {tkc}k∈N with Assumption 2 in place, there exists a delay realization

{∆k ≤ β}k∈N, a disturbance realization, and an initial condition such that

Rs ≥ A
max

{
0, log

(
(M/(AJ) + 1)

(
eAγ − 1

))}
ln
((

1 + 2AJ
AJ+M

)
JA+M

0.5JA+M

) . (3.33)

Note that the bound (3.33) is tighter than the bound in (3.29). Figure 3.3 compares our bounds

on the sufficient (3.19) and necessary (3.33) information transmission rates for (3.1) to be ISpS.

We attribute the gap between them to the fact that, while the necessary condition employs

quantization policies with the minimum possible packet size according to Assumption 2, the

encoding-decoding scheme proposed in the sufficient design does not generally satisfy this

assumption. Also, the fact that we bound the triggering rate and the packet size independently in

our analysis might further contribute to the gap.

As depicted in Figure 3.3, for sufficiently small delay values the timing information is
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substantial, and the plant can be ISpS in the presence of bounded system disturbances when the

sensor transmits data payload at a rate smaller than the one indicated by the data-rate theorem.

On the other hand, as the communication delay increases, the timing information becomes less

useful and the uncertainty about the state increases at the controller. Since in our design the state

estimation error is smaller than the triggering threshold at each reception time (3.8), for larger

values of delay Rs exceeds the access rate prescribed by the data-rate theorem.

0 0.2 0.4 0.6 0.8 1

Channel Delay Upperbound, γ (sec)

0

10

20

30

40

50

60

70

R
a
te

(b
it
s/
se
c)

data-rate theorem
necessary
sufficient

Figure 3.3: Illustration of the sufficient (3.19) and necessary (3.33) transmission rates
as functions of the delay upper bound γ. Here, A = 5.5651, ρ0 = 0.1, b = 1.0001,
M = 0.4, and J = M

Aρ0
(eAγ − 1) + 0.1. The rate dictated by the data-rate theorem is

Rc ≥ A/ ln 2 = 8.02874.

3.5 Extension to complex linear systems

In this section, we generalize our treatment to complex linear plants with disturbances.

The results presented here can be readily applied to multivariate linear plants with disturbance

and diagonalizable open loop-gain matrix (possibly, with complex eigenvalues). This corresponds

to handling the n-dimensional real plant as n scalar (and possibly complex) plants, and derive a

sufficient condition for them. We consider a plant, sensor, communication channel and controller

described by the following continuous linear time-invariant system

ẋ = Ax(t) +Bu(t) + w(t), (3.34)
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where x(t) and u(t) belong to C for t ∈ [0,∞). Here w(t) ∈ C represents a plant disturbance,

which is upper bounded as ‖w(t)‖ ≤M , withM ∈ R≥0. Also, A ∈ C with Re(A) ≥ 0 (since we

are only interested in unstable plants) and B ∈ C is nonzero. The model for the communication

channel is the same as in Section 3.2. To establish a baseline for comparison of the bounds on

the information transmission rate, we start by stating a generalization of the classical data-rate

theorem for the complex plant (3.34).

Theorem12. Consider the plant-sensor-channel-controller model with plant dynamics (3.34). If

x(t) remains bounded as t→∞, then

Rc ≥
2 Re(A)

ln 2
.

Proof. It is enough to prove the assertion when w(t) = 0. By rewriting (3.34) when w(t) = 0

we have ˙Re(x) + i ˙Im(x) = Re(A) Re(x) − Im(A) Im(x) + i(Re(A) Im(x) + Im(A) Re(X)),

which is equivalent to


˙Re(x)

˙Im(x)

=


Re(A) − Im(A)

Im(A) Re(A)




Re(x)(t)

Im(x)(t)

.

Since ‖x‖ =
√

Re(x)2 + Im(x)2, if Re(x) or Im(x) becomes unbounded, ‖x‖ becomes un-

bounded. Consequently, using [70, Theorem 1], we need to have

Rc ≥ Tr


Re(A) − Im(A)

Im(A) Re(A)


 / ln 2.
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3.5.1 Event-triggered control for complex linear systems

The state estimate x̂ evolves according to the dynamics (3.4) along the inter-reception

time intervals starting from x̂(tk+
c ) with initial condition x̂(0). We use the state estimation error

defined as (3.5) with initial condition z(0) = x(0)− x̂(0). A triggering event happens at tk+1
s if

‖z(tk+1
s )‖ = J, (3.35)

provided tkc ≤ tk+1
s for k ∈ N and t1s ≥ 0, and the triggering radius J ∈ R is positive. At each

triggering time, the packet p(ts) of size g(ts) is transmitted from the sensor to the controller.

The packet p(ts) consists of a quantized version of the phase of z(ts), denoted φq(z(ts)), and a

quantized version of the triggering time ts. By (3.35), we have

z(ts) = Jeiφz(ts) .

We construct a quantized version, denoted q(z(ts)), of z(ts) at the controller as

q (z(ts)) = Jeiφq(z(ts)) .

Additionally, using the bound (3.3) and the packet at the controller, the quantized version of ts is

reconstructed and denoted by q(ts). Hence, at the controller, z(tc) is estimated as follows

z̄(tc) = eA(tc−q(ts))q (z(ts)) . (3.36)

We use the jump strategy (3.7) to update the value of x̂(t+c ). Hence, ‖z(t+c )‖ = ‖z(tc)− z̄(tc)‖

holds. At the sensor, the packet size g(ts) is chosen to be large enough such that

‖z(t+c )‖ = ‖z(tc)− z̄(tc)‖ ≤ ρ0J, (3.37)
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(where 0 < ρ0 < 1 is a design parameter) is satisfied for all tc ∈ [ts, ts + γ]. Figure 3.4 shows a

typical realization of z(t) under the proposed event-triggered strategy before and after one event.

The notion of ISpS remains the same as in Definition 1 by replacing absolute value with complex

absolute value.

c

+

(a) (b)

Figure 3.4: (a) The blue curve shows the evolution of the state estimation error before
and after an event. The trajectory starts with an initial state inside a circle of radius J , and
continues spiraling (due to the imaginary part of A) until it hits the triggering threshold
radius J . Then it jumps back inside the circle after the update according to (3.36) and
jump strategy (3.7). During inter-reception time intervals, ż(t) = Az(t) + w(t), and the
observed overshoot beyond the circle is due to the delay in the communication channel.
Here, A = 0.3 + 2i, B = 0.2, u(t) = −8x̂(t), M = 0.2, γ = 0.05 sec, ρ0 = 0.9 and
J = 0.0173. (b) Estimation of the phase angle after event and transmission of λ bits.

Remark15. Similarly to Proposition 1, one can show that if (3.37) occurs at all reception times

and (A,B) is a stabilizable pair, then under the control rule u(t) = −Kx̂(t), the plant (3.34) is

ISpS, provided the real part of A−BK is negative. As a consequence of this observation, our

analysis focues on ensuring (3.37) at each reception time. The lower bound on the inter-event

time of Lemma 7 and the upper bound on the triggering rate (3.13) also holds replacing A by

Re(A) for the complex plant. •

3.5.2 Sufficient information transmission rate

In this section, we design a quantization policy that, using the event-triggered controller

of Section 3.5.1, ensures the plant (3.34) is ISpS. We rely on this design to establish a sufficient
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bound on the information transmission rate.

Design of quantization policy

We devote the first λ bits of the packet p(ts) for quantizing the phase of z(ts). The

proposed encoding algorithm uniformly quantizes the circle into 2λ pieces of 2π/2λ radians.

After reception, the decoder finds the correct phase quantization cell and selects its center point

as φq(z(ts)). By letting ω = φz(ts) − φq(z(ts)), as depicted in Figure 3.4, geometrically we deduce

|ω| ≤ π/2λ. Furthermore, we use the encoding scheme proposed in Figure 3.2 to append a

quantized version of triggering time ts of length g(ts)− λ to the packet p(ts). Hence, we have

p(ts)[λ+ 1] = mod
(
b ts
bγ
c, 2
)
. For the remaining bits of the packet, the encoder breaks the interval

containing ts into 2g(ts)−λ−1 equal sub-intervals. Once the packet is complete, it is transmitted to

the controller, where it is decoded and the center point of the smallest sub-interval is selected as

the best estimate of ts. Therefore,

|ts − q(ts)| ≤ bγ/2g(ts)−λ. (3.38)

Note that, given tk+1
s , one can identify q(tk+1

s ) deterministically. Also, using the first λ bits of the

packet, the sensor can find the value of φq(z(ts)). Consequently, similar to Proposition 2, if the

sensor has a causal knowledge of the delay in the communication channel, it can calculate the

state estimation x̂(t) for all time t.

Sufficient packet size

Here we show that with a sufficiently large packet size, we can achieve (3.37) at all

reception times {tkc}k∈N using the quantization policy designed in Section 3.5.2.

Theorem13. Consider the plant-sensor-channel-controller model with plant dynamics (3.34),

estimator dynamics (3.4), triggering strategy (3.35), and jump strategy (3.7). Assume ‖z(0)‖ =
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‖x(0)− x̂(0)‖ < J , then the quantization policy designed above achieves (3.37) for all reception

times {tkc}k∈N with any packet size lower bounded by

g(ts) ≥ ḡ := (3.39)

max

0, λ+ log
Re(A)bγ

ln

(
1+e−Re(A)γ(ρ0− M

Re(A)J (eRe(A)γ−1))
2 sin(π/2λ+1)+1+

√
2ζ

)
 ,

provided cos
(

Im(A)
(
ts − q(ts)

))
= 1− ζ , b > 1,

ρ0 ≥
M

Re(A)J

(
eRe(A)γ − 1

)
+ eRe(A)γ

(
2 sin(π/2λ+1) +

√
2ζ
)
, (3.40a)

J ≥ M

Re(A)χ

(
eRe(A)γ − 1

)
,
√

2ζeRe(A)γ ≤ χ′, (3.40b)

λ > log

(
π
/

arcsin

(
1− χ− χ′

2eRe(A)γ

))
− 1, (3.40c)

where 0 < χ+ χ′ < 1.

Proof. In our design, the controller estimates z(tc) as in (3.36), and the encoding-decoding

scheme is as depicted in Figures 3.2 and 3.4. Using (3.10), (3.36), and the triangle inequality, it

follows

‖z(tc)− z̄(tc)‖ ≤ (3.41)∥∥(eA(tc−ts)z(ts)− eA(tc−q(ts))q (z(ts))
)∥∥+

∥∥∥∥∫ tc

ts

eA(tc−τ)w(τ)dτ

∥∥∥∥ .
Similarly to (3.11), since ‖w(t)‖ ≤M , the second summand in (3.41) is upper bounded as

∥∥∥∥∫ tc

ts

eA(tc−τ)w(τ)dτ

∥∥∥∥ ≤ M

Re(A)

(
eRe(A)γ − 1

)
. (3.42)
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To find a proper upper bound on the first summand in (3.41), assuming q (z(ts)) = z(ts)− v1 and

q(ts) = ts − v2, we have

∥∥eAtc (e−Atsz(ts)− eAq(ts)q (z(ts))
)∥∥ = (3.43)∥∥eA(tc−ts)

(
z(ts)− eAv2 (z(ts)− v1)

)∥∥ ≤
eRe(A)γ

(
J‖1− eAv2‖+ eRe(A)v2 ‖v1‖

)
.

Next, we find an upper bound of ‖v1‖. Since the sensor devotes λ bits to transmit a quantized

version of the phase of z(ts) to the controller, we have the upper bound |ω| ≤ π/2λ on the

difference of the phases of z(ts) and q(z(ts)). Also, over [−π, π], the cosine function is concave,

with global maximum at 0. Hence, as depicted in Figure 3.4, from the law of cosines, we have

‖v1‖ = ‖z(ts)− q (z(ts)) ‖ ≤ (3.44)√
2J2(1− cos(π/2λ)) = 2J sin(π/2λ+1).

Combining this with (3.43), the first summand in (3.41) is upper bounded by

JeRe(A)γ
(
‖1− eAv2‖+ 2eRe(A)v2 sin(π/2λ+1)

)
.

Note that ‖1−eAv2‖2 = (1−eRe(A)v2)2+2eRe(A)v2ζ , where cos(Im(A)v2) = 1−ζ , and 0 ≤ ζ ≤ 2.

Thus, the first summand in (3.41) is upper bounded by

JeRe(A)γ
(
|1− eRe(A)v2|+

√
2eRe(A)v2ζ + 2eRe(A)v2 sin(π/2λ+1)

)
.

For any positive real number ε we know ε + 1/ε ≥ 2, hence, eRe(A)v2 − 1 ≥ 1 − e−Re(A)v2 .

Therefore, for the rest of the proof, and without loss of generality, we assume v2 ≥ 0, and the
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first summand in (3.41) is upper bounded by

JeRe(A)γ
(
eRe(A)v2 − 1 +

√
2ζeRe(A)v2 + 2eRe(A)v2 sin(π/2λ+1)

)
. (3.45)

Combining (3.41), (3.42), and (3.45) we deduce

eRe(A)v2 ≤
1 + e−Re(A)γ

(
ρ0 − M

Re(A)J

(
eRe(A)γ − 1

))
2 sin(π/2λ+1) + 1 +

√
2ζ

(3.46)

which suffices to ensure (3.37). Recalling v2 = ts − q(ts), using (3.38) and by setting

bγ

2g(ts)−λ
≤ 1

Re(A)
ln

1 + e−Re(A)γ
(
ρ0 − M

Re(A)J

(
eRe(A)γ − 1

))
2 sin(π/2λ+1) + 1 +

√
2ζ

 ,

(3.46) is ensured. Consequently, the packet size in (3.39) is sufficient to ensure (3.37) for all

reception times. However, (3.46) is well defined only when the upper bound in (3.46) is at least

one, namely

e−Re(A)γ

(
ρ0 −

M

Re(A)J

(
eRe(A)γ − 1

))
≥ 2 sin(π/2λ+1) +

√
2ζ,

which holds because of (3.40a). Moreover, the design parameter ρ0 in (3.37) should be in the

open interval (0, 1). Therefore, the lower bound in (3.40a) should be smaller than 1, namely

M

Re(A)J

(
eRe(A)γ − 1

)
+ eRe(A)γ(2 sin(π/2λ+1) +

√
2ζ) < 1.

The result now follows by noting that (3.40b), and (3.40c) ensure this inequality holds.

Combining the bound on the triggering rate from Remark 15 with Theorem 13, it follows
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that there exists an information transmission rate with

Rs ≥
Re(A)

ln

(
J+ M

Re(A)

ρ0J+ M
Re(A)

) ḡ, (3.47)

that achieves (3.37) for all reception times {tkc}k∈N, and is therefore, sufficient to ensure (3.34)

is ISpS. Figure 3.5 shows the sufficient information transmission rate in (3.47) as a function of

the upper bound γ on the channel delay. One can observe that for small values of the delay, the

sufficient information transmission rate is smaller than the rate required by the data-rate result in

Theorem 12, and as the delay upper bound γ increases, the sufficient information transmission

rate increases accordingly.
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Figure 3.5: Sufficient information transmission rate (3.47) as a function of channel
delay upper bound γ. Here A = 1 + i, B = 0.5, M = 0.1, ρ0 = 0.9 and b = 1.0001.
Also λ = log

(
π/2 arcsin(7

8
)eRe(A)γ

)
and J = 8M

Re(A)

(
eRe(A)γ − 1

)
+ 0.002. The rate

dictated by the data-rate theorem (cf. Theorem 12) is 2 Re(A)/ ln 2 = 2.885.

Remark16. Depending on whether the system is real or complex, the corresponding triggering

criterion is based on the real or complex absolute value, resp., cf. (3.6) and (3.35). The controller

needs to approximate the phase at which the state estimation error z(ts) hits the triggering radius.

The real case is a particular case of our complex results, since the phase of z(ts) is then either 0 or

π. Thus, for the real case, in our sufficient design, only the first bits of the packet p(ts) denote the

sign of z(ts). On the other hand, in the complex case, we devote the first λ bits of the packet p(ts)
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for quantizing the phase of z(ts). By putting A = Re(A), λ = 1, and Im(A) = 0 (or ζ = 0), our

sufficient condition for complex systems (3.47), becomes equal to (3.19) except a factor 1 +
√

2,

which makes (3.47) larger than (3.19). The reason for the difference is (3.44), where we find an

upper bound on the estimation error of the phase of z(ts). In the real case, the controller deduces

z(ts) = J or z(ts) = −J , and the estimation error of the phase of z(ts) is zero. •

3.6 Simulations

This section presents simulation results validating the proposed event-triggered control

schemes for both real and complex systems.

While our analysis is for continuous-time plants, we perform the simulations in discrete

time with a small sampling time δ′ > 0. Thus, the minimum upper bound for the channel delay is

equal to two sampling times in the digital environment (this is because a delay of at most one

sampling time might occur from the time that triggering occurs to the time that the sensor took a

sample from the plant state and another delay of at most one sampling time might occur from the

time that the packet is received to the time the control input is applied to the plant).

3.6.1 Event-triggered control of diagonalizable systems with real eigenval-

ues

We consider a linearized version of the two-dimensional problem of balancing an inverted

pendulum mounted on a cart, where the motion of the pendulum is constrained in a plane and its

position can be measured by an angle θ as shown in Figure 3.6. The inverted pendulum has mass

m1, length l, and moment of inertia I . Also, the pendulum is mounted on top of a cart of mass

m2, constrained to move in y direction. The nonlinear equations governing the motion of the cart
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Figure 3.6: A pendulum mounted on a cart.

and pendulum are

(m1 +m2)ÿ + νẏ +m1lθ̈ cos θ −m1lθ̇
2sinθ = F

(I +m1l
2)θ̈ +m1g0lsinθ = −m1lÿcosθ,

where ν is the damping coefficient between the pendulum and the cart and g0 is the gravitational

acceleration. We define θ = π as the equilibrium position of the pendulum and φ as small

deviations from θ. We derive the linearized equations of motion using small angle approximation,

noting that this linearizion is only valid for sufficiently small values of the delay upper bound γ.

Define the state variable s = [y, ẏ, φ, φ̇]T , where y and ẏ are the position and velocity of the cart

respectively. Assuming m1 = 0.2 kg, m2 = 0.5 kg, ν = 0.1 N/m/s, l = 0.3 m, I = 0.006 kg/m2,

one can write the evolution of s in time as

ṡ = As(t) +Bu(t) + w(t), (3.48)
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where

A =



0 1 0 0

0 −0.1818 2.6730 0

0 0 0 1

0 −0.4545 31.1800 0


, B=



0

1.8180

0

4.5450


.

In addition, we add the plant noise w(t) ∈ R4 to the linearized plant model, and we assume that

all of its elements are upper bounded by M . A simple feedback control law can be derived for

(3.48) as u = −Ks, where K = [−1.00 − 2.04 20.36 3.93]. is chosen such that A − BK is

Hurwitz.

The eigenvalues of the open-loop gain of the plantA are e = [0 −5.6041 −0.1428 5.5651].

Thus, the open-loop gain of the plant A is diagonalizable (all eigenvalues of A are distinct). Using

the eigenvector matrix P , we diagonalize the plant to obtain

˙̃s = Ãs̃(t) + B̃ũ(t) + w̃(t), (3.49)

where

Ã =



0 0 0 0

0 −5.6041 0 0

0 0 −0.1428 0

0 0 0 5.5651


, B̃ =



10.0000

−2.3865

10.0979

2.2513


,

where s̃(t) = P−1s(t) and w̃(t) = P−1w(t). Also, ũ(t) = −K̃s̃(t) where K̃ = KP .

For the first three coordinates of the diagonalized plant in (3.49) the state estimation ŝ at

the controller simply constructs as ˙̂si = Ãiŝ(t) + B̃iũ(t), starting from ŝi(0) for i ∈ {1, 2, 3},

where Ãi and B̃i denote the ith row of Ã and B̃. Since the first three eigenvalues of A are
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non-positive, they are inherently stable. Thus, by the data theorem [174] there is no need to use

the communication channel for them, and since Ã − B̃K̃ is Hurwitz, ũ(t) = −K̃s̃(t) renders

them ISS with respect to system disturbances. Now we apply Theorem 10 to the fourth mode of

the plant, which is unstable, to make the whole plant ISpS. In fact, we use the packet size given

in (3.20) for the simulations. Using the problem formulation in Section 3.2, the estimated state

for the unstable mode ŝ4 evolves during the inter-reception times as

˙̂s4(t) = 5.5651ŝ4(t) + 2.2513ũ(t), t ∈ (tkc , t
k+1
c ), (3.50)

starting from ŝ4(tk+
c ) and ŝ4(0). Also, a triggering occurs when |z̃4(t)| = |s̃4(t) − ŝ4(t)| = J ,

where |z̃4(t)| is the estate estimation error for the unstable mode, and assuming the previous

packet is already delivered to the controller. In the simulation environment, since the sampling

time is small, a triggering happens as soon as |z̃4(t)| is equal or greater than J and the previous

packet has been recived by the controller. Let λ4 = 5.5651 be the eigenvalue corresponding to

the unstable mode. By Theorem 10, we choose J = (M/(λ4ρ0))(eλ4γ − 1) + 0.005, and the size

of the packet for all ts to be (3.20), where b = 1.0001 and ρ0 = 0.9.

A set of two simulations are carried out as follows. In simulation (a) the plant disturbance

is upper bounded by M = 0.05 and channel delay is upper bounded by the two sampling time 2δ′.

In simulation (b), the plant disturbance is upper bounded by M = 0.05 and channel delay is upper

bounded by γ = 0.1. Each row in Figure 3.7 presents a different simulation. The first column

shows the triggering function for s̃4 in (3.49) and the absolute value of the state estimation error

for the unstable coordinate, that is, |z̃4(t)| = |s̃4(t) − ŝ4(t)|. As soon as the absolute value of

this error is equal or greater than the triggering function, the sensor transmits a packet, and the

jumping strategy adjusts ŝ4 at the reception time to ensure the plant is practically stable. Note that

the amount this error exceeds the triggering function depends on the random channel delay upper

bounded by γ. Since γ in simulation (b) is larger than in simulation (a), the absolute value of the
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Simulation (a): M = 0.05, γ = 0.01 sec, g(ts) = 1 bit
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Simulation (b): M = 0.05, γ = 0.1 sec, g(ts) = 4 bits
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Figure 3.7: Simulation results: The following simulation parameters are chosen for the
system: simulation time T = 5 seconds, sampling time δ′ = 0.005 seconds, s̃(0) =
P−1[0, 0, 0, 0.1001]T , and ŝ(0) = P−1[0, 0, 0, 0.10]T . The first column represents the
evolution of the absolute value of state estimation error for the unstable mode of the plant
in (3.49). The second column represents the evolution of the unstable state in (3.49),
and its estimate in (3.50). Finally, and the last column represents the evolution of all the
actual states of the plant given in (3.48) in time.

state estimation error grows beyond the triggering function depending on the random delay in the

communication channel. The second column of Figure 3.7 presents the evolution of the unstable

state in (3.49) and its estimation in (3.50). The last column in Figure 3.7 represents the evolution

of all the actual states of the linearized plant (3.48) in time. In the second and third columns, as

expected, when γ increases, the controller performance deteriorate significantly. However, all the

states of the plant remain bounded and the plant is ISPS.

Finally, Figure 3.8 presents the simulation of information transmission rate versus the

delay upper bound γ in the communication channel for stabilizing the linearized model of

the inverted pendulum. It can be seen that for small γ, the plant is ISpS with an information

transmission rate smaller than the one prescribed by the data-rate theorem.
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Figure 3.8: Information transmission rate in simulations compared to the data-rate
theorem. Note that the rate calculated from simulations does not start at γ = 0 because
the minimum channel delay upper bound is equal to two sampling time (0.005 seconds
in this example). M is chosen to be 0.2 in these simulations, and simulation time is
T = 5 seconds.

3.6.2 Event-triggered control of complex systems

We consider the state and state estimation as in (3.34) and (3.4) where A = 2 + 0.5i,

B = 0.5, and the control input is chosen as u(t) = −8x̂(t). Using (3.40b), triggering radius J

in (3.35) can be found as follows:

J =
8M(eRe(A)γ − 1)

Re(A)
+ δ′,

Also, to quantize the phase, using (3.40c) we calculate λ as follows:

λ =

log

 π

arcsin
(

7/8

2eRe(A)γ

)


We carry out a set of two different simulations. In simulation (a), we assume the plant

disturbance is upper bounded by M = 0.1 and the channel delay is upper bounded by two

sampling times. For simulation (b), we assume the plant disturbance is upper bounded by M = 2

and the channel delay is upper bounded by γ = 1.2 seconds.

Simulation results are presented in Figure 3.9, where the first column represents norm of
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Simulation (a): M = 0.1, γ = 0.004 sec, g(ts) = 4 bits, λ = 3
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Simulation (b): M = 2, γ = 1.2 sec, g(ts) = 13 bits, λ = 7
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Figure 3.9: The first column represents norm of state estimation error. The second
column represents variations of phase angle of the complex state x, and the last column
represents evolution of the real component of x and x̂ in time. In these simulations
A = 2.5 + 0.5i, B = 0.5, ρ0 = 0.9, b = 1.0001, x0 = 0.2001, x̂0 = 0.2000, δ′ = 0.002
second, and simulation time T = 20 seconds.

the error ‖z(t)‖, and triggering radius J , the second column represents the evolution of φx(t) and

the third column represents the evolution of ‖x(t)‖ in time. In the simulation (b), despite having

large delays and large disturbances, the controller is able to stabilize the plant. As we can see in

the plot, the estimate of the state at the controller tracks the norm and phase of the state. In the

first column, sudden changes in the norm of the state estimation error represent reception of the

transmitted packet at the controller.

3.7 Implementation

The majority of results on control under communication constraints are restricted to

theoretical works. Here for the first time, we examine data-rate theorems in a practical setting,

using an inverted pendulum. We implement the event-triggering control design introduced

in Section 3.4.1, and demonstrate the utilization of timing information to stabilize a laboratory-

scale inverted pendulum over a digital communication channel with bounded unknown delay,
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see Figure 3.1.

3.7.1 Plant Dynamics

We consider a linearized version of the two-dimensional problem of balancing an inverted

pendulum with two propellers, where the motion of the pendulum is constrained in a plane and its

position can be measured by an angle φ representing small deviations from the upright position

of the pendulum, as depicted in Figure 3.1. The inverted pendulum has mass m1 and length l.

The propellers are identical and are attached to two motors of mass m2. m and I respectively

represent the total mass of the system and its moment of inertia. Therefore, a nonlinear equation

of the system can be written as follows

Iφ̈ = mgl sinφ(t) + ξ(t)l + noise, (3.51)

where g is the gravitational acceleration, and ξ(t) is the resultant thrust force of the propellers (fL

and fR as shown in Figure 3.1) generating a moment about the axis of rotation of the pendulum.

Note that in this nonlinear equation the effect of the friction is included in the additive noise. The

force ξ(t) can be estimated as a linear function of the control input ũ(t), applied to the motors,

with some proportionality constant kξ (found from experiments), namely ξ(t) = kξũ(t).

We derive the linearized equations of motion using a small angle approximation. This

linearization is only valid for sufficiently small values of the delay upper bound γ in the com-

munication channel. Linearizing (3.51) around the equilibrium point results in the following

dynamics

Iφ̈ = mglφ(t) + kξlũ(t) + noise.
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By defining the state variable x̃xx = (φ, φ̇)T , the state-space equations can be written as follows

˙̃xxx = Ãx̃xx+ B̃ũ(t) + w̃ww(t), (3.52)

where

Ã =

 0 1

mgl
I

0

 , B̃ =

 0

kξl

I

 .
In our prototype shown in Figure 3.1, the pendulum is a plywood sheet of size 0.18×0.073×0.005

m and mass m1 = 0.030 kg. The motors are of mass m2 = 0.010 kg. Also, l = 0.180 m, and

g = 9.81 m/s2. Using first principles, one can find the moment of inertia of the pendulum about

its axis of rotation to be I = 3.57× 10−4 kg/m2. By experiments, we approximate kξ = 0.001.

Therefore, the system (3.52) can be rewritten as follows

˙̃xxx =

 0 1

53.58 0

 x̃xx+

 0

0.50

 ũ(t) + w̃ww(t). (3.53)

Using (3.52) it follows w̃1(t) = 0. Also, by experiments we deduce |w2(t)| is upper bounded by

0.02.

Now using the eigenvector matrix

P =

0.1354 −0.1354

0.9908 0.9908


of matrix Ã we consider a canonical transformation to diagonalize the system (3.53) as follows

ẋxx = Axxx(t) + Bu(t) +www(t), (3.54)

where A = P−1ÃP, B = P−1B̃, xxx(t) = P−1x̃xx(t) and www(t) = P−1w̃ww(t). Therefore, for the
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diagonalized system (3.54) we have

A =

λ1 0

0 λ2

 =

7.3198 0

0 −7.3198

 ,
B =

0.2523

0.2523

 , xxx =

3.6940φ+ 0.5046φ̇

0.5046φ̇− 3.6940φ

 ,
|wi(t)| ≤M = 0.0470 for i ∈ {1, 2},

where the upper bound M on the |wi(t)| for i ∈ {1, 2} is found by taking the maximum of upper

bounds of all the elements inwww(t).

Since λ2 in (3.54) is negative, the second coordinate is inherently stable, and we do not

need to transmit updates about the second coordinate to the controller via the communication

channel. However, since λ1 is positive, the uncertainty about the first coordinate grows exponen-

tially at the controller, hence the sensor needs to communicate information to the controller about

the state of the first coordinate to render the plant ISpS.

3.7.2 Implementation and System Architecture

We now present the details of the implementation of the proposed event-triggered control

scheme on a real system, along with experimental results validating the theory. The prototype

used is an inverted pendulum system built using off-the-shelf components. The body of the

system is made of plywood sheets, as depicted in Figure 3.1. For sensors, we use InvenSense

MPU6050 MEMS sensor which has a 3-axis accelerometer and a 3-axis gyroscope, and we

use a complementary filter to read the angle and angular velocity of the pendulum. We choose

Raspberry Pi Model 3 for the computation unit and the controller in the system. For actuation, we

use two small DC motors equipped with two identical propellers. Figure 1.5 depicts the different

components of the system.
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Using the plant dynamics introduced in (3.54), we implement the event-triggered control

scheme proposed in Section 3.4.1 on the prototype system. While our theory is developed for

continuous-time plants, the experiments are performed on digital systems and in discrete-time

domain with small enough sampling time δ to make the discrete-time model as close to the

continuous-time model as possible. Because of this discretization, the minimum upper bound

for the channel delay is equal to two sampling times. A delay of at most one sampling time

exists from the time that a triggering occurs to the time that the sensor takes a sample from the

plant state and another delay of at most one sampling time exists from the time that the packet

is received to the time the control input is applied to the plant. In the experiments, a triggering

occurs as soon as z1 is equal or greater than J and the controller has received the previous packet,

in this way since the sampling time is small, at the triggering time, equation (3.6) will be valid

approximately.

To simulate the digital channel between the sensor and the controller, we send packets

composed of a finite number of bits from the sensor to the controller with a delay, that is a multiple

of the sampling time δ, upper bounded by γ.

3.7.3 Experimental results

In this section, experimental results for various scenarios are presented. In all the experi-

ments, the sampling time δ is 0.003 seconds, which is the smallest sampling time that the measure-

ments from our sensors permit. Also we set ρ0 = 0.01, b = 1.00001, and J = M
λ1ρ0

(eλ1γ−1)+0.1.

In the first set of experiments, we evaluate the performance of the controller for different values

of γ. In Figure 3.11, the first row presents the results when γ = 0.006 seconds or two sampling

times and the second row presents the results when γ = 0.015 seconds or five sampling times.

The first column is the evolution of the absolute value of the state estimation error (3.5) (red)

in time along with the triggering threshold (blue). As the absolute value of this error is greater

than or equal to the triggering function, a triggering occurs and the sensor transmits a packet to
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the controller. However, due to the random delay (upper bounded by γ) in the communication

channel, this error could grow beyond the triggering function. This growth, of course, can become

larger as γ increases which is shown in the first column of Figure 3.11. The first column also

shows, more triggering occurred when the channel delay is upper bounded with five sampling

times.

The second column in Figure 3.11 presents the evolution of the state x1 (blue) corre-

sponding to the unstable pole in the diagonalized system (3.54) and its estimate x̂1 (red) in time.

The last column shows the evolution of the actual states of the system, namely the angle of the

pendulum in radians and its rate of change in radians/sec. It can be seen that |φ| remains less than

0.2 radians which ensures the linearization of (3.51) remains valid and is a good approximation.

We repeat the experiments for different values of γ and calculate the sufficient transmission

rate using (2.9). According to the data-rate theorem, to stabilize the plant, the information rate

communicated over the channel in data payload and timing should be larger than the entropy

rate of the plant (see chapter [88]). In our experiments, when γ = 2δ the timing information

is substantial, therefore, the information transmission rate becomes smaller than the entropy

rate of the plant which is shown in Figure 3.10. Furthermore, according to the theory developed

in Section 3.4.1 as γ increases, more information has to be sent via data payload for stabilization

since larger delay corresponds to more uncertainties about the value of the states at the controller

and less timing information.

Finally, the robustness of the controller is evaluated against additional disturbances and

the results are shown in Figure 3.12. The additional disturbances are applied to the system at time

t = 2 seconds and the evolution of |z1|, x1 and x̂1 in time are presented. It can be seen that even

in presence of additional disturbances which are quite large, the event-triggered control policy is

able to stabilize the system.

Remark17. Similar to our analysis in Section 3.4.1, we assume the plant disturbance is random

but bounded. In most of our experiments, we successfully stabilized inverted pendulum around
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Figure 3.10: Information transmission rate in experiments compared with the entropy
rate of the system. Note that the rate calculated from experiments does not start
at zero worst-case delay because the minimum channel delay upper bound is equal
to two sampling times (0.006 seconds). The entropy rate of the system is equal to
λ1/ ln 2 = 10.56 bits/sec while the minimum transmission rate for worst-case delay
equal to two sampling time in the experiments is equal to 8.66 bits/sec.

its equilibrium point. Disturbances outside the prescribed limits occur rarely, but can still happen

occasionally. Assuming that the disturbances are unbounded one might be able to extend the

second-moment stability results of [141] to our setup. Similarly, the case where the delay in the

communication channel becomes unbounded with a positive probability is another interesting

research problem. •

3.8 Extension to nonlinear systems

The results developed in Section 3.4.1 are restricted to linear systems, and they can only

stabilize the pendulum (3.51) locally, where the linear approximation is valid. Thus, now we

develop a novel event-triggering scheme that encodes information in timing and under appropriate

assumptions renders a continuous-time nonlinear system with disturbances ISpS. Clearly, the

results of this section compare to the results of Section 3.4.1 are more sophisticated to analyze

and implement. From the system’s perspective, our set-up is closest to the one in [115, 174], as

we consider locally Lipschitz nonlinear systems that can be made input-to-state stable (ISS) [183]

with respect to the state estimation error and system disturbances. Using our encoding-decoding
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M = 0.0470, γ = 2δ = 0.006 sec, g(ts) = 1 bit
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M = 0.0470, γ = 5δ = 0.015 sec, g(ts) = 7 bits
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Figure 3.11: Experimental results for stabilizing the inverted pendulum over a digital
channel with random delay upper bounded by two sampling times (first row) and five
sampling times (second row). When γ = 2δ, the packet size is 1 bit and when γ = 5δ,
the packet size becomes 7 bits.

scheme, we encode the information in timing via event-triggering control in a state-dependent

fashion to achieve input-to-state practical stability (ISpS) in the presence of unknown but bounded

delay. We also discuss the different approaches to eliminate the ISS assumption.

We consider sensor, communication channel, controller system depicted in Figure 2.1,

and a continuous nonlinear plant

ẋ = f(x(t), u(t), w(t)), (3.55)

where x, u, and w are real numbers representing the plant state, control input, and plant distur-
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Figure 3.12: Robustness of the event-triggered control strategy against additional
disturbances.
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bance. Furthermore, we assume that for all time t ≥ 0

|w(t)| ≤M. (3.56)

As in (3.4), the controller constructs the state estimation x̂, which evolves during the

inter-reception times as

˙̂x = f(x̂(t), u(t), 0) t ∈ (tkc , t
k+1
c ), (3.57)

starting at x̂(tk+
c ) that is constructed by the controller using information received up to time

tk+
c . The explicit way to construct x̂(tk+

c ) will be explained later in this section (see (3.74)). As

discussed in Section 3.4.1, we assume the sensor can also calculate the controller’s state estimate

x̂(t).

The state estimation error is defined as (3.5), thus for t ∈ (tkc , t
k+1
c ) we have

ż = f(x(t), u(t), w(t))− f(x̂(t), u(t), 0). (3.58)

A triggering occurs at time

tks = k(α + γ) (3.59)

and the sensor transmits a packet p(ts) of length g(ts) to the controller if

|z1(tks)| ≥ J, (3.60)

where J and α are non-negative real numbers, γ is the upper bound on the channel delay, k ∈ N,
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and t0s = 0. We choose g(ts) such that after decoding we have

|z(tk+
c )| ≤ J. (3.61)

Clearly, the periodic event-triggering scheme (3.59) and (3.60) does not exhibit Zeno behavior,

meaning that there cannot be infinitely many triggering events in a finite time interval. In fact, we

have

∆′k = tk+1
s − tks ≥ α + γ. (3.62)

Remark18. Unlike the linear case, a closed form solution of (3.58) is not known in general. Con-

sequently, to simplify the encoding process, we use the periodic event-triggering scheme (3.59)

and (3.60) (cf. [69]), which is different from the continues time event-triggering scheme (3.6)

where a triggering could occur at any time tks ≥ 0. •

Assumption 3 The dynamic (3.55) satisfies the Lipschitz property

|f(x, u, w)− f(x̂, u, 0)| ≤ Lx|x− x̂|+ Lw|w|, (3.63)

where Lx > 0, Lw > 0, and

|z(t)| = |x(t)− x̂(t)| ≤ Υ(γ). (3.64)

Here for all 0 ≤ ϑ ≤ γ, Υ(ϑ) is defined as follows

Υ(ϑ) := JeLx(α+γ+ϑ) +
LwM

Lx

(
eLx(α+γ+ϑ) − 1

)
. (3.65)

The reason for choosing the specific value for Υ(γ) in (3.64) will become clear by looking at the
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following Lemma. If a triggering occurs at time tks , we define

tk = inf
{
t ∈ (tk−1

s , tks ] ; |z(t)| = J
}
. (3.66)

By continuity of z during the inter-reception time, and using (3.58) and (3.61), we see that tk is

well defined. This definition is used in the next Lemma.

Lemma13. Consider the plant-sensor-channel-controller model with plant dynamics (3.55) satis-

fying Lipschitz property (3.63), estimator dynamics (3.57), triggering strategy (3.59), and (3.60).

Assume |z(0)| = |x(0)− x̂(0)| < J and (3.61) occurs at all reception times {tkc}k∈N. Then for

all time t ∈ [tk, tkc ), where ϑ = t− tks , we have

|z(t)| ≤ (3.67)

Υw(ϑ) := JeLx(α+γ+ϑ) +
Lw|w|t
Lx

(
eLx(α+γ+ϑ) − 1

)
.

Proof. For all time t ∈ [tk, tkc ) the state estimation error evolves according to (3.58) with the

initial condition z(tk) = J , where tk is defined as (3.66). Thus, for all t ∈ [tk, tkc )

|z(t)| ≤ JeLx(t−tk) + Lw

∫ t

tk
|w(t)eLx(t−tk)|dt (3.68a)

≤ JeLx(t−tk) +
Lw|w|t
Lx

(
eLx(t−tk) − 1

)
= JeLx(t−ts+ts−tk) +

Lw|w|t
Lx

(
eLx(t−ts+ts−tk) − 1

)
≤ JeLx(ϑ+α+γ) +

Lw|w|t
Lx

(
eLx(ϑ+α+γ) − 1

)
, (3.68b)

where (3.68a) follows from the Lipschitz property (3.63) and Gronwall-Bellman inequality, as

tk ∈ (tk−1
s , tks ] we have tks − tk ≤ α + γ and (3.68b) follows.

Lemma 13 has two important implications. First, if a triggering event does not occur at tks
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for all t ∈ (tk−1
s , tks ] we have |z(t)| ≤ J , hence using (3.61), under the assumptions of Lemma 13

for all time t ≥ 0 we have

|z(t)| ≤ Υw(ϑ)
(a)

≤ Υw(γ)
(b)

≤ Υ(γ), (3.69)

where (a) follows from ϑ ≤ γ, and (b) follows from (3.56) and (3.65). Also, this last inequality

explains why we defined the Lipschitz property as (3.64). The second important implication of

Lemma 13 is that for all k ∈ N we have

z(tks) ∈ [−Υ(0),Υ(0)].

To construct the packet p(ts) of length g(ts), we uniformly quantize the interval [−Υ(0),Υ(0)]

into 2g(ts) equal intervals of size 2γ(0)/2g(ts). Once the controller receives the packet, it deter-

mines the correct sub-interval and selects its center point as the estimate of z(tks), which is

represented by z̄(ts). In this case, we have

|z(ts)− z̄(ts)| ≤ Υ(0)/2g(ts). (3.70)

By (3.5) we have x(ts) = z(ts) + x̂(ts), thus using z̄(ts) the controller can construct an estimate

of x(ts) which we denote by x̄(ts) as follows

x̄(ts) = z̄(ts) + x̂(ts). (3.71)

By (3.70) we deduce that

|x̄(ts)− x(ts)| ≤ Υ(0)/2g(ts). (3.72)
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For all t ∈ [ts, tc] consider the differential equation

˙̄x = f(x̄(t), u(t), 0) (3.73)

with initial condition x̄(ts) given in (3.71), and let its solution at time tc be equal to x̂(t+c ), namely

x̂(t+c ) = x̄(ts) +

∫ tc

ts

f(x̄(t), u(t), 0). (3.74)

We use the above quantization policy to find a sufficient packet size in the next Theorem.

Theorem14. Consider the plant-sensor-channel-controller model with plant dynamics (3.55)

with Lipschitz property (3.63), estimator dynamics (3.57), triggering strategy (3.59), and (3.60).

Assume |z(0)| = |x(0)− x̂(0)| < J , then there exists a quantization policy that achieves (3.61)

for all reception times {tkc}k∈N with any packet size

g(ts) ≥ max

{
0, log

(
Υ(0)eLxγ

J − LwM
Lx

(eLxγ − 1)

)}
, (3.75)

provided

J ≥ LwM

Lx

(
eLxγ − 1

)
. (3.76)
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Proof. For all t ∈ [ts, tc] we have

|x(t)− x̄(t)| = |x(ts)− x̄(ts)|+∣∣∣∣∫ t

ts

f(x, u, w)dt−
∫ t

ts

f(x̄, u, 0)dt

∣∣∣∣ ≤ (3.77a)

|x(ts)− x̄(ts)|+
∫ t

ts

(Lx|x− x̄|+ Lw|w|) dt ≤ (3.77b)

|x(ts)− x̄(ts)|eLx(t−ts)+

Lw

∫ t

ts

|w(t)eLx(t−ts)|dt ≤ (3.77c)

|x(ts)− x̄(ts)|eLx(t−ts) +
LwM

Lx

(
eLx(t−ts) − 1

)
(3.77d)

where we used (3.55) and (3.73) along the triangle inequality to arrive at (3.77a), (3.77b) follows

from Lipschitz property (3.63), and (3.77c) follows from solving the linear differential equation

ẋ(t) − ˙̄x(t) = Lx(x − x̄) + Lww with initial condition x(ts) − x̄(ts) (see Gronwall-Bellman

inequality), and (3.77d) follows from (3.56).

Using (3.3), (3.72), (3.74) and (3.77) we deduce

|z(t+c )| = |x(tc)− x̂(t+c )| ≤
Υ(0)

2g(ts)
eLxγ +

LwM

Lx

(
eLxγ − 1

)
.

Consequently,

Υ(0)

2g(ts)
eLxγ +

LwM

Lx

(
eLxγ − 1

)
≤ J (3.78)

suffices to ensure (3.61) at all reception time. Using (3.76), (3.78) is equivalent to

2g(ts) ≥ Υ(0)eLxγ

J − LwM
Lx

(eLxγ − 1)
.
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The result now follows by noticing the packet size should be no-negative.

In the next assumption we restrict the class of nonlinear systems.

Assumption 4 There exists a control policy u(t) = U(x̂) = U(x− z) which renders the dynam-

ics (3.55) (ẋ = f(x,U(x− z), w)) ISS with respect to z(t) and w(t), that is, there exists β′ ∈ KL,

Π′ ∈ K∞(0), and ψ′ ∈ K∞(0) such that for all t ≥ 0

|x(t)| ≤ β′ (|x(0)|, t) + Π′ (|z|t) + ψ′ (|w|t) .

Remark19. Although Assumption 4 is restrictive, it is widely used in control of nonlinear

systems under communication constraint [37, 115, 174]. An exception is the work [37] which

eliminated this assumption for systems without disturbances. An alternative ISS assumption which

centers around state estimation x̂ is proposed in [115] where the evolution of state estimation x̂ is

described by an impulsive system [71]. As in our event-triggering design the behavior of the state

estimation x̂ is described with an impulsive system (3.57) and (3.74), the study of this alternative

ISS assumption for our setup with a digital communication channel with bounded but unknown

delay is an interesting research venue. •

The proof of the following Corollary is in the Appendix.

Corollary2. Under the assumptions of Theorem 14 and Assumption 4 for any packet size lower

bounded as (3.75) there exists a control policy which renders the dynamics (3.55) ISpS.

Using (3.62) the triggering rate, the frequency at which triggering occurs, is trivially upper

bounded by (α + γ)−1. As a result, under assumptions of Corollary 2 we deduce that for any

information transmission rate (2.9)

Rs ≥
1

α + γ
max

{
0, log

(
Υ(0)eLxγ

J − LwM
Lx

(eLxγ − 1)

)}
, (3.79)
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there exists a control law that renders the dynamic (3.55) ISpS. Proof. Theorem 14 states that

with any packet size lower bounded as (3.75) there exists a quantization policy that achieves (3.61)

for all reception times {tkc}k∈N. Thus using Lemma 13 and (3.69) we deduce for all time t ≥ 0

we have

|z(t)| ≤ Υw(γ),

where Υw(γ) is defined as (3.67). Consequently, for all time t ≥ 0, |z(t)| is upper bounded by

summation of a K∞(d) function of γ with d = JeLxα and a K2
∞(0, d′) function of |w|t and γ with

d′ = (eLxα − 1)LwM/Lx. Therefore, using Assumption 4 the result follows.

Remark20. The lower bound given on the packet size in (3.75) might not be a natural number

in general. This lower bound is used to properly bound the information transmission rate (2.9)

in (3.79). In addition, the lower bound (3.75) might be zero. When g(ts) = 0 there is no need to

put any data payload in the packet and the plant can be stabilized using only timing information.

However, in this case the sensor still needs to inform the controller about the occurrence of a

triggering event. Consequently, when g(ts) = 0 is sufficient, the sensor can stabilize the system

by transmitting a fixed symbol from a unitary alphabet to the controller (see chapter 4). In practice,

the packet size should be a natural number or zero, so if we do not want to use the fixed symbol

from a unitary alphabet, the packet size

g(ts) = max

{
1,

⌈
log

(
Υ(0)eLxγ

J − LwM
Lx

(eLxγ − 1)

)⌉}
, (3.80)

is sufficient for stabilization (the latter is the one used in our simulations of Section 3.9). •

Remark21. As we used the trivial upper bound on the triggering rate (α + γ)−1 to deduce the

bound (3.79), this upper bound on Rs might be too conservative in general. •

Remark22. When γ = M = 0, the data-rate theorem states that the rate at which the controller
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M = 0.1, γ = 0.1 sec, g(ts) = 3 bit M = 0.1, γ = 0.99 sec, g(ts) = 15 bit
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Figure 3.13: Simulation results for stabilization of the plant (3.81). We used the
following parameters for the simulation: sampling time δ = 0.005, simulation time
T = 20, u(t) = −4x̂(t), α = 0.01, packet size (3.80), and triggering threshhold
J = (e3γ − 1)M/3 + 0.01.

receives information should be at least as large as the intrinsic entropy rate of the plant defined

in [142]. In our design, we can supply this information only using the implicit timing information

in the triggering events. In fact, when α→ 0 the periodic event-triggering control schemes (3.59)

and (3.60) become equivalent to the continuous time event-triggering policy (3.6). In this

case, in a triggering time ts the controller can discover the exact value of x(ts) using equation

x(ts) = x̂(ts) ± J by receiving a single bit corresponding to the sign of z(ts). As there is no

system disturbance, the controller then can track x(t) using (3.57) after a single triggering time,

and Rs (2.9) will be arbitrarily small. •

3.9 Simulations for nonlinear systems

This section presents simulation results validating the proposed nonlinear scheme. While

our analysis is for continuous-time plants, we perform the simulations in discrete time with a
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Figure 3.14: Information transmission rate in simulations compared to (3.82). We
used the following parameters for the simulation: sampling time δ = 0.01 seconds,
simulation time T = 100 seconds, u(t) = −2x̂(t), z(0) = 0.01, M = 0.05, α = 0.01,
packet size (3.80), and triggering threshhold J = (e3γ − 1)M/3 + 0.05. Note that the
rate calculated from simulations can not start at γ = 0 because the minimum channel
delay upper bound is equal to two sampling time.

small sampling time δ. In this case, as discussed in Section 3.7.2, the minimum upper bound for

the channel delay is equal to two sampling times. We illustrate the execution of our design for the

system

ẋ = f(x(t), u(t), w(t)) = 2x(t) + sin(x(t)) + u(t) + w(t). (3.81)

During inter-reception time, state estimation is defined according to (3.57). Thus, using (3.58),

for t ∈ (tkc , t
k+1
c ) we deduce

ż(t) = 2z(t) + sin x− sin x̂+ w(t).

Since | sinx− sin x̂| ≤ |x− x̂|, the dynamics (3.81) satisfies the Lipschitz property (3.63) with

Lx = 3, Lw = 1 for all |z(t)| ∈ R≥0.

A set of two simulations are carried out for different values of γ and M . Each column in

Figure 3.13 presents one set of simulation. The first row shows the triggering threshold J and the

absolute value of the state estimation error |z(t)|. If the absolute value of this error is equal to J

during the period α + γ, the sensor transmits a packet at the end of this period, and the jumping
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strategy (3.74) adjusts x̂ at the reception time to ensure the plant is ISpS.

Note that the amount this error exceeds the triggering function depends on the random

channel delay, upper bounded by γ. The second row of Figure 3.13 presents the evolution of the

state (3.81) and its estimation (3.57). As expected, when γ increases, while the plant remains

ISpS the controller performance deteriorate significantly.

As discussed in Section 3.7.3, according to the data-rate theorem, to stabilize the plant,

the information rate communicated over the channel in data payload and timing should be larger

than the entropy rate of the plant (see Section 3.2 and [88]). Using [142] the entropy rate of the

plant (3.81) at point x∗ is equal to h(x∗) = ∂f/∂x|x=x∗ = 2 + cos(x∗(t)). Thus, for any value

of the state, the information accessible to the controller about the plant or the information rate

communicated over the channel in data payload and timing, should be larger than

h(x) ≥ h = 1. (3.82)

Figure 3.14 presents the simulation of information transmission rate versus the delay upper bound

γ in the communication channel to render (3.55) ISpS. It can be seen that for small values of γ,

the plant is ISpS with an information transmission rate smaller than the one prescribed by the

data-rate theorem. Furthermore, as γ increases, more information has to be sent via data payload

for stabilization since larger delay corresponds to more uncertainties about the value of the states

at the controller and less timing information.

3.10 Conclusion

We have presented an event-triggered control scheme for the stabilization of noisy, scalar

real and complex, continuous, linear time-invariant systems over a communication channel subject

to random bounded delay. We have developed an algorithm for encoding-decoding the quantized

version of the estimated state, leading to the characterization of a sufficient transmission rate for
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stabilizing these systems. We also identified a necessary condition on the transmission rate for real

systems. Future work will study the identification of necessary conditions on the transmission rate

in complex systems, develop event-triggered designs for vector systems with real and complex

eigenvalues, and perform experiments with the proposed controllers in practical scenarios.

On the theoretical side, future work will explore the theory and implementation of

multivariate nonlinear system with uncertainty in its parameters. On the practical validation side,

we also plan to test the proposed nonlinear scheme on our inverted pendulum prototype.

Chapter 3, in part, is a reprint of the material as it appears in M. J. Khojasteh, M.

Hedayatpour, J. Cortés, M. Franceschetti, “Event-triggered stabilization over digital channels

of linear systems with disturbances,” arXiv:1805.01969, 2018, submitted for publication in

Automatica, and M. J. Khojasteh, M. Hedayatpour, M. Franceschetti, “Theory and implementation

of event-triggered stabilization over digital channels,” In Proc. IEEE 58th Annual Conference

on Decision and Control (CDC), 2019. The dissertation author was the primary investigator and

author of these papers.
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Chapter 4

Stabilizing a linear system using phone

calls

4.1 Introduction

A networked control system with a feedback loop over a communication channel provides

a first-order approximation of a cyber-physical system (CPS), where the interplay between the

communication and control aspects of the system leads to new and unexpected analysis and

design challenges [72, 97, 200]. In this setting, data-rate theorems quantify the impact of the

communication channel on the ability to stabilize the system. Roughly speaking, these theorems

state that stabilization requires a communication rate in the feedback loop at least as large as

the intrinsic entropy rate of the system, expressed by the sum of the logarithms of its unstable

eigenvalues [12, 40, 60, 121, 123, 139, 206, 212]

We consider a specific communication channel in the loop — a timing channel. Here,

information is communicated through the timestamps of the symbols transmitted over the channel;

the time is carrying the message. This formulation is motivated by recent works in event-triggering

control, showing that the timing of the triggering events carries information that can be used for
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stabilization [88, 91, 92, 95, 99, 119]. However, while in these works the timing information was

not explicitly quantified and the analysis was limited to specific event-triggering strategies, our

goal is to determine what is the value of a timestamp from an information-theoretic perspective,

when this is used for control.

To illustrate the proof of concept that timing carries information useful for control, we

consider the simple case of stabilization of a scalar, undisturbed, continuous-time, unstable,

linear system over a timing channel and rely on the information-theoretic notion of timing

capacity of the channel, namely the amount of information that can be encoded using time

stamps [2, 4, 6, 14, 30, 64, 66, 120, 151, 160, 161, 172, 185, 193, 201]. In this setting, the sensor can

communicate with the controller by choosing the timestamps at which symbols from a unitary

alphabet are transmitted. The controller receives each transmitted symbol after a random delay is

added to the timestamp. We show the following data-rate theorem. For the state to converge to

zero in probability, the timing capacity of the channel should be at least as large as the entropy

rate of the system. Conversely, in the case the random delays are exponentially distributed, we

show that when the strict inequality is satisfied, we can drive the state to zero in probability by

using a decoder that refines its estimate of the transmitted message every time a new symbol is

received [33]. We also derive analogous necessary and sufficient conditions for the problem of

estimating the state of the system with an error that tends to zero in probability.

The books [54, 123, 212] and the surveys [60, 139] provide detailed discussions of data-

rate theorems and related results. A portion of the literature studied stabilization over “bit-pipe

channels,” where a rate-limited, possibly time-varying and erasure-prone communication channel

is present in the feedback loop [70,130,132,141,191]. For more general noisy channels, Tatikonda

and Mitter [190] and Matveev and Savkin [124] showed that the state of undisturbed linear systems

can be forced to converge to zero almost surely (a.s.) if and only if the Shannon capacity of

the channel is larger than the entropy rate of the system. In the presence of disturbances, in

order to keep the state bounded a.s., a more stringent condition is required, namely the zero-error
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Table 4.1: Capacity notions used to derive data-rate theorems in the literature under
different notions of stability, channel types, and system disturbances.

Work Disturbance Channel Stability condition Capacity
[191] NO Bit-pipe |X(t)| → 0 a.s. Shannon
[124, 190] NO DMC |X(t)| → 0 a.s. Shannon
[125] bounded DMC P(supt |X(t)| <∞) = 1 Zero-Error
[123, Ch. 8] bounded DMC P(supt |X(t)| < Kε) > 1− ε Shannon
[164] bounded DMC supt E(|X(t)|m) <∞ Anytime
[141] unbounded Bit-Pipe supt E(|X(t)|2) <∞ Shannon
[130–132] unbounded Var. Bit-pipe supt E(|X(t)|m) <∞ Anytime
This chapter NO Timing |X(t)| P→ 0 Timing

capacity of the channel must be larger than the entropy rate of the system [125]. Nair derived

a similar information-theoretic result in a non-stochastic setting [138]. Sahai and Mitter [164]

considered moment-stabilization over noisy channels and in the presence of system disturbances

of bounded support, and provided a data-rate theorem in terms of the anytime capacity of the

channel. They showed that to keep the mth moment of the state bounded, the anytime capacity

of order m should be larger than the entropy rate of the system. The anytime capacity has

been further investigated in [85, 131, 144, 184]. Matveev and Savkin [123, Chapter 8] have also

introduced a weaker notion of stabilty in probability, requiring the state to be bounded with

probability (1− ε) by a constant that diverges as ε→ 0, and showed that in this case it is possible

stabilize linear systems with bounded disturbances over noisy channels provided that the Shannon

capacity of the channel is larger than the entropy rate of the system. The various results, along

with our contribution, are summarized in Table 4.1. The main point that can be drawn from

all of these results is that the relevant capacity notion for stabilization over a communication

channel critically depends on the notion of stability and on the system’s model. From the system’s

perspective, our set-up is closest to the one in [124,190,191], as there are no disturbances and the

objective is to drive the state to zero. Our convergence in probability provides a stronger necessary

condition for stabilization, but a weaker sufficient condition than the one in these works. We
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also point out that our notion of stability is considerably stronger than the notion of probabilistic

stability proposed in [123, Chapter 8]. Some additional works considered nonlinear plants without

disturbances [36,115,142], and switched linear systems [114,209] where communication between

the sensor and the controller occurs over a bit-pipe communication channel. The recent work

in [166] studies estimation of nonlinear systems over noisy communication channels, and the

work in [102] investigates the trade-offs between the communication channel rate and the cost of

the linear quadratic regulator for linear plants.

Parallel work in control theory has investigated the possibility of stabilizing linear systems

using timing information. One primary focus of the emerging paradigm of event-triggered

control [3,9,13,43,45,65,68,69,77,82,93,110,118,154,173,186,196,204] has been on minimizing

the number of transmissions while simultaneously ensuring the control objective [88, 147, 187].

Rather than performing periodic communication between the system and the controller, in event-

triggered control communication occurs only as needed, in an opportunistic manner. In this

setting, the timing of the triggering events can carry useful information about the state of the

system, that can be used for stabilization [88, 91, 92, 95, 99, 119]. In this context, it has been

shown that the amount of timing information is sensitive to the delay in the communication

channel. While for small delay stabilization can be achieved using only timing information and

transmitting data payload (i.e. physical data) at a rate arbitrarily close to zero, for large values of

the delay this is not the case, and the data payload rate must be increased [91, 95]. In this chapter

we extend these results from an information-theoretic perspective, as we explicitly quantify the

value of the timing information, independent of any transmission strategy. To quantify the amount

of timing information alone, we restrict to transmitting symbols from a unitary alphabet, i.e. at

zero data payload rate.

Research directions left open for future investigation include the study of “mixed” strate-

gies, using both timing information and physical data transmitted over a larger alphabet, as well

as generalizations to vector systems and the study of systems with disturbances. In the latter
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Figure 4.1: Model of a networked control system where the feedback loop is closed
over a timining channel.

case, it is likely that usage of stronger notions of capacity, or weaker notions of stability, will be

necessary.

In this chapter, we let Xn = (X1, · · · , Xn) denote a vector of random variables and let

xn = (x1, · · · , xn) denote its realization.

4.2 System and channel model

We consider the networked control system depicted in Fig. 4.1. The system dynamics are

described by a scalar, continuous-time, noiseless, linear time-invariant (LTI) system

Ẋ(t) = aX(t) + bU(t), (4.1)

where X(t) ∈ R and U(t) ∈ R are the system state and the control input respectively. The

constants a, b ∈ R are such that a > 0 and b 6= 0. The initial state X(0) is random and is drawn

from a distribution of bounded differential entropy and bounded support, namely h(X(0)) <∞

and |X(0)| < L, where L is known to both the sensor and the controller. Conditioned on

the realization of X(0), the system evolves deterministically. Both controller and sensor have

knowledge of the system dynamics in (4.1). We assume the sensor can measure the state of the

system with infinite precision, and the controller can apply the control input to the system with

infinite precision and with zero delay.
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The sensor is connected to the controller through a timing channel (the telephone signaling

channel defined in [2]). The operation of this channel is analogous to that of a telephone system

where a transmitter signals a phone call to the receiver through a “ring” and, after a random

time required to establish the connection, is aware of the “ring” being received. Communication

between transmitter and receiver can then occur without any vocal exchange, but encoding

messages in the “waiting times” between consecutive calls.

4.2.1 The channel

We model the channel as carrying symbols ♠ from a unitary alphabet, and each transmis-

sion is received after a random delay. Every time a symbol is received, the sender is notified of

the reception by an instantaneous acknowledgement. The channel is initialized with a ♠ received

at time t = 0. After receiving the acknowledgement for the ith ♠, the sender waits for Wi+1

seconds and then transmits the next ♠. Transmitted symbols are subject to i.i.d. random delays

{Si}. Letting Di be the inter-reception time between two consecutive symbols, we have

Di = Wi + Si. (4.2)

It follows that the reception time of the nth symbol is

Tn =
n∑
i=1

Di. (4.3)

Fig. 4.2 provides an example of the timing channel in action.

4.2.2 Source-channel encoder

The sensor in Fig. 4.1 can act as a source and channel encoder. Based on the knowledge

of the initial condition X(0), system dynamics (4.1), and L, it can select the waiting times {Wi}
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Figure 4.2: The timing channel. Subscripts s and r are used to denote sent and received
symbols, respectively.

between the reception and the transmission of consecutive symbols. As in [2,185] we assume that

the causal acknowledgements received by the sensor every time a ♠ is delivered to the controller

are not used to choose the waiting times, but only to avoid queuing, ensuring that every symbol

is sent after the previous one has been received. In practice, the causal acknowledgment can

be obtained without assuming an additional communication channel in the feedback loop. The

controller can signal the acknowledgement to the sensor by applying a control input to the system

that excites a specific frequency of the state each time a symbol has been received. This strategy

is known in the literature as “acknowledgement through the control input” [91, 123, 164, 190].

4.2.3 Anytime decoder

At any time t ≥ 0, the controller in Fig. 4.1 can use the inter-reception times of all the

symbols received up to time t, along with the knowledge of L and of the system dynamics (4.1) to

compute the control input U(t) and apply it to the system. The control input can be refined over

time, as the estimate of the source can be decoded with increasing accuracy when more and more

symbols are received. The objective is to design an encoding and decoding strategy to stabilize

the system by driving the state to zero in probability, i.e. we want |X(t)| P−→ 0 as t→∞.

Although the computational complexity of different encoding-decoding schemes is a key

practical issue, in this chapter we are concerned with the existence of schemes satisfying our

objective, rather than with their practical implementation.
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4.2.4 Capacity of the channel

In the channel coding process, we assume the use of random codebooks, namely the

waiting times {Wi} used to encode any given message are generated at random in an i.i.d. fashion,

and are also independent of the random delays {Si}. This assumption is made for analytical

convenience, and it does not change the capacity of the timing channel. The following definitions

are derived from [2], incorporating our random coding assumption.

Definition 2 A (n,M, T, δ)-i.i.d.-timing code for the telephone signaling channel consists of

a codebook of M codewords {(wi,m, i = 1, . . . , n), m = 1 . . .M}, where the symbols in

each codeword are picked i.i.d. from a common distribution as well as a decoder, which upon

observation of (D1, . . . , Dn) selects the correct transmitted codeword with probability at least

1− δ. Moreover, the codebook is such that the expected random arrival time of the nth symbol is

at most T , namely

E (Tn) ≤ T.

Definition 3 The rate of an (n,M, T, δ)-i.i.d.-timing code is

R = (logM)/T.

Definition 4 The timing capacity C of the telephone signaling channel is the supremum of the

achievable rates, namely the largest R such that for every γ > 0 there exists a sequence of

(n,Mn, Tn, δTn)-iid-timing codes that satisfy

logMn

Tn
> R− γ,

and δTn → 0 as n→∞.
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The following result [2, Theorem 8] applies to our random coding set-up, since the

capacity in [2] is achieved by random codes.

Theorem15.[Anantharam and Verdú] The timing capacity of the telephone signaling channel is

given by

C = sup
χ>0

sup
W≥0

E(W )≤χ

I(W ;W + S)

E(S) + χ
, (4.4)

and if S is exponentially distributed then

C =
1

eE(S)
[nats/sec]. (4.5)

4.3 Main results

4.3.1 Necessary condition

To derive a necessary condition for the stabilization of the feedback loop system depicted

in Fig. 4.1, we first consider the problem of estimating the state in open-loop over the timing

channel. We show that for the estimation error to tend to zero in probability, the timing capacity

must be greater than the entropy rate of the system. This result holds for any source and channel

coding strategy adopted by the sensor, and for any strategy adopted by the controller to generate

the control input. Our proof employs a rate-distortion argument to compute a lower bound on

the minimum number of bits required to represent the state up to any given accuracy, and this

leads to a corresponding lower bound on the required timing capacity of the channel. We then

show that the same bound holds for stabilization, since in order to have |X(t)| P−→ 0 as t→∞ in

closed-loop, the estimation error in open-loop must tend to zero in probability.
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4.3.2 Sufficient condition

To derive a sufficient condition for stabilization, we first consider the problem of estimating

the state in open-loop over the timing channel. We provide an explicit source-channel coding

scheme which guarantees that if the timing capacity is larger than the entropy rate of the system,

then the estimation error tends to zero in probability. We then show that this condition is also

sufficient to construct a control scheme such that |X(t)| P−→ 0 as t→∞. The main idea behind

our strategy is based on the realization that in the absence of disturbances all is needed to drive

the state to zero is communicate the initial condition X(0) to the controller with accuracy that

increases exponentially over time. Once this is achieved, the controller can estimate the state

X(t) with increasing accuracy over time, and continuously apply an input that drives the state to

zero. This idea has been exploited before in the literature [190, 191], and the problem is related

to the anytime reliable transmission of a real-valued variable over a digital channel [33]. Here,

we cast this problem in the framework of the timing channel. A main difficulty in our case is to

ensure that we can drive the system’s state to zero in probability despite the unbounded random

delays occurring in the timing channel.

In the source coding process, we quantize the interval [−L,L] uniformly using a tree-

structured quantizer [63]. We then map the obtained source code into a channel code suitable for

transmission over the timing channel, using the capacity-achieving random codebook of [2]. Given

X(0), the encoder picks a codeword from an arbitrarily large codebook and starts transmitting

the real numbers of the codeword one by one, where each real number corresponds to a holding

time, and proceeds in this way forever. Every time a sufficiently large number of symbols are

received, we use a maximum likelihood decoder to successively refine the controller’s estimate of

X(0). Namely, the controller re-estimates X(0) based on the new inter-reception times and all

previous inter-reception times, and uses it to compute the new state estimate of X(t) and control

input U(t). We show that when the sensor quantizes X(0) at sufficiently high resolution, and

when the timing capacity is larger than the entropy rate of the system, the controller can construct
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Figure 4.3: The estimation problem.

a sufficiently accurate estimate of X(t) and compute U(t) such that |X(t)| P−→ 0.

4.4 The estimation problem

We start considering the estimation problem depicted in Fig. 4.3. By letting b = 0 in (4.1)

we obtain the open-loop equation

Ẋe(t) = aXe(t). (4.6)

Our first objective is to obtain an estimate of the state X̂e(tn), given the reception of n symbols

over the telephone signaling channel, such that |Xe(tn) − X̂e(tn)| P→ 0 as n → ∞, at any

sequence of estimation times tn such that

1 < lim
n→∞

tn
E(Tn)

≤ Γ. (4.7)

In practice, the condition (4.7) ensures that as n → ∞ the estimation error is evaluated after

n symbols have been received, see Fig. 4.4. As before, we assume that the encoder has causal

knowledge of the reception times via acknowledgements through the system as depicted in

Fig. 4.3.

4.4.1 Necessary condition

The next theorem provides a necessary rate for the state estimation error to tend to zero in

probability.
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Theorem16. Consider the estimation problem depicted in Fig. 4.3 with system dynamics (4.6).

Consider transmitting n symbols over the telephone signaling channel (4.2), and a sequence of

estimation times satisfying (4.7). If |Xe(tn)− X̂e(tn)| P→ 0, then

I(W ;W + S) ≥ a Γ E(W + S) [nats], (4.8)

and consequently

C ≥ Γa [nats/sec]. (4.9)

The proof of Theorem 16 is given in Appendix 4.9.

Remark23. The entropy-rate of our system is a nats/time [31, 32, 117, 142, 163]. This represents

the amount of uncertainty per unit time generated by the sytem in open loop. Letting Γ→ 1, (4.8)

recovers a typical scenario in data-rate theorems: to drive the error to zero the mutual information

between an encoding symbol W and its received noisy version W + S should be larger than the

average “information growth” of the state during the inter-reception interval D, which is given by

E(aD) = a E(W + S).

On the other hand, for any fixed Γ > 1 our result shows that we must pay a penalty of a factor of Γ

in the case there is a time lag between the reception time Tn of the last symbol and the estimation

time tn, see Fig. 4.4. Finally, the case Γ→∞ requires transmission of a codeword carrying an

infinite amount of information over a channel of infinite capacity, thus revealing the initial state

of the system with infinite precision. This case is equivalent to transmitting a single real number

over a channel without error, or a single symbol from a unitary alphabet with zero delay. •
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Figure 4.4: Codeword transmission and state estimation for different estimation time
sequences {tn}.

4.4.2 Sufficient condition

The next theorem provides a sufficient condition for convergence of the state estimation

error to zero in probability along any sequence of estimation times tn satisfying (4.7), in the case

of exponentially distributed delays.

Theorem17. Consider the estimation problem depicted in Fig. 4.3 with system dynamics (4.6).

Consider transmitting n symbols over the telephone signaling channel (4.2). Assume {Si} are

drawn i.i.d. from exponential distribution with mean E(S). If the capacity of the timing channel

is at least

C > aΓ [nats/sec],

then for any sequence of times {tn} that satisfies (4.7), we can compute an estimate X̂e(tn) such

that as n→∞, we have

|Xe(tn)− X̂e(tn)| P→ 0.

The proof of Theorem 17 is given in Appendix 4.9. The result is strengthened in the
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next section (see Remark 24), showing that C > a is sufficient to drive the state estimation error

converges to zero in probability for all t→∞.

4.5 The stabilization problem

4.5.1 Necessary condition

We now turn to consider the stabilization problem. Our first lemma states that if in

closed-loop we are able to drive the state to zero in probability, then in open-loop we are also

able to estimate the state with vanishing error in probability.

Lemma14. Consider stabilization of the closed-loop system (4.1) and estimation of the open-loop

system (4.6) over the timing channel (4.2). If there exists a controller such that |X(t)| P→ 0 as

t→∞, in closed-loop, then there exists an estimator such that |Xe(t)− X̂e(t)|
P→ 0 as t→∞,

in open-loop.

Proof. From (4.1), we have in closed loop

X(t) = eatX(0) + ζ(t),

ζ(t) = eat
∫ t

0

e−a%bU(%)d%.

It follows that if

lim
t→∞

P (|X(t)| ≤ ε) = 1,

then we also have

lim
t→∞

P
(∣∣eatX(0) + ζ(t)

∣∣ ≤ ε
)

= 1. (4.10)
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On the other hand, from (4.6) we have in open loop

Xe(t) = eatX(0),

and we can choose X̂e(t) = −ζ(t) so that

|Xe(t)− X̂e(t)| = |eatX(0) + ζ(t)| P→ 0,

where the last step follows from (4.10).

The next theorem provides a necessary rate for the stabilization problem.

Theorem18. Consider the stabilization of the closed-loop system (4.1). If |X(t)| P→ 0 as t→∞,

then

I(W ;W + S) ≥ a E(W + S) [nats],

and consequently

C ≥ a [nats/sec].

Proof. By Lemma 14 we have that if |X(t)| P→ 0, then |Xe(t)− X̂e(t)|
P→ 0 for all t→∞, and

in particular along a sequence {tn} satisfying (4.7). The result now follows from Theorem 16

letting Γ→ 1.

4.5.2 Sufficient condition

Our next lemma strengthens our estimation results, stating that it is enough for the state

estimation error to converge to zero in probability as n→∞ along any sequence of estimation

times {tn} satisfying (4.7), to ensure it converges to zero for all t→∞.
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Lemma15. Consider estimation of the system (4.6) over the timing channel (4.2). If there

exists Γ0 > 1 such that along the sequence of estimation times tn = Γ0E(Tn) we have

|Xe(tn)− X̂e(tn)| P→ 0 as n→∞, then for all t→∞ we also have |Xe(t)− X̂e(t)|
P→ 0.

Proof. We have that for tn = Γ0E(Tn) and for all ε′ > 0, and φ > 0, there exist nφ such that for

all n ≥ nφ

P
(
|Xe(tn)− X̂e(tn)| > ε′

)
≤ φ. (4.11)

Let tnφ = Γ0E(Tnφ) be the time at which we estimate the state for the nφth time. We want to

show that for all t ∈ [tnφ , tnφ+1] and ε > 0, we also have

P
(
|Xe(t)− X̂e(t)| > ε

)
≤ φ.

Consider the random time Tnφ at which ♠ is received for the nφth time. We have

tnφ+1 − tnφ = Γ0 E(Tnφ+1)− Γ0 E(Tnφ)

= (nφ + 1)Γ0 E(D)− nφΓ0 E(D)

= Γ0 E(D). (4.12)

For all t ∈ [tnφ , tnφ+1], from the open-loop equation (4.6) we have

Xe(t) = ea(t−tnφ )Xe(tnφ). (4.13)

We then let

X̂e(t) = ea(t−tnφ )X̂e(tnφ). (4.14)
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Combining (4.13) and (4.14) and using (4.12), we obtain that for all t ∈ [tnφ , tnφ+1]

|Xe(t)− X̂e(t)| ≤ eaΓ0 E(D)|Xe(tnφ)− X̂e(tnφ)|.

From which it follows that

P
(
|Xe(t)− X̂e(t)| > ε′eaΓ0 E(D)

)
≤ P

(
|Xe(tnφ)− X̂e(tnφ)| > ε′

)
.

Since (4.11) holds for all n ≥ nφ, we also have

P
(
|Xe(tnφ)− X̂e(tnφ)| ≥ ε′

)
≤ φ.

We can now let ε′ < εe−aΓ0 E(D) and the result follows.

Remark24. Lemma 15 yields an immediate extension of Theorem 17, showing that for exponen-

tially distributed delays, if C > a then we have |Xe(t)− X̂e(t)|
P→ 0 as t→∞. This follows by

noticing that if C > a then there exists a Γ0 > 1 such that C > aΓ0, and hence by Theorem 17

along the sequence of estimation times tn = Γ0E(Tn) we have |Xe(tn)− X̂e(tn)| P→ 0 as n→∞.

Then, by Lemma 15 we also have |Xe(t)− X̂e(t)|
P→ 0 as t→∞. •

The next key lemma states that if we are able to estimate the state with vanishing error in

probability, then we are also able to drive the state to zero in probability.

Lemma16. Consider stabilization of the closed-loop system (4.1) and estimation of the open-loop

system (4.6) over the timing channel (4.2). If there exists an estimator such that |Xe(t)− X̂e(t)|
P→ 0

as t→∞, in open-loop, then there exists a controller such that |X(t)| P→ 0 as t→∞, in closed-

loop.
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Proof. We start by showing that if there exists an open-loop estimator such that |Xe(t)− X̂e(t)|
P→ 0

as t→∞, then there also exists a closed-loop estimator such that |X(t)− X̂(t)| P→ 0 as t→∞.

We construct the closed-loop estimator based on the open-loop estimator as follows. The sensor

in closed-loop runs a copy of the open-loop system by constructing the virtual open-loop dynamic

Xe(t) = X(0)eat. (4.15)

Using the open-loop estimator, for all t > 0 the controller acquires the open-loop estimate X̂e(t)

such that |Xe(t)− X̂e(t)|
P→ 0. It then uses this estimate to construct the closed-loop estimate

X̂(t) = X̂e(t) + eat
∫ t

0

e−a%bU(%)d%. (4.16)

Since from (4.1) the true state in closed loop is

X(t) = X(0)eat + eat
∫ t

0

e−a%bU(%)d%, (4.17)

it follows by combining (4.15), (4.16) and (4.17) that

|X(t)− X̂(t)| = |Xe(t)− X̂e(t)|
P→ 0. (4.18)

What remains to be proven is that if |X(t)− X̂(t)| P→ 0, then there exists a controller

such that |X(t)| P→ 0.

Let b > 0 and choose k so large that a − bk < 0. Let U(t) = −kX̂(t). From (4.1), we

have

Ẋ(t) = (a− bk)X(t) + bk[X(t)− X̂(t)]. (4.19)
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By solving (4.19) and using the triangle inequality, we get

|X(t)| ≤|e(a−bk)tX(0)|+∣∣∣∣∫ t

0

e(t−%)(a−bk)bk(X(%)− X̂(%))d%

∣∣∣∣ . (4.20)

Since |X(0)| < L and a− bk < 0, the first term in (4.20) tends to zero as t→∞. Namely, for

any ε > 0 there exist a number Nε such that for all t ≥ Nε, we have

|e(a−bk)tX(0)| ≤ ε.

Since by (4.18) we have that |X(t)− X̂(t)| P→ 0, we also have that for any ε, δ > 0 there exist a

number N ′ε such that for all t ≥ N ′ε, we have

P
(
|X(t)− X̂(t)| ≤ ε

)
≥ 1− δ.

It now follows from (4.20) that for all t ≥ max{Nε, N
′
ε} the following inequality holds with

probability at least (1− δ)

|X(t)| ≤ ε+ bket(a−bk)

∫ N ′ε

0

e−%(a−bk)|X(%)− X̂(%)|d%

+ εbket(a−bk)

∫ t

N ′ε

e−%(a−bk)d%. (4.21)

Since both sensor and controller are aware that |X(0)| < L, by (4.15) we have that for all t ≥ 0

the open-loop estimate acquired by the controller satisfies X̂e(t) ∈ [−Leat, Leat]. By (4.18) the

closed-loop estimation error is the same as the open-loop estimation error, and we then have that

for all % ∈ [0, N ′ε]

|X(%)− X̂(%)| = |Xe(%)− X̂e(%)| ≤ 2LeaN
′
ε . (4.22)
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Substituting (4.22) into (4.21), we obtain that with probability at least (1− δ)

|X(t)| ≤ε+ 2Lbke[t(a−bk)+aN ′ε]
e−N

′
ε(a−bk) − 1

−(a− bk)

+ εbket(a−bk) e
−t(a−bk) − e−N ′ε(a−bk)

−(a− bk)
. (4.23)

By first letting ε be sufficiently close to zero, and then letting t be sufficiently large, we can make

the right-hand side of (4.23) arbitrarily small, and the result follows.

The next theorem combines the results above, providing a sufficient condition for conver-

gence of the state to zero in probability in the case of exponentially distributed delays.

Theorem19. Consider the stabilization of the system (4.1). Assume {Si} are drawn i.i.d. from

an exponential distribution with mean E(S). If the capacity of the timing channel is at least

C > a [nats/sec],

then |X(t)| P→ 0 as t→∞.

Proof. The result follows by combining Remark 24 and Lemma 16.

4.6 Comparison with previous work

4.6.1 Comparison with stabilization over the erasure channel

In [190] the problem of stabilization of the discrete-time version of the system in (4.1)

over an erasure channel has been considered. In this discrete model, at each time step of the

system’s evolution the sensor transmits I bits to the controller and these bits are successfully

delivered with probability 1−µ, or they are dropped with probability µ, in an independent fashion.

It is shown that a necessary condition for X(k)
a.s−→ 0 is that the capacity of this I-bit erasure
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channel is

(1− µ)I ≥ log a [bits/sec]. (4.24)

Since almost sure convergence implies convergence in probability, by Theorem 18 we have that

the following necessary condition holds in our setting for X(t)
a.s.−−→ 0:

I(W ;W + S)

E(W + S)
≥ a [nats/sec]. (4.25)

We now compare (4.24) and (4.25). The rate of expansion of the state space of the

continuous system in open loop is a nats per unit time, while for the discrete system is log a bits

per unit time. Accordingly, (4.24) and (4.25) are parallel to each other: in the case of (4.25) the

controller must receive at least aE(W +S) nats representing the initial state during a time interval

of average length E(W +S). In the case of (4.24) the controller must receive at least log a/(1−µ)

bits representing the initial state over a time interval whose average length corresponds to the

average number of trials before the first successful reception

(1− µ)
∞∑
k=0

(k + 1)µk =
1

1− µ
.

4.6.2 Comparison with event triggering strategies

The works [88, 91, 95, 99, 119] use event-triggering strategies that exploit timing informa-

tion for stabilization over a digital communication channel. These strategies encode information

over time in a specific state-dependent fashion and use a combination of timing information

and data payload to convey information used for stabilization. Our framework, by considering

transmission of symbols from a unitary alphabet, uses only timing information for stabilization.

In Theorem 18 we provide a fundamental limit on the rate at which information can be encoded
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in time, independent on any transmission strategy. Theorem 19 then shows that this limit can be

achieved, in the case of exponentially distributed delays.

The work [99] shows that using event triggering it is possible to achieve stabilization

with any positive transmission rate over a zero-delay digital communication channel. Indeed, for

channels without delay achieving stabilization at zero rate is easy. One could for example transmit

a single symbol at a time equal to any bijective mapping of x(0) into a point of the non-negative

reals. For example, we could transmit ♠ at time t = tan−1(x(0)) for t ∈ [0, π]. The reception of

the symbol would reveal the initial state exactly, and the system could be stabilized.

The work in [95] shows that when delay is positive, but sufficiently small, a triggering

policy can still achieve stabilization with any positive transmission rate. However, as the delay

increases past a critical threshold, the timing information becomes so much out-of-date that the

transmission rate must begin to increase. In our case, since the capacity of our timing channel

depends on the distribution of the delay, we may also expect that a large value of the capacity,

corresponding to a small average delay, would allow for stabilization to occur using only timing

information. Indeed, when delays are distributed exponentially, from (4.5) and Theorems 18

and 19 it follows that as longs as the expected value of delay is

E(S) <
1

ea
,

it is possible to stabilize the system by using only timing information. On the other hand, the

system is not stabilizable using only timing information if the expected value of the delay becomes

larger than (ea)−1.

4.7 Numerical example

We now present a numerical simulation of stabilization over the telephone signaling

channel. While our analysis is for continuous time systems, the simulation is performed in
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Figure 4.5: Evolution of the channel used in the simulation in an error-free case. Each
time ♠ is received, a new codeword is decoded using all the symbols received up to
that time. The decoded codeword represents the initial state X[0] with a precision
that increases by E(D)C bits at each symbol reception. In the figure, for illustration
purposes we have assumed E(D)C = 3 bits.

discrete time, considering the system

X[m] = aX[m] + U [m], for m ∈ N,

where a > 1 so that the system is unstable.

In this case, assuming i.i.d. geometrically distributed delays {Si}, the sufficient condition

for stabilization becomes

C > log a [nats/sec],

where C is the timing capacity of the discrete telephone signaling channel [14]. The timing

capacity is achieved in this case using i.i.d. waiting times {Wi} that are distributed according

to a mixture of a geometric and a delta distribution. This results in {Di} also being i.i.d.

geometric [14, 185].

Assuming that a decoding operation occurs at time m using all km symbols received up to

this time, and following the source-channel coding scheme described in the proof of Theorem 17,
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the controller decodes an estimate X̂m[0] of the initial state and estimates the current state as

X̂[m] = amX̂m[0] +
m−1∑
j=0

am−1−jU [j]. (4.26)

The estimate X̂m[0] corresponds to the binary representation of X(0) using dkmE(D)Ce bits,

provided that there is no decoding error in the tranmsission. Accordingly, in our simulation

we let η > 0 and Pe = e−ηkm , and we assume that at every decoding time, with probability

(1− Pe) we construct a correct quantized estimate of the initial state X̂m[0] using dkmE(D)Ce

bits. Alternatively, with probability Pe we construct an incorrect quantized estimate. In the case of

a correct estimate, we apply the asymptotically optimal control input U [m] = −KX̂[m], where

K > 0 is the control gain and X̂[m] is obtained from (4.26). In the case of an incorrect estimate,

the state estimate used to construct the control input can be arbitrary. We consider three cases:

(i) we do not apply any control input and let the system evolve in open loop, (ii) we apply the

control input using the previous estimate, (iii) we apply the opposite of the asymptotically optimal

control input: U [m] = KX̂[m]. In all cases, the control input remains fixed to its most recent

value during time required for a new estimate to be performed.

Fig. 4.5 pictorially illustrates the evolution of our simulation in an error-free case in which

the binary representation of X[0] is refined by E(D)C = 3 bits at each symbol reception.

Numerical results are depicted in Fig. 4.6. The first and second columns represent the

absolute value of the state and control input, respectively, when the timing capacity is larger than

the entropy rate of the system (C > log a). The third column represents the absolute value of the

state when the timing capacity is smaller than the entropy rate of the system (C < log a). In the

first row, in the presence of a decoding error we do not apply any control input and let the system

evolve in open-loop; in the second row, we apply the control using the previous estimate; the

third row, we apply the opposite of the optimal control. The simulation parameters were chosen

as follows: a = 1.2, E(D) = 2, and Pe = e−ηkm , where η = 0.09. For the optimal control gain
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Case I: decoding error→ open loop

C = 1.2 log a C = 1.2 log a C = 0.9 log a

Case II: decoding error→ previous estimate

C = 1.2 log a C = 1.2 log a C = 0.9 log a

Case III: decoding error→ opposite of the optimal control

C = 1.2 log a C = 1.2 log a C = 0.9 log a

Figure 4.6: The simulation results.

we have chosen K = 0.4, which is optimal with respect to the (time-averaged) linear quadratic

regulator (LQR) control cost (1/200)E[
∑199

m=0(0.01X2
k + 0.5U2

k ) + 0.01X2
200].

As depicted in Fig. 4.6 the state converge to zero in all cases, provided that the timing

capacity is above the entropy rate of the system. In contrast, when the timing capacity is below

the entropy rate, the state diverges.

Fig. 4.7 illustrates the percentage of times at which the controller successfully stabilized

the plant versus the capacity of the channel in a run of 500 Monte Carlo simulations. The phase

transition behavior at the critical value C = log a is clearly evident.
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Figure 4.7: The percentage of times stabilization was achieved versus the capacity
of the channel across a run of 500 simulations for each value of the capacity. Suc-
cessful stabilization is defined in these simulations as |X[250]| ≤ 0.05. In case of
a decoding error, no control input is applied and we let the system evolve in open
loop. The simulation parameters were chosen as follows: a = 1.2, E(D) = 2, and
Pe = e−ηkm , where η = 0.09. For the control gain, we have chosen K = 0.4, which is
optimal with respect to the (time-averaged) linear quadratic regulator (LQR) control
cost (1/200)E[

∑199
m=0(0.01X2

k + 0.5U2
k ) + 0.01X2

200].

4.8 Conclusions

In the framework of control of dynamical systems over communication channels, it has

recently been observed that event-triggering policies encoding information over time in a state-

dependent fashion can exploit timing information for stabilization in addition to the information

traditionally carried by data packets [88, 91, 92, 95, 99, 119]. In a more general framework,

this chapter studied from an information-theoretic perspective the fundamental limitation of

using only timing information for stabilization, independent of any transmission strategy. We

showed that for stabilization of an undisturbed scalar linear system over a channel with a unitary

alphabet, the timing capacity [2] should be at least as large as the entropy rate of the system. In

addition, in the case of exponentially distributed delays, we provided a tight sufficient condition

using a coding strategy that refines the estimate of the decoded message as more and more

symbols are received. Important open problems for future research include the effect of system

disturbances, understanding the combination of timing information and packets with data payload,

and extensions to vector systems.

153



Our derivation ensures that when the timing capacity is larger than the entropy rate, the

estimation error does not grow unbounded, in probability, even in the presence of the random

delays occurring in the timing channel. This is made possible by communicating a real-valued

variable (the initial state) at increasingly higher resolution and with vanishing probability of

error. This strategy has been previously studied in [33] in the context of estimation over the

binary erasure channel, rather than over the timing channel. It is also related to communication at

increasing resolution over channels with feedback via posterior matching [137, 175]. The classic

Horstein [75] and Schalkwijk-Kailath [171] schemes are special cases of posterior matching for

the binary symmetric channel and the additive Gaussian channel respectively. The main idea in

our setting is to employ a tree-structured quantizer in conjunction to a capacity-achieving timing

channel codebook that grows exponentially with the tree depth, and re-compute the estimate

of the real-valued variable as more and more channel symbols are received. The estimate is

re-computed for a number of received symbols that depends on the channel rate and on the

average delay. In contrast to posterior matching, we are not concerned with the complexity of

the encoding-decoding strategy, but only with its existence. We also do not assume a specific

distribution for the real value we need to communicate, and we do not use the feedback signal to

perform encoding, but only to avoid queuing [2, 185]. We point out that our control strategy does

not work in the presence of disturbances: in this case one needs to track a state that depends not

only on the initial condition, but also on the evolution of the disturbance. This requires to update

the entire history of the system’s states at each symbol reception [164], leading to a different, i.e.

non-classical, coding model. Alternatively, remaining in a classical setting one could aim for

less, and attempt to obtain results using weaker probabilistic notions of stability, such as the one

in [123, Chapter 8].

Finally, by showing that in the case of no disturbances and exponentially distributed delay

it is possible to achieve stabilization at zero data-rate only for sufficiently small average delay

E(S) < (ea)−1, we confirmed from an information-theoretic perspective the observation made in
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[95] regarding the existence of a critical delay value for stabilization at zero data-rate.

Chapter 4, in full, is a reprint of the material in M. J. Khojasteh, M. Franceschetti, G.

Ranade, “Stabilizing a linear system using phone calls: when time is information” arXiv:1804.00351,

2018, being prepared for publication. The dissertation author was the primary investigator and

author of this paper.

4.9 Appendix: proofs of the estimation results

4.9.1 Proof of Theorem 16

We start by introducing a few definitions and proving some useful lemmas.

Definition 5 For any ε > 0 and φ > 0, we define the rate-distortion function of the source

Ẋe = aXe(t) at times {tn} as

Rε
tn(φ) = inf

P(X̂e(tn)|Xe(tn))

{
I
(
Xe(tn); X̂e(tn)

)
: (4.27)

P
(
|Xe(tn)− X̂e(tn)| > ε

)
≤ φ

}
.

The proof of the following lemma adapts an argument of [190] to our continuous-time setting.

Lemma17. We have

Rε
tn(φ) ≥ (1− φ) [atn + h(X(0))] (4.28)

− ln 2ε− ln 2

2
[nats].
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Proof. Let

ξ =

 0 if |Xe(tn)− X̂e(tn)| ≤ ε

1 if |Xe(tn)− X̂e(tn)| > ε.
(4.29)

Using the chain rule, we have

I(Xe(tn); X̂e(tn))

= I(Xe(tn); ξ, X̂e(tn))− I(Xe(tn); ξ|X̂e(tn))

= I(Xe(tn); ξ, X̂e(tn))−H(ξ|X̂e(tn))

+H(ξ|Xe(tn), X̂e(tn)).

Given X(tn) and X̂(tn), there is no uncertainty in ξ, hence we deduce

I(Xe(tn); X̂e(tn))

= I(Xe(tn); ξ, X̂e(tn))−H(ξ|X̂e(tn))

= h(Xe(tn))− h(Xe(tn)|ξ, X̂e(tn))−H(ξ|X̂e(tn))

= h(Xe(tn))− h(Xe(tn)|ξ = 0, X̂e(tn))P(ξ = 0)

− h(Xe(tn)|ξ = 1, X̂e(tn))P(ξ = 1)−H(ξ|X̂e(tn)).

Since H(ξ|X̂e(tn)) ≤ H(ξ) ≤ ln 2/2 [nats], P(ξ = 0) ≤ 1, and P(ξ = 1) ≤ φ, it then follows

that

I(Xe(tn); X̂e(tn)) ≥

h (Xe(tn))− h
(
Xe(tn)− X̂e(tn)|ξ = 0, X̂e(tn)

)
− h

(
Xe(tn)|ξ = 1, X̂e(tn)

)
φ− ln 2

2
.
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Since conditioning reduces the entropy, we have

I(Xe(tn); X̂e(tn)) ≥ h(Xe(tn))

− h(Xe(tn)− X̂e(tn)|ξ = 0)− h(Xe(tn))φ− ln 2

2

= (1− φ)h(Xe(tn))− h(Xe(tn)− X̂e(tn)|ξ = 0)− ln 2

2
.

By (4.29) and since the uniform distribution maximizes the differential entropy among all

distributions with bounded support, we have

I(Xe(tn); X̂e(tn)) ≥ (1− φ)h(Xe(tn))− ln 2ε− ln 2

2
. (4.30)

Since Xe(tn) = X(0) eatn , we have

h(Xe(tn)) = ln eatn + h(X(0)) = atn + h(X(0)). (4.31)

Combining (4.30), and (4.31) we obtain

I(Xe(tn); X̂e(tn)) ≥ (1− φ) (atn + h(X(0)))− ln 2ε− ln 2

2
.

Finally, noting that this inequality is independent of P(X̂e(tn)|Xe(tn)) the result follows.

Remark25. By letting φ = ε in (4.28), we have

Rε
tn(ε) ≥ (1− ε)atn + ε′,

where

ε′ = (1− ε)h (X(0))− ln 2ε− ln 2

2
.
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For sufficiently small ε we have that ε′ ≥ 0, and hence

Rε
tn(ε)

tn
≥ (1− ε)a.

It follows that for sufficiently small ε the rate distortion per unit time of the source must be at least

as large as the entropy rate of the system. Since the rate distortion represents the number of bits

required to represent the state of the process up to a given fidelity, this provides an operational

characterization of the entropy rate of the system. •

The proof of the following lemma follows a converse argument of [2] with some modifications

due to our different setting.

Lemma18. Under the same assumptions as in Theorem 16, we have

I
(
Xe(tn); X̂e(tn)

)
≤ nI(W ;W + S).

Proof. We denote the transmitted message by V ∈ {1, . . . ,M} and the decoded message by

U ∈ {1, . . . ,M}. Then

Xe(tn)→ V → (D1, . . . , Dn)→ U → X̂e(tn),

is a Markov chain. Therefore, using the data-processing inequality [35], we have

I
(
Xe(tn); X̂e(tn)

)
≤ I(V ;U) ≤ I(V ;D1, . . . , Dn). (4.32)

By the chain rule for the mutual information, we have

I(V ;D1, . . . , Dn) =
n∑
i=1

I(V ;Di|Di−1). (4.33)
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Since Wi is uniquely determined by the encoder from V , using the chain rule we deduce

n∑
i=1

I(V ;Di|Di−1) =
n∑
i=1

I(V,Wi;Di|Di−1). (4.34)

In addition, again using the chain rule, we have

n∑
i=1

I(V,Wi;Di|Di−1) =
n∑
i=1

I(Wi;Di|Di−1) (4.35)

+
n∑
i=1

I(V ;Di|Di−1,Wi).

Di is conditionally independent of V when given Wi. Thus:

n∑
i=1

I(V ;Di|Di−1,Wi) = 0. (4.36)

Combining (4.34), (4.35), and (4.36) it follows that

n∑
i=1

I(V ;Di|Di−1) =
n∑
i=1

I(Wi;Di|Di−1). (4.37)

Since the sequences {Si} and {Wi} are i.i.d. and independent of each other, it follows that the

sequence {Di} is also i.i.d., and we have

n∑
i=1

I(Wi;Di|Di−1) = nI(W ;D). (4.38)

By combining (4.32), (4.33), (4.37) and (4.38) the result follows.

We are now ready to finish the proof of Theorem 16.

Proof. By the assumption of the theorem, for any ε > 0 we have

lim
n→∞

P
(
|Xe(tn)− X̂e(tn)| ≤ ε

)
= 1.
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Hence, for any ε > 0 and any φ > 0 there exist nφ such that for n ≥ nφ

P
(
|Xe(tn)− X̂e(tn)| > ε

)
≤ φ. (4.39)

Using (4.39), (4.27), and Lemma 17 it follows that for n ≥ nφ

Rε
tn(φ) ≥ (1− φ) [atn + h(X(0))]− ln 2ε− ln 2

2
. (4.40)

By (4.27), we have

I(Xe(tn); X̂e(tn)) ≥ Rε
tn(φ), (4.41)

and using Lemma (18) it follows that

nI(W ;W + S) ≥ I
(
Xe(tn); X̂e(tn)

)
. (4.42)

Combining (4.40), (4.41), and (4.42) we obtain that for n ≥ nφ

I(W ;W + S) ≥

(1− φ)atn
n

+
(1− φ)h(X(0))− ln 2ε− ln 2

2

n
.

We now let φ→ 0, so that n→∞, and we have

I(W ;W + S) ≥ a lim
n→∞

tn
n
. (4.43)

Since, E(Tn) = nE(Dn) from (4.7) it follows that

E(D) ≤ lim
n→∞

tn
n
≤ ΓE(D). (4.44)
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Since |Xe(tn)− X̂e(tn)| P→ 0 for all the measurement times tn satisfying (4.44), we let limn→∞ tn/n =

ΓE(D) in (4.43) and (4.8) follows. Finally, using (4.4) and noticing

sup
W≥0

E(W )≤χ

I(W ;W + S)

E(S) + χ
≥ sup

W≥0
E(W )=χ

I(W ;W + S)

E(S) + χ
,

we deduce that if (4.8) holds then (4.9) holds as well.

4.9.2 Proof of Theorem 17

Proof. If E(S) = 0 the timing capacity is infinite, and the result is trivial. Hence, for the rest of

the proof we assume that

E(S +W ) ≥ E(S) > 0,

which by (4.3) implies that E(Tn) → ∞ as n → ∞. As a consequence, by (4.7) we also have

that tn →∞ as n→∞.

The objective is to design an encoding and decoding strategy, such that for all ε, δ > 0

and sufficiently large n, we have

P(|Xe(tn)− X̂e(tn)| > ε) < δ. (4.45)

We start by bounding the probability of the event that the nth symbol does not arrive by the

estimation deadline tn. Since limn→∞ tn/E(Tn) > 1, it follows that there exists ν > 0 such that

for large enough n we have

tn > (1 + ν)E(Tn).
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Hence, for large enough n, we have that the probability of missing the deadline is

P(Tn > tn) ≤ P[Tn > (1 + ν)E(Tn)]. (4.46)

Since the waiting times {Wi} and the random delays {Si} are i.i.d. sequences and independent of

each other, it follows by the strong law of large numbers that (4.46) tends to zero as n→∞. We

now have

P(|Xe(tn)− X̂e(tn)| > ε) =

P(|Xe(tn)− X̂e(tn)| > ε | tn ≥ Tn)P(tn ≥ Tn)

+ P(|Xe(tn)− X̂e(tn)| > ε | tn < Tn)P(tn < Tn)

≤ P(|Xe(tn)− X̂e(tn)| > ε | tn ≥ Tn) + P(tn < Tn), (4.47)

where the second term in the sum (4.47), tends to zero as n→∞. It follows that to ensure (4.45)

it suffices to design an encoding and decoding scheme, such that for all ε, δ > 0 and sufficiently

large n, we have that the conditional probability

P(|Xe(tn)− X̂e(tn)| > ε | tn ≥ Tn) < δ. (4.48)

From the open-loop equation (4.6), we have

Xe(tn) = eatnX(0), (4.49)

from which it follows that the decoder can construct the estimate

X̂e(tn) = eatnX̂tn(0), (4.50)
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where X̂tn(0) is an estimate of X(0) constructed at time tn using all the symbols received by this

time.

By (4.49) and (4.50), we now have that (4.48) is equivalent to

P(|X(0)− X̂tn(0)| > εe−atn | tn ≥ Tn) < δ, (4.51)

namely it suffices to design an encoding and decoding scheme to communicate the initial condition

with exponentially increasing reliability in probability. Our coding procedure that achieves this

objective is described next.

Source coding

We let the source coding map

Q : [−L,L]→ {0, 1}N (4.52)

be an infinite tree-structured quantizer [63]. This map constructs the infinite binary sequence

Q (X(0)) = {Q1, Q2, . . .} as follows. Q1 = 0 if X(0) falls into the left-half of the interval

[−L,L], otherwise Q1 = 1. The sub-interval where X(0) falls is then divided into half and we

let Q2 = 0 if X(0) falls into the left-half of this sub-interval, otherwise Q2 = 1. The process then

continues in the natural way, and Qi is determined accordingly for all i ≥ 3.

Using the definition of truncation operator from Section 1.4, for any n′ ≥ 1 we can define

Qn′ = πn′ ◦ Q.

It follows that Qn′ (X(0)) is a binary sequence of length n′ that identifies an interval of length
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L/2n
′−1 that contains X(0). We also let

Q−1
n′ : {0, 1}n′ → [−L,L]

be the right-inverse map of Qn′ , which assigns the middle point of the last interval identified

by the sequence that contains X(0). It follows that for any n′ ≥ 1, this procedure achieves a

quantization error

|X(0)−Q−1
n′ ◦ Qn′(X(0))| ≤ L

2n′
. (4.53)

•

Channel coding

In order to communicate the quantized initial condition over the timing channel, the

truncated binary sequence Qn′(X(0)) needs to be mapped into a channel codeword of length n.

We consider a channel codebook of n columns and Mn rows. The codeword symbols

{wi,m, i = 1, · · · , n; m = 1 · · ·Mn} are drawn i.i.d. from a distribution which is mixture of

a delta function and an exponential and such that P(Wi = 0) = e−1, and P(Wi > w | Wi >

0) = exp{ −w
eE(S)
}. By Theorem 3 of [2], if the delays {Si} are exponentially distributed, using a

maximum likelihood decoder this construction achieves the timing capacity. Namely, letting

Tn = E(Tn) = nE(D), (4.54)

using this codebook we can achieve any rate

R = lim
n→∞

logMn

Tn
< C
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Figure 4.8: Tree-structured quantizer and the corresponding codebook for RE(D) = 2.
In this case, every received channel symbol refines the source coding representation by
two bits.

Figure 4.9: Tree-structured quantizer and the corresponding codebook for RE(D) =
0.5. In this case, every two received channel symbols refine the source coding represen-
tation by one bit.

over the timig channel.

Next, we describe the mapping between the source coding and the channel coding con-
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structions. •

Source-channel mapping

We first consider the direct mapping. For all i ≥ 1, we let n′ = diRE(D)e and consider

the 2n
′ possible outcomes of the source coding map Qn′(X(0)). We associate them, in a one-to-

one fashion, to the rows of a codebook Ψn′ of size 2n
′ × dn′/RE(D)e. This mapping is defined

as

En′ :{0, 1}n′ → Ψn′ .

By letting i→∞, the codebook becomes a double-infinite matrix Ψ∞, and the map becomes

E : {0, 1}N → Ψ∞. (4.55)

Thus, as i→∞, X(0) is encoded as

X(0)
Q−→ {0, 1}N E−→ Ψ∞.

We now consider the inverse mapping. Since the elements of Ψn′ are drawn independently

from a continuous distribution, with probability one no two rows of the codebook are equal to

each other, so for any i ≥ 1 and number of received symbols n = di/RE(D)e we define

E−1
n′ : Ψn′ → {0, 1}n

′
,

where n′ = dnRE(D)e. This map associates to every row in the codebook a corresponding node

in the quantization tree at level n′.

Figures 4.8 and 4.9 show the constructions described above for the cases RE(D) = 2
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and RE(D) = 0.5, respectively. In Fig. 4.8, the nodes in the quantization tree at level n′ =

diRE(D)e = 2, 4, 6, . . . , are mapped into the rows of a table of Mn = 22, 24, 26, . . . rows and

n = 1, 2, 3 . . . columns. Conversely, the rows in each table are mapped into the corresponding

nodes in the tree. In Fig. 4.9, the nodes in the quantization tree at level n′ = diRE(D)e =

1, 2, 3, . . . , are mapped into the rows of a table of Mn = 2, 22, 23, . . . rows and n = 2, 4, 6, . . .

columns. Conversely, the rows in each table are mapped into the corresponding nodes in the tree.

Next, we describe how the encoding and decoding operations are performed using these

maps and how transmission occurs over the channel. •

One-time encoding

The encoding of the initial state X(0) occurs at the sensor in one-shot and then the

corresponding symbols are transmitted over the channel, one by one. Given X(0), the source

encoder computes Q(X(0)) according to the source coding map (4.52) and the channel encoder

picks the corresponding codeword E(Q(X(0))) from the doubly-infinite codebook according to

the map (4.55). This codeword is an infinite sequence of real numbers, which also corresponds

to a leaf at infinite depth in the quantization tree. Then, the encoder starts transmitting the real

numbers of the codeword one by one, where each real number corresponds to a holding time,

and proceeds in this way forever. According to the source-channel mapping described above,

transmitting n = dn′/RE(D)e symbols using this scheme corresponds to transmitting, for all

i ≥ 1, n′ = diRE(D)e source bits, encoded into a codeword En′(Qn′(X(0))), picked from a

truncated codebook of 2n
′ rows and n columns. •

Anytime Decoding

The decoding of the initial state X(0) occurs at the controller in an anytime fashion,

refining the estimate of X(0) as more and more symbols are received.

For all i ≥ 1 the decoder updates its guess for the value of X(0) any time the number
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of symbols received equals n = di/RE(D)e. Assuming a decoding operation occurs after

n symbols have been received, the decoder picks the maximum likelihood codeword from a

truncated codebook of size Mn× n and by inverse mapping it finds the corresponding node in the

tree. It follows that at the nth random reception time Tn, the decoder utilizes the inter-reception

times of all n symbols received up to this time to construct the estimate X̂Tn(0). First, a maximum

likelihood decoder Dn is employed to map the inter-reception times (D1, . . . , Dn) to an element

of Ψn′ . This element is then mapped to a binary sequence of length n′ using E−1
n′ . Finally, Q−1

n′ is

used to construct X̂Tn(0). It follows that at the nth reception time where decoding occurs, we

have

(D1, . . . , Dn)
Dn−→ Ψn′

E−1
n′−−→ {0, 1}n′

Q−1
n′−−→ [−L,L],

and we let

X̂Tn(0) = Q−1
n′

(
E−1
n′ (Dn(D1, . . . , Dn))

)
.

Thus, as n→∞ the final decoding process becomes

(D1, Dn, . . . )
D−→ Ψ∞

E−1

−−→ {0, 1}N Q−1

−−→ [−L,L].

•

To conclude the proof, we now show that if C > Γa, then it is possible to perform the

above encoding and decoding operations with arbitrarily small probability of error while using a

codebook so large that it can accommodate a quantization error at most L/2n′ < εe−atn .

Since the channel coding scheme achieves the timing capacity, we have that for any

R < C, as n → ∞ the maximum likelihood decoder selects the correct transmitted codeword

with arbitrarily high probability. It follows that for any δ > 0 and n sufficiently large, we have
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with probability at least (1− δ) that

Qn′(X(0)) = E−1
n′ (Dn(D1, . . . , Dn)) ,

and then by (4.53) we have

|X(0)− X̂Tn(0)| ≤ L

2n′
. (4.56)

We now consider a sequence of estimation times {tn} satisfying (4.7) and let the estimate at

time tn ≥ Tn in (4.51) be X̂tn(0) = X̂Tn(0). By (4.56) we have that the sufficient condition for

estimation reduces to
L

2n′
≤ εe−atn ,

which means having the size of the codebook Mn be such that

L

Mn

≤ εe−atn ,

or equivalently
logMn − logL+ log ε

tn
≥ a. (4.57)

Using (4.54), we have

logMn − logL+ log ε

tn
=

logMn − logL+ log ε

Tn
· Tn
tn

=
logMn − logL+ log ε

Tn

· E(Tn)

tn
.
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Taking the limit for n→∞, we have

lim
n→∞

logMn − logL+ log ε

Tn
· E(Tn)

tn
≥ R · 1

Γ
.

It follows that as n→∞ the sufficient condition (4.57) can be expressed in terms of rate as

R ≥ Γa.

It follows that the rate must satisfy

C > R ≥ Γa

and since C > Γa, the proof is complete.
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Chapter 5

Learning-based attacks in cyber-physical

systems

Recent technological advances in wireless communications and computation, and their

integration into networked control and cyber-physical systems (CPS), open the door to a myriad

of exciting opportunities in cloud robotics [81].

However, the distributed nature of CPS is often a source of vulnerability. Security breaches

in CPS can have catastrophic consequences ranging from hampering the economy by obtaining

financial gain, through hijacking autonomous vehicles and drones, and all the way to terrorism

by manipulating life-critical infrastructures [199]. Real-world instances of security breaches

in CPS, that were discovered and made available to the public, include the revenge sewage

attack in Maroochy Shire, Australia; the Ukraine power grid cyber-attack; the German steel

mill cyber-attack; the Davis-Besse nuclear power plant attack in Ohio, USA; and the Iranian

uranium-enrichment facility attack via the Stuxnet malware [165]. Consequently, studying and

preventing such security breaches via control-theoretic methods have received a great deal of

attention in recent years [11, 23, 27, 44, 47, 94, 143, 176, 178, 194, 198, 207, 215].

An important and widely used class of attacks in CPS is based on the “man-in-the-middle”
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(MITM) attack technique [182]: an attacker takes over the control and sensor signals of the

physical plant. The attacker overrides the control signals with malicious inputs to push the plant

toward a catastrophic trajectory. Consequently, many CPS constantly monitor the plant outputs to

detect possible attacks. The attacker, on the other hand, aims to override the sensor readings in a

manner that would be indistinguishable from the legitimate ones.

The MITM attack has been extensively studied in two special cases [127,135,169,182,216].

The first case is the replay attack, in which the attacker observes and records the legitimate system

behavior for a given time window and then replays this recording periodically at the controller’s

input [127, 135, 216]. The second case is the statistical-duplicate attack, which assumes that the

attacker has acquired complete knowledge of the dynamics and parameters of the system, and

can construct arbitrarily long fictitious sensor readings that are statistically identical to the actual

signals [169, 182]. The replay attack assumes no knowledge of the system parameters—and as

a consequence, it is relatively easy to detect it. An effective way to counter the replay attack

consists of superimposing a random watermark signal, unknown to the attacker, on top of the

control signal [53, 56, 73, 76]. The statistical-duplicate attack assumes full knowledge of the

system dynamics—and as a consequence, it requires a more sophisticated detection procedure, as

well as additional assumptions on the attacker or controller behavior to ensure it can be detected.

To combat the attacker’s full knowledge, the controller may adopt moving target [80, 205] or

baiting [58, 74] techniques. Alternatively, the controller may introduce private randomness in the

control input using watermarking [169]. In this scenario, a vital assumption is made: although

the attacker observes the true sensor readings, it is barred from observing the control actions, as

otherwise it would be omniscient and undetectable.

Our contribution is fourfold. First, we observe that in many practical situations, the

attacker does not have full knowledge of the system and cannot simulate a statistically indistin-

guishable copy of the system. On the other hand, the attacker can carry out more sophisticated

attacks simply replaying previous sensor readings, by attempting to “learn” the system dynamics

172



from the observations. For this reason, we study learning-based attacks and show that they

can outperform replay attacks by analyzing the performance using a specific learning algorithm.

Second, we derive asymptotic bounds on the detection and deception probabilities for any (mea-

surable) control policy when the attacker uses any arbitrary learning algorithm to estimate the

dynamics of the plant. Third, for any learning algorithm utilized by the attacker to estimate the

dynamics of the plant, we show that adding a proper privacy-enhancing signal to the “nominal

control policy” provides enhanced guarantees on the detection probability. Forth, we study the

trade-off between the performance of the learning algorithm, and the performance of arbitrary

detection and control strategies adopted by the controller, providing a tight bound on the scaling

of the expected time required to detect the attack, as the probability of detection tends to one.

Throughout this chapter, we assume that the attacker has full access to both sensor

and control signals. The controller, on the other hand, has perfect knowledge of the system

dynamics and tries to discover the attack from the injected observations. The assumed information-

pattern imbalance between the controller and the attacker is justified since the controller is tuned

in much longer than the attacker and thus has knowledge of the system dynamics to a far

greater precision than the attacker. Since the success or failure of the attacker are dictated

by the its learning capabilities, our work complements the recent progress in learning-based

control [15, 38, 39, 61, 158, 159, 162, 167, 197].

In this chapter, we denote by xji = (xi, · · · , xj) the realization of the tuple of random

variables Xj
i = (Xi, · · · , Xj) for i, j ∈ N, i ≤ j. Random matrices and vectors are represented

by boldface capital letters (e.g. A) and their realizations are represented by typewriter letters

(e.g. A).
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Figure 5.1: Learning (exploration): During this phase, the attacker eavesdrops and
learns the system, without altering the input signal to the controller (Yk = Xk).

Figure 5.2: Hijacking (exploitation): During this phase, the attacker hijacks the system
and intervenes as a MITM in two places: acting as a fake plant for the controller
(Yk = Vk) by impersonating the legitimate sensor, and as a malicious controller (Ũk) for
the plant aiming to destroy the plant.

Figure 5.3: System model during learning-based attack phases.

5.1 Problem Setup

We consider the networked control system depicted in Figure 5.3, where the plant dynam-

ics are described by a scalar, discrete-time, linear time-invariant (LTI) system

Xk+1 = aXk + Uk +Wk, (5.1)

where Xk, a, Uk, Wk are real numbers representing the plant state, open-loop gain of the plant,

control input, and plant disturbance, respectively, at time k ∈ N. The controller, at time k,
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observes Yk and generates a control signal Uk as a function of Y k
1 . If the attacker does not tamper

sensor reading , at any time k ∈ N, we have Yk = Xk. We assume that the initial condition X0

has a known (to all parties) distribution and is independent of the disturbance sequence {Wk}.

For analytical purposes, we assume {Wk} is an i.i.d. Gaussian process N (0, σ2) known to all

parties. We assume that U0 = W0 = 0. Moreover, to simplify the notation, let Zk := (Xk, Uk)

denote the state-and-control input at time k and its trajectory up to time k—by

Zk
1 := (Xk

1 , U
k
1 ).

The controller is equipped with a detector that tests for anomalies in the observed history Y k
1 .

When the controller detects an attack, it shuts the system down and prevents the attacker from

causing further “damage” to the plant. The controller/detector is aware of the plant dynamics (5.1)

and knows the open-loop gain a of the plant. On the other hand, the attacker knows the plant

dynamics (5.1) as well as the plant state Xk, and control input Uk (or equivalently, Zk) at time k

(see Figure 5.3). However, it does not know the open-loop gain a of the plant.

In what follows, it will be convenient to treat the open-loop gain of the plant as a random

variable A that is fixed in time, whose PDF fA is known to the attacker, and whose realization a is

known to the controller. We assume all random variables to exist on a common probability space

with probability measure P, and Uk to be a measurable function of Y k
1 for all time k ∈ N. We

also denote the probability measure conditioned on A = a by Pa. Namely, for any measurable

event C, we define

Pa(C) = P(C|A = a).

A is further assumed to be independent of X0 and {Wk|k ∈ N}.
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5.1.1 Learning-based attacks

We define Learning-based attacks that consist of two disjoint, consecutive, passive and

active phases, as follows.

Phase 1: Learning (exploration). During this phase, the attacker passively observes

the control input and the plant state to learn the open-loop gain of the plant. As illustrated in

Figure 5.1, for all k ∈ [0, L], the attacker observes the control input Uk and the plant state Xk,

and tries to learn the open-loop gain a, where L is the duration of the learning phase. We denote

by Â the attacker’s estimate of the open-loop gain a. •

Phase 2: Hijacking (exploitation). In this phase, the attacker aims to destroy the plant

using Ũk while remaining undetected. As illustrated in Figure 5.2, from time L+ 1 and onwards

the attacker hijacks the system and feeds a malicious control signal to the plant Ũk and a fictitious

sensor reading Yk = Vk to the controller. •

We assume that the attacker can use any arbitrary learning algorithm to estimate the

open-loop gain a during the learning phase, and upon estimation is completed, we assume that

during the hijacking phase the fictitious sensor reading is constructed in the following way

Vk+1 = ÂVk + Uk + W̃k , k = L, . . . , T − 1, (5.2)

where W̃k for k = L, . . . , T − 1 are i.i.d. Gaussian N (0, σ2); Uk is the control signal generated

by the controller, which is fed with the fictitious virtual signal Vk by the attacker; VL = XL; and

Â is the estimate of the open-loop gain of the plant at the conclusion of Phase 1.

5.1.2 Detection

The controller/detector, being aware of the dynamic (5.1) and the open-loop gain a,

attempts to detect possible attacks by testing for statistical deviations from the typical behavior of

the system (5.1).
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Definition 6 The decision time T is the time at which the controller makes a decision regarding

the presence or absence of the attacker.

Under legitimate system operation (corresponding to the null hypothesis), the controller observa-

tion Yk behaves according to

Yk+1 − aYk − Uk(Y k
1 ) ∼ i.i.d. N (0, σ2). (5.3)

In case of an attack, during Phase 2 (k > L), (5.3) can be rewritten as

Vk+1 − aVk − Uk(Y k
1 )

= Vk+1 − aVk + ÂVk − ÂVk − Uk(Y k
1 ) (5.4a)

= W̃k +
(
Â− a

)
Vk, (5.4b)

where (5.4b) follows from (5.2). Hence, the estimation error (Â− a) dictates the ease with which

an attack can be detected.

Since the Gaussian PDF with zero mean is fully characterized by its variance, we shall test

for anomalies in the latter, i.e., test whether the empirical variance of (5.3) is equal to the second

moment of the plant disturbance E [W 2]. To that end, we shall use a test that sets a confidence

interval of length 2δ > 0 around the expected variance, i.e., it checks whether

1

T

T∑
k=1

[
Yk+1 − aYk − Uk(Y k

1 )
]2 ∈ (Var [W ]− δ,Var [W ] + δ), (5.5)

where T is the decision time. That is, as is implied by (5.4), the attacker manages to deceive the

controller and remain undetected if

1

T

(
L∑
k=1

W 2
k +

T∑
k=L+1

(W̃k + (Â− a)Vk)
2

)
∈ (Var [W ]− δ,Var [W ] + δ). (5.6)
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5.1.3 Performance Measures

Definition 7 The hijack indicator at decision time T is defined as

ΘT :=


0, ∀j ≤ T : Yj = Xj ;

1, otherwise.

At the decision time T , the controller uses Y T
1 to construct an estimate Θ̂T of ΘT . More precisely,

Θ̂T = 0 if (5.5) occurs, otherwise Θ̂T = 1. •

Definition 8 The probability of deception is the probability of the attacker deceiving the con-

troller and remain undetected at the time instance T

P a,T
Dec := Pa

(
Θ̂T = 0

∣∣∣ΘT = 1
)
. (5.7)

In addition, the detection probability at decision time T is defined as

P a,T
Det := 1− P a,T

Dec .

Likewise, the probability of false alarm is the probability of detecting the attacker when it is not

present, namely

P a,T
FA := Pa

(
Θ̂T = 1

∣∣∣ΘT = 0
)
. •

In this case, using Chebyshev’s inequality, (5.5), since the system disturbances are i.i.d. Gaussian

N (0, σ2), we have

P T
FA ≤

Var[W 2]

δ2T
=

3σ4

δ2T
.
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We further define the deception, detection, and false alarm probabilities w.r.t. the probability

measure P, without conditioning on A, and denote them by P T
Dec, P T

Det, and P T
FA, respectively. For

instance, P T
Det is defined, w.r.t. a PDF fA of A, as

P T
Det := P

(
Θ̂T = 1

∣∣∣ΘT = 1
)

=

∫ ∞
−∞

P a,T
Det fA(a)da (5.8)

5.2 Statement of the results

In this section, we describe the main results of this work. We want to provide lower and

upper bounds on the deception probability (5.7) of the learning-based attack (5.2) where Â in

(5.2) is constructed using any arbitrary learning algorithm. In addition, our results are valid

for any measurable control policy Uk. We find a lower bound on the deception probability by

characterizing what attacker can at least achieve using a least-squares (LS) algorithm, and we

derive an information theoretic upper bound using Fano’s inequality [149]. While our analysis

is restricted to the asymptotic case, T →∞, it is straightforward to extend this treatment to the

non-asymptotic case.

For analytical purposes, we assume that the power of the fictitious sensor reading is equal

to β−1 <∞, namely

lim
T→∞

1

T

T∑
k=L+1

V 2
k = 1/β a.s. w.r.t. Pa. (5.9)

Remark26. Assuming the control policy is memoryless, namely Uk is only dependent on Yk,

the process Vk is Markov for k ≥ L + 1. By further assuming that L = o(T ) and using the

generalization of the law of large numbers for Markov processes [51], we deduce

lim
T→∞

1

T

T∑
k=L+1

V 2
k ≥ Var [W ] a.s. w.r.t. Pa.
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Consequently, in this case we have β ≤ 1/Var [W ]. In addition, when the control policy is linear

and stabilizes (5.2), that is Uk = −ΩYk and |Â− Ω| < 1, it is easy to verify that (5.9) holds true

for β = (1− (Â− Ω)2)/Var [W ]. •

5.2.1 Lower Bound on the Deception Probability

To provide a lower bound on the deception probability P a,T
Dec , we consider a specific

estimate of Â at the conclusion of the first phase by the attacker. To this end, we use LS

estimation due to its efficiency and amenability to recursive update over observed incremental

data [122, 158, 167, 168, 197]. The LS algorithm approximates the overdetermined system of

equations



X2

X3

...

XL


= A



X1

X2

...

XL−1


+



U1

U2

...

UL−1


,

by minimizing the Euclidean distance Â = argminA ‖Xk+1 − AXk − Uk‖ to estimate (or “iden-

tify”) the plant, the solution to which is

Â =

∑L−1
k=1 (Xk+1 − Uk)Xk∑L−1

k=1 X
2
k

a.s. w.r.t. Pa. (5.10)

Remark27.Since we assumed Wk ∼ N (0, σ2) for all k ∈ N, Pa(Xk = 0) = 0. Thus, (5.10) is

well-defined. •

Using LS estimation (5.10), our linear learning-based attack (5.2) achieves at least the asymptotic

deception probability stated in the following theorem, for any measurable control policy.

Theorem20. Consider any linear learning-based attack (5.2) with fictitious sensor reading power
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that satisfies (5.9) and an arbitrary measurable control policy {Uk}. Then, the asymptotic

deception probability, when using the variance test (5.5), is bounded from below as

lim
T→∞

P a,T
Dec = Pa

(
|Â− a| <

√
δβ
)

(5.11a)

≥ Pa


∣∣∣∑L−1

k=1 WkXk

∣∣∣∑L−1
k=1 X

2
k

<
√
δβ

 (5.11b)

≥ 1− 2

(1 + δβ)L/2
. (5.11c)

Proof. We break the proof of Theorem 20 into several lemmas that are stated and proved next.

In the case of any learning-based attack (5.2), in the limit of T → ∞, the empirical

variance, which is used in the variance test (5.5), can be expressed in terms of the estimation error

of the open-loop gain as follows.

Lemma19. Consider any learning-based attack (5.2) with fictitious sensor reading power that

satisfies (5.9) and some measurable control policy {Uk}. Then, the variance test (5.5) reduces to

lim
T→∞

1

T

T∑
k=1

(Yk+1 − aYk − Uk(Y k
1 ))2 = Var [W ] +

(Â− a)2

β
a.s. w.r.t. Pa.

Proof of Lemma 19: Since the hijacking phase of a learning-based attack (5.2) starts at time
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k = L+ 1, using (5.1) and (5.4) we have

1

T

T∑
k=1

(Yk+1 − aYk − Uk(Y k
1 ))2

=
1

T

(
L∑
k=1

W 2
k +

T∑
k=L+1

(W̃k + (Â− a)Vk)
2

)
(5.12a)

=
1

T

(
L∑
k=1

W 2
k +

T∑
k=L+1

W̃ 2
k

)

+
(Â− a)2

T

T∑
k=L+1

V 2
k +

2(Â− a)

T

T∑
k=L+1

W̃kVk . (5.12b)

Let Fk be the σ−filed generated by (Vk, Â,Wk, Uk), for k = L, . . . , T − 1. Then clearly, Vk+1 is

Fk measurable, also (Wk+1,Fk) is a Martingale difference sequence. Thus, using [103, Lemma

2, part iii] the last term in (5.12b) reduces to

T∑
k=L+1

W̃kVk = o

(
T∑

k=L+1

V 2
k

)
+O(1) a.s. (5.13)

in the limit T →∞.

Note further that

lim
T→∞

1

T

(
L∑
k=1

W 2
k +

T∑
k=L+1

W̃ 2
k

)
= Var [W ] a.s. (5.14)

by the strong law of large numbers [51].

Substituting (5.9) in (5.12), (5.14) in (5.12), using (5.13), and taking T to infinity con-

cludes the proof of the lemma. •

In the following lemma, we prove (5.11a) for any learning-based attack (5.2), and any

measurable control policy.

Lemma20. Consider any learning-based attack (5.2) with fictitious sensor reading power that
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satisfies (5.9) and a measurable control policy {Uk}. Then, the asymptotic deception probability,

under the variance test (5.5), is equal to

lim
T→∞

P a,T
Dec = Pa

(
|Â− a| <

√
δβ
)
.

Proof of Lemma 20: Under the variance test,

lim
T→∞

P a,T
Dec = lim

T→∞
EPa [1T ] ,

where 1T is one if (5.5) occurs and zero otherwise. Using the dominated convergence theorem [51]

and Lemma 19, we deduce

lim
T→∞

P a,T
Dec = EPa [1′T ] ,

where 1′T is one if

Var [W ] +
(Â− a)2

β
∈ (Var [W ]− δ,Var [W ] + δ)

and zero otherwise. Consequently,

lim
T→∞

P a,T
Dec = Pa

(
(Â− a)2 ∈ (−δβ, δβ)

)
,

and the result follows. •

Clearly, the estimation error of the LS algorithm (5.10) is [158]

Â− a =

∑L−1
k=1 WkXk∑L−1
k=1 X

2
k

a.s. w.r.t. Pa

Consequently, by (5.11a), learning-based attack (5.2) can at least achieve the asymptotic deception
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Figure 5.4: The attacker’s success rate P a,T
Dec versus the size of the detection window T .

probability (5.11b). Finally, since, for k ∈ {1, . . . , L}, Uk is a measurable function of Y k
1 =

Xk
1 , (5.11c) follows using Theorem 4 of [158].

Example1 In this example, we compare the empirical performance of the variance-test with our

developed bound in Theorem 20. At every time T , the controller tests the empirical variance

for abnormalities over a detection window [1, T ], using a confidence interval 2δ > 0 around the

expected variance (5.5). Here, a = 1, δ = 0.1, Uk = −0.88aYk for all 1 ≤ k ≤ T = 800, and

{Wk} are i.i.d. Gaussian N (0, 1), and 500 Monte Carlo simulations were performed.

The learning-based attacker (5.2) uses the LS algorithm (5.10) to estimate a, and as

illustrated in Figure 5.4, the attacker’s success rate increases as the duration of learning phase

L increases. This is in agreement with (5.11c) since the attacker can improve its estimate of a

and the estimation error |Â− a| reduces as L increases. As discussed in Section 5.1.3, the false

alarm rate decays to zero as the size of the detection window T tends to infinity. Hence, for a

sufficiently large detection window size, the attacker’s success rate could potentially tend to one.

Indeed, such behavior is observed in Figure 5.4 for a learning-based attacker (5.2) with L = 400.

Also, Figure 5.4 illustrates that our learning-based attack outperforms the replay attack. A
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replay attack with a recording length of L = 20 and a learning-based attack with a learning phase

of length L = 20 are compared, and the success rate of the replay attack saturates at a lower value.

Moreover, a learning-based attack with a learning phase of length L = 8 has a higher success rate

than a replay attack with a larger recording length of L = 20. •

5.2.2 Upper Bound on the Deception Probability

We now derive an upper bound on the deception probability (5.7) of any learning-based

attack (5.2) where Â in (5.2) is constructed using any arbitrary learning algorithm, for any mea-

surable control policy, when A is distributed over a symmetric interval [−R,R]. Similar results

can be obtained for other interval choices. Since the uniform distribution has the highest entropy

among all distributions with finite support [149], we further assume A is distributed uniformly

over the interval [−R,R]. We assume the attacker knows the distribution of A (including the

value of R), whereas the controller knows the true value of A (as before).

Theorem21. Let A be distributed uniformly over [−R,R] for some R > 0, and consider any

measurable control policy {Uk} and any learning-based attack (5.2) with fictitious sensor reading

power (5.9) that satisfies
√
δβ ≤ R. Then, the asymptotic deception probability, when using the

variance test (5.5), is bounded from above as

lim
T→∞

P T
Dec = P(|A− Â| <

√
δβ) (5.15a)

≤ Λ :=
I(A;ZL

1 ) + 1

log(R/
√
δβ)

. (5.15b)

In addition, if for all k ∈ {1, . . . , L}, A → (Xk, Z
k−1
1 ) → Uk is a Markov chain, then for any

sequence of probability measures {QXk|Zk−1
1
}, such that for all k ∈ {1, . . . , L} PXk|Zk−1

1
�
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QXk|Zk−1
1

, we have

Λ ≤

∑L
k=1D

(
PXk|Zk−1

1 ,A

∥∥∥QXk|Zk−1
1

∣∣∣PZk−1
1 ,A

)
+ 1

log
(
R/
√
δβ
) . (5.16)

Proof. We start by proving (5.15a). Using Lemma 20 and (5.8) we deduce

lim
T→∞

P T
Dec =

1

2R

∫ R

−R
Pa
(
|Â− a| <

√
δβ
)
da

=
1

2R

∫ R

−R
EPa [1c] da,

where 1c is one if |Â − a| <
√
δβ and zero otherwise. Consequently, using Tonelli’s theorem

[51] it follows that

lim
T→∞

P T
Dec = P(|A− Â| <

√
δβ). (5.17)

We now continue by proving (5.15b). Since the attacker observed the plant state and control input

during the learning phase which lasts L time steps, and since A→ (XL
1 , U

L
1 )→ Â constitutes a

Markov chain, using the continuous domain version of Fano’s inequality [49, Prop. 2], we have

inf
Â

P
(∣∣∣A− Â∣∣∣ ≥√δβ

)
≥ 1− I(A;ZL

1 ) + 1

log(R/
√
δβ)

, (5.18)

whenever
√
δβ ≤ R. Finally, using (5.17), (5.18), (5.15b) follows.

To prove (5.16), we further bound I(A;ZL
1 ) from above via KL divergence manipulations.

The proof of the following lemma follows the arguments of [155], and is detailed here for

completeness.

Lemma21. Assume that A→ (Xk, Z
k−1
1 )→ Uk is a Markov chain for all k ∈ {1, . . . , L}. Let{

QXk|Zk−1
1

}
be a sequence of probability measures satisfying PXk|Zk−1

1
� QXk|Zk−1

1
for all k.
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Then, for all k, we have

I(A;Zk
1 ) =

L∑
k=1

I(A;Xk|Zk−1
1 )

≤
L∑
k=1

D
(
PXk|Zk−1

1 ,A

∥∥∥QXk|Zk−1
1

∣∣∣PZk−1
1 ,A

)
.

Proof of Lemma 21: We start by applying the chain rule for mutual information to I
(
A;ZL

1

)
as

follows.

I(A;ZL
1 ) =

L∑
k=1

I
(
A;Zk

∣∣Zk−1
1

)
. (5.19)

We next bound I
(
A;Zk

∣∣Zk−1
1

)
from above.

I
(
A;Zk

∣∣Zk−1
1

)
= I

(
A;Xk, Uk

∣∣Zk−1
1

)
(5.20a)

= I
(
A;Xk

∣∣Zk−1
1

)
(5.20b)

= D
(
PXk|Zk−1

1 ,A

∥∥∥PXk|Zk−1
1

∣∣∣PZk−1
1 ,A

)
(5.20c)

= EP

[
log

dPXk|Zk−1
1 ,A

dPXk|Zk−1
1

]
(5.20d)

= EP

[
log

dPXk|Zk−1
1 ,A

dQXk|Zk−1
1

]
− EP

[
log

dPXk|Zk−1
1

dQXk|Zk−1
1

]
(5.20e)

≤ D(PXk|Zk−1
1 ,A‖QXk|Zk−1

1
|PZk−1

1 ,A), (5.20f)

where we substitute the definition of Zk := (Xk, Uk) to arrive at (5.20a), (5.20b) follows from

the chain rule for mutual information and the Markovity assumption A→ (Xk, Z
k−1
1 )→ Uk, we

use the definition of the conditional mutual information in terms of the conditional KL divergence

(recall the notation section) to attain (5.20c) and (5.20d), the manipulation in (5.20e) is valid due

to the condition PXk|Zk−1
1
� QXk|Zk−1

1
in the setup of the lemma, and (5.20f) follows from the
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non-negativity property of the KL divergence.

Substituting (5.20) in (5.19) concludes the proof. •

Applying the bound of Lemma 21 to the first bound of the theorem (5.15b) proves the

second bound of the theorem (5.16).

Remark28. By looking at the numerator in (5.15b), it follows that the bound on the deception

probability becomes looser as the amount of information revealed about the open-loop gain A

by the observation ZL
1 increases. On the other hand, by looking at the denominator, the bound

becomes tighter as R increases. This is consistent with the observation of Zames [155, 213] that

system identification becomes harder as the uncertainty about the open-loop gain of the plant

increases. In our case, a larger uncertainty interval R corresponds to a poorer estimation of A

by the attacker, which leads, in turn, to a decrease in the achievable deception probability. The

denominator can also, be interpreted as the intrinsic uncertainty of A when it is observed at

resolution
√
δβ, as it corresponds to the entropy of the random variable A when it is quantized at

such resolution. •

In conclusion, Theorem 21 provides two upper bounds on the deception probability.

The first bound (5.15b) clearly shows that increasing the privacy of the open-loop gain A—

manifested in the mutual information between A and the state-and-control trajectory ZL
1 during

the exploration phase—reduces the deception probability. The second bound (5.16) allows

freedom in choosing the auxiliary probability measure QXk|Zk−1
1

, making it a rather useful bound.

For instance, by choosing QXk|Zk−1
1
∼ N (0, σ2), for all k ∈ N, we can rewrite the upper

bound (5.16) in term of EP [(AXk−1 + Uk−1)2] as follows.

Corollary3 Under the assumptions of Theorem 21, if for all k ∈ {1, . . . , L},A→ (Xk, Z
k−1
1 )→
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Figure 5.5: Comparison of the lower and upper bounds on the deception probability, of
Theorem 20 and Corollary 3, respectively.

Uk is a Markov chain, then asymptotic deception probability is bounded from above by

lim
T→∞

P T
Dec ≤ G(ZL

1 ), (5.21a)

G(ZL
1 ) :=

log e
2σ2

∑L
k=1 EP [(AXk−1 + Uk−1)2] + 1

log
(
R/
√
δβ
) . (5.21b)

Proof. Set QXk|Zk−1
1
∼ N (0, σ2). Then, PXk|Zk−1

1 ,A = N (AXk−1 + Uk−1, σ
2), and consequently

the measure-domination condition PXk|Zk−1
1
� QXk|Zk−1

1
holds.

D(PXk|Zk−1
1 ,A‖QXk|Zk−1

1
|PZk−1

1 ,A) (5.22)

= EP
[
D
(
N (AXk−1 + Uk−1, σ

2)
∥∥N (0, σ2)

)]
=

log e

2σ2
EP
[
(AXk−1 + Uk−1)2

]
.

The result follows by combining (5.16) and (5.22).

Example2 Theorem 20 provides a lower bound on the deception probability given A = a.

Hence, by applying the law of total probability w.r.t. the PDF fA of A as in (5.8), we can apply
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the result of Theorem 20 to provide a lower bound also on the average deception probability

for a random open-loop gain A. In this context, Figure 5.5 compares the lower and upper

bounds on the deception probability provided by Theorem 20, max{0, 1 − (2/(1 + δβ)L/2)},

and Corollary 3, min{1, G(ZL
1 )}, respectively, where A is distributed uniformly over [−0.9, 0.9].

(5.21a) is valid when the control input is not a function of random variable A; hence, we assumed

Uk = −0.045Yk for all time k ∈ N. Here δ = 0.1, {Wk} are i.i.d. Gaussian with zero mean and

variance of 0.16, and for simplicity, we let β = 1.1. Although, in general, the attacker’s estimation

of the random open-loop gain A and consequently the power of fictitious senor reading (5.9) vary

based on the learning algorithm and the realization of A, the comparison of the lower and upper

bounds in Figure 5.5 is restricted to a fixed β. 2000 Monte Carlo simulations were performed.

5.2.3 Privacy-enhancing signal

For a given duration of learning phase L, to increase the security of the system, at any

time k the controller can add a privacy-enhancing signal Γk to an unauthenticated control policy

{Ūk|k ∈ N}:

Uk = Ūk + Γk , k ∈ N. (5.23)

We refer to such a control policy Uk as the authenticated control policy Ūk. We denote the states

of the system that would be generated if only the unauthenticated control signal Ūk
1 were applied

by X̄k
1 , and the resulting trajectory—by Z̄k

1 := (X̄k
1 , Ū

k
1 ).

The following numerical example illustrates the effect of the privacy-enhancing signal on

the deception probability.

Example3 Here, the attacker uses the LS algorithm (5.10), the detector uses the variance

test (5.5), a = 1, T = 600, δ = 0.1, and {Wk} are i.i.d. Gaussian N (0, 1). Figure 5.6 compares

the attacker’s success rate, the empirical P a,T
Dec , as a function of the duration L of the learning
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Figure 5.6: The attacker’s success rate P a,T
Dec versus the duration of the exploration

phase L.

phase for three different control policies: I) unauthenticated control signal Ūk
1 = −aYk for all k,

II) authenticated control signal (5.23), where Γk are i.i.d. Gaussian N (0, 9), III) authenticated

control signal (5.23), where Γk are i.i.d. Gaussian N (0, 16). As illustrated in Figure 5.6, for the

authenticated and unauthenticated control signals, the attacker’s success rate increases as the

duration of the learning phase increases. This is in agreement with (5.11c) since the attacker can

improve its estimate of a as L increases. Also, for a fix L the attacker performance deteriorates as

the power of privacy-enhancing signal Γk increases. Namely, Γk hampers the learning process of

the attacker and the estimation error |Â− a| increases as the power of privacy-enhancing signal

increases. 500 Monte Carlo simulations were performed. •

Remark29. A “good” privacy-enhancing signal entails little increase in the control cost [16, 17]

compared to its unauthenticated version while providing enhanced detection probability (5.7)

and/or false alarm probability. Finding the optimal privacy-enhancing signal is an interesting

research venue. •

One may envisage that superimposing any noisy signal Γk on top of the control policy {Ūk|k ∈
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N} would necessarily enhance the detectability of any learning-based attack (5.2) since the

observations of the attacker are in this case noisier. However, it turns out that injecting a strong

noise for some learning algorithm may speed up the learning process as it improves the power

of the signal magnified by the open-loop gains with respect to the observed noise [10]. Any

signal Γk that satisfies the condition proposed in the following corollary will provide enhanced

guarantees on the detection probability when the attacker uses any arbitrary learning algorithm

to estimate the uniformly distributed A over the symmetric interval [−R,R].

Corollary4 For any control policy {Ūk|k ∈ N} with trajectory Z̄k
1 = (X̄k

1 , Ū
k
1 ) and its cor-

responding authenticated control policy Uk
1 (5.23) with trajectory Zk

1 = (Xk
1 , U

k
1 ), under the

assumptions of Corollary 3, if for all k ∈ {2, . . . , L}

EP
[
Ψ2
k−1 + 2Ψk−1(AX̄k−1 + Ūk−1)

]
< 0, (5.24)

where Ψk−1 :=
∑k−1

j=1 A
k−1−jΓj , for any L ≥ 2, the following majorization of G (5.21b) holds:

G(ZL
1 ) < G(Z̄L

1 ). (5.25)

Proof. Using (5.1) and (5.23), we can rewrite X̄k and Xk explicitly as follows

X̄k = AkX0 +
k−1∑
j=1

Ak−1−j(Ūj +Wj),

Xk = AkX0 +
k−1∑
j=1

Ak−1−j(Uj +Wj)

= AkX0 +
k−1∑
j=1

Ak−1−j(Ūj + Γj +Wj)

= X̄k + Ψk−1 .
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Thus, by (5.1), the following relation holds

AXk−1 + Uk−1 = AX̄k−1 + Ūk−1 + Ψk−1 . (5.26)

By comparing

G(Z̄L
1 ) :=

log e
2σ2

∑L
k=1 EP

[
(AX̄k−1 + Ūk−1)2

]
+ 1

log
(
R/
√
δβ
) ,

with

G(ZL
1 ) =

log e
2σ2

∑L
k=1 EP

[
(AX̄k−1 + Ūk−1 + Ψk−1)2

]
+ 1

log
(
R/
√
δβ
) ,

in which we have utilized (5.26), and provided (5.24), we arrive at G(Z̄L
1 ) > G(ZL

1 ).

Example4 In this example, we describe a class of privacy-enhancing signal that yield better

guarantees on the deception probability. For all k ∈ {2, . . . , L}, clearly Ψk−1 = −(AXk−1 +

Uk−1)/η satisfies the condition in (5.24) for any η ∈ {2, . . . , L}. Thus, by choosing the privacy-

enhancing signals Γ1 = −(AX1 + U1)/η, and Γk = −(AXk + Uk)/η −
∑k−2

j=1 A
k−1−jΓj for all

k ∈ {3, . . . , L}, (5.25) holds. •

5.3 Extension to vector systems

We generalize here the results of Section 5.2 to vector systems. Consider the networked

control system depicted in Figure 5.3, and let the plant dynamics be described by a discrete-time,

linear time-invariant (LTI) system

Xk+1 = AXk + Uk + Wk, (5.27)
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where Xk ∈ Rn×1, Uk ∈ Rn×1, A ∈ Rn×n, Wk ∈ Rn×1 represent the plant state, control

input, open-loop gain of the plant, and plant disturbance, respectively, at time k ∈ N. The

controller, at time k, observes Yk and generates a control signal Uk as a function of Yk
1, and

Yk = Xk at times k ∈ N at which the attacker does not tamper the sensor reading. We assume

that the initial condition X0 has a known (to all parties) distribution and is independent of the

disturbance sequence {Wk}. For analytical purposes, we further assume {Wk} is a process with

i.i.d. multivariate Gaussian saples of zero mean and a covariance matrix Σ that is known to all

parties. Without loss of generality, we assume that W0 = 0, E [X0] = 0, and take U0 = 0.

We assume the attacker uses the vector analogue of learning based attacks described in

Section 5.1.1 where the attacker can use any learning algorithm to estimate the open-loop gain

matrix A during the learning phase. The estimation Â constructed by the attacker at the conclusion

of the learning phase is utilized to construct the fictitious sensor readings {Vk} according to

vector analogue of (5.2), where {W̃k|k = L, . . . , T − 1} are i.i.d. multivariate Gaussian with

zero and covariance Σ.

Similarly to the scalar case, for analytical purposes, we assume that the power of the

fictitious sensor reading is equal to 1/β <∞, namely

lim
T→∞

1

T

T∑
k=L+1

‖Vk‖2 =
1

β
a.s. w.r.t. PA . (5.28)

Since the multivariate Gaussian distribution with zero mean is completely characterized

by its covariance matrix, as in [169], we shall test for anomalies in the latter. To that end, define

the error matrix

∆ := Σ− 1

T

T∑
k=1

[
Yk+1 − AYk − Uk(Yk

1)
] [

Yk+1 − AYk − Uk(Yk
1)
]†
.

As in (5.5), we shall use a test that sets a confidence interval, with respect to norm, around
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the expected covariance matrix, i.e., it checks whether

‖∆‖op ≤ γ, (5.29)

for the decision time T . To simplify our analysis, we chose operator norm in (5.29) which has

sub-multiplicativity property.

The following lemma provides a necessary and sufficient condition for any vector analogue

of learning-based attack (5.2) to deceive the controller and remain undetected, for the case of a

multivariate plant (5.27) under a covariance test (5.29), in limit of T →∞.

Lemma22. Consider the multivariate plant (5.27), with some vector analogue of learning-based

attack (5.2) with fictitious sensor reading power that satisfies (5.28), and some measurable control

policy {Uk}. Then, the attacker manages to deceive the controller and remain undetected, under

the covaraince test (5.29), a.s. in the limit T →∞, if and only if

lim
T→∞

1

T
‖

T∑
k=L+1

(Â− A)VkV†k(Â− A)†‖op ≤ γ. (5.30)

Proof. Since the hijacking phase of the vector analogue of the learning-based attack of (5.2)
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starts at time k = L+ 1, using (5.27) and (5.4), we have

1

T

T∑
k=1

[
Yk+1 − AYk − Uk(Y

k
1 )
]

[Yk+1 − AYk − Uk]
† (5.31a)

=
1

T

L∑
k=1

WkW†
k

+
1

T

T∑
k=L+1

(
W̃k + (Â− A)Vk

)(
W̃k + (Â− A)Vk

)†
=

1

T

(
L∑
k=1

WkW†
k +

T∑
k=L+1

W̃kW̃†
k

)

+
1

T

T∑
k=L+1

(Â− A)VkV†k(Â− A)†

+
1

T

T∑
k=L+1

(
W̃kV†k(Â− A)†

)†
+

1

T

T∑
k=L+1

W̃kV†k(Â− A)† . (5.31b)

Let Fk be the σ-field generated by {(Vk, Â,Wk,Uk)|k = L, . . . , T − 1}. Then, V†k+1 is Fk

measurable, and (Wk+1,Fk) is a Martingale difference sequence, i.e., E [Wk+1|Fk] = 0 a.s.

Consequently, using [103, Lemma 2, Part iii], we have

T∑
k=L+1

W̃kV†k = O(1)+
o
(∑T

k=L+1(V†k)2
1

)
. . . o

(∑T
k=L+1(V†k)2

n

)
...

...
...

o
(∑T

k=L+1(V†k)2
1

)
. . . o

(∑T
k=L+1(V†k)2

n

)
 a.s.

(5.32)

in the limit T →∞, where (V†k)2
i denotes the square of the i-th element of V†k. Further, by the
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strong law of large numbers:

lim
T→∞

1

T

(
L∑
k=1

W†
kWk +

T∑
k=L+1

W̃†
kW̃k

)
= Σ a.s. (5.33)

Substituting (5.32) and (5.33) in (5.31b) completes the proof.

Lemma 22 has the following important implication. We notice that

lim
T→∞

1

T
‖

T∑
k=L+1

(Â− A)VkV†k(Â− A)†‖op (5.34a)

≤ lim
T→∞

1

T

T∑
k=L+1

‖(Â− A)Vk((Â− A)Vk)
†‖op (5.34b)

≤ lim
T→∞

1

T

T∑
k=L+1

‖(Â− A)Vk‖2
op (5.34c)

≤
‖Â− A‖2

op

β
, (5.34d)

where the (5.34b) follows from the triangle inequality, (5.34c) and (5.34d) follow from the

sub-multiplicativity of operator nroms and noticing ‖Vk‖ = ‖Vk‖op, where in the latter the

power constraint (5.28) is put into forth. Thus, if ‖Â− A‖2
op ≤ γβ, (5.30) holds, and hence, by

Lemma 22, in the limit of T → ∞, the attacker is able to deceive the controller and remain

undetected a.s. (5.34) implies that the norm of the estimation error, ‖Â− A‖op, dictates the ease

with which an attack can go undetected. This is used next to develop a lower bound on the

deception probability.

5.3.1 Lower Bound on the Deception Probability

We start by observing that in the case of multivariate systems, and in contrast to their

scalar counterparts, some control actions might not reveal the entire plant dynamics, and in this

case the attacker might not be able to learn the plant completely. This phenomenon is captured

197



by the persistent excitation property of control inputs, which describes control-action signals

that are sufficiently rich to excite all the system modes that will allow to learn them. While

avoiding persistently exciting control inputs can be used as a way to secure the system against

learning-based attacks, here, we use a probabilistic variant of this property [50, 155], and assume

that the control policy satisfies it in our lower bound on the deception probability.

Definition 9 (Persistent excitation) Given a plant (5.27), ζ > 0, and ρ ∈ [0, 1], the control

policy Uk is (ζ, ρ)-persistently exciting if there exists a time L0 ∈ N such that, for all τ ≥ L0,

PA
(

1

τ
Gτ � ζIn×n

)
≥ ρ, (5.35)

where Gτ is the summation of Gram matrix of state up to time τ , that is,

Gτ :=
τ∑
k=1

XkX†k. (5.36)

As in Section 5.2.1, to find a lower bound on the deception probability P A,T
Dec , we consider a

specific estimate of Â, obtained via a specific estimation algorithm, at the conclusion of the first

phase by the attacker, as follows.

LS algorithm

The vector variant of the LS algorithm (5.10), is

Â =


0n×n, det(GL−1) = 0;∑L−1

k=1

(
(Xk+1 − Uk)X†k

)
G−1
L−1, otherwise,

(5.37)

where 0k×` denotes an all zero matrix of dimensions k × `.

In the next lemma we prove an upper bound for the estimation error, ‖Â− A‖op, of the

above LS algorithm, and use it to extend the bound (5.11b) to the vector systems using the LS
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algorithm (5.37).

Lemma23. Consider the plant (5.27). If the attacker constructs Â using LS estimation (5.37),

and the controller uses a policy {Uk} for which the event in (5.35) occurs for L − 1, that is

GL−1/(L− 1) � ζIn×n. Then

‖Â− A‖op ≤
1

ζL

L−1∑
k=1

‖WkX†k‖op a.s. w.r.t. PA . (5.38)

Proof. Since GL−1 is a Hermitian matrix we start by noticing that since the event in (5.35) occurs

for L − 1 we have det(GL−1) 6= 0, using [214, Theorem 7.8, part 2]. Thus, when the attacker

uses the LS estimation (5.37) we deduce

Â− A =

(
L−1∑
k=1

(
(Xk+1 − Uk)X†k

)
− AGL−1

)
G−1
L−1

=
L−1∑
k=1

(
(Xk+1 − AXk − Uk)X†k

)
G−1
L−1

=
L−1∑
k=1

(
WkX†k

)
G−1
L−1,

where the last two equalities follow from (5.36) and (5.27), respectively. Thus, using sub-

multiplicativity of operator nroms and the triangle inequality we have

‖Â− A‖op ≤
L−1∑
k=1

‖WkX†k‖op‖G
−1
L−1‖op. (5.39)

We now continue by upper bounding ‖G−1
L−1‖op as follows. Since the event in (5.35) occurs for
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L− 1, using [214, Theorem 7.8, part 3] we deduce

1

ζL
υ†In×nυ ≥ υ†G−1

L υ (5.40)

for all υ ∈ Rn×1. Since GL−1 is a Hermitian positive semi-definite matrix, then so is G−1
L−1

(see [214, Problem 1, Section 7.1]). Thus, using [214, Theorem 7.4] the Hermitian matrix
√

G−1
L−1

exists. We continue by noticing υ†In×nυ = ‖υ‖2, and

υ†
√

G−1
L−1

†√
G−1
L−1υ =

∥∥∥∥√G−1
L−1υ

∥∥∥∥2

.

Thus, using (5.40) we deduce

∥∥∥∥√G−1
L−1

∥∥∥∥
op

≤ 1√
ζL
. (5.41)

Using (5.41), sub-multiplicativity of operator nroms, and (5.39), (5.38) follows.

Theorem22. Consider the plant (5.27) with a (ζ, ρ)-persistently exciting control policy {Uk},

and any vector analogue of learning-based attack learning-based attack (5.2) with fictitious sensor

reading power that satisfies (5.28) with a learning phase of duration L ≥ L0 + 1. Then, the

asymptotic deception probability, when using the covaraince test (5.29), is bounded from below

as

lim
T→∞

P A,T
Dec ≥ PA

(
‖Â− A‖op <

√
γβ
)

(5.42a)

≥ ρPA

(
1

ζL

L−1∑
k=1

‖WkX†k‖op <
√
γβ

)
. (5.42b)

Proof. (5.42a) follows from Lemma 22 and (5.34). We now prove (5.42b). By the Law of total
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probability,

PA
(
‖Â− A‖op <

√
γβ
)
≥

PA

(
‖Â− A‖op <

√
γβ

∣∣∣∣∣(1/L)
L∑
k=1

XkX†k � ζIn×n

)
PA

(
(1/L)

L∑
k=1

XkX†k � ζIn×n

)
.

Since, the control policy is (ζ, ρ)-persistently exciting and L − 1 ≥ L0 the result now follows

using Lemma 23 and (5.35).

Remark30. The bound (5.11c) for scalar system, which is independent of the control policy and

value of state, has been developed using the concentration bounds of in [158] for the scalar LS

algorithm (5.10). To best of our knowledge there are no similar concentration bounds for the

vector variant of the LS algorithm (5.10) which works for any open-loop gain A, and a large class

of control policies. This is an interesting research venue. •

Remark31.The implication of (5.34), which relates the deception criterion (5.30) to the estima-

tion error ‖Â− A‖op, is used to find the lower bound (5.42). Finding a lower bound in term of

‖Â−A‖op for (5.34a) is the first step to extent the upper bounds provided in Theorem 21 to vector

systems. This is an interesting research venue. •

Example5 In this example, we compare the empirical performance of the covariance test against

the learning-based attack which utilizes LS estimation (5.37), and the replay attack. At every

time k, the controller tests the empirical covariance for abnormalities over a detection window

[1, T ], using a confidence interval 2γ > 0 around the operator norm of error matrix ∆ (5.29).

Since we are considering the Euclidean norm for vectors, the induced operator norm amounts to

‖∆‖op =
√
λmax(∆†∆). Here, γ = 0.1, Uk = −0.9AYk for all 1 ≤ k ≤ T = 600,

A =

1 2

3 4

 , Σ =

1 0

0 2

 . (5.43)
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Figure 5.7: The attacker’s success rate P A,T
Dec versus the size of the detection window T .

Figure 5.7 presents the performance averaged over 180 runs of a Monte-Carlo simulation.

It illustrates that the vector variant of our learning-based attack also outperforms the replay attack.

A learning-based attack with a learning phase of length L = 40 has a higher success rate than

a replay attack with a larger recording length of L = 50. Similarly to the discussion for scalar

systems in Section 5.1.3, the false-alarm rate decays to zero as the size of the detection window T

tends to infinity. Thus, the success rate of learning-based attacks increases as the size of detection

window increases. Finally, as illustrated in Figure 5.7, the attacker’s success rate increases as

the duration of the learning phase L increases, since the attacker improves its estimate of A as L

increases. •

Example6 In this example we consider the vector-plant setting with a privacy-enhancing signal

(cf. Section 5.2.3) and its yielded enhanced detection probability. As in Example 5, we assume

that the controller uses the empirical covariance test (5.29) and that the attacker utilizes LS

estimation (5.37). Again, the false alarm rate decays to zero as the detection window size T goes

to infinity. Here, γ = 0.1, A is as in (5.43), and Σ = I2.

Figure 5.8 compares the attacker’s success rate, namely, the empirical P A,T
Dec , as a function
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Figure 5.8: The attacker’s success rate P A,T
Dec versus the size of the detection window T .

of size of the detection window T for two different control policies, averaged over 200 runs of

a Monte-Carlo simulation: I) Unauthenticated control Ūk
1 = −AYk for all 1 ≤ k ≤ T = 600,

II) The vector analogue of the authenticated control signal of (5.23), where Γk are i.i.d. zero-

mean Gaussian with a diagonal covariance matrix with diagonal
(

12, 10

)
. As is evident

from Figure 5.8, the privacy-enhancing signal Γk hampers the learning process of the attacker

consequently reduces its deception probability. •

Remark32. We concentrated on linear systems throughout this work, where, for finding a lower

bound on the deception probability of the learning-based attack, the LS algorithm has been

utilized. For nonlinear dynamics with high complexity, the attacker can use more sophisticated

learning algorithms such as Gaussian processes [39] or Deep neural networks (DNN) [61].

We now discuss a special case for nonlinear system where our results for linear system

are usefull. Consider the following scalar nonlinear system

Xk+1 = f(Xk, Uk) +Wk,
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where the plant disturbance process {Wk} has i.i.d. Gaussian samples of zero mean and variance

σ2. As in (5.3), under legitimate system operation, the controller observation Yk behaves according

to

Yk+1 − f(Yk, Uk) ∼ i.i.d. N (0, σ2). (5.44)

Let F̂ be the attacker estimation of the function f at the conclusion of Phase 1. We assume that

during the hijacking phase the fictitious sensor reading is constructed according to the vector

analogue of (5.2),

Vk+1 = F̂ (Vk, Uk) + W̃k , k = L, . . . , T − 1.

Then, one can replace Yk+1 − aYk − Uk of (5.4) with

Yk+1 − f(Yk, Uk) = W̃k + F̂ (Vk, Uk)− f(Vk, Uk),

in (5.5), and test whether the empirical variance of (5.44) falls within a confidence interval of 2δ

around σ2. Given the restrictive assumption that the class of learning algorithms utilized by the

attacker satisfies

|F̂ (Vk, Uk)− f(Vk, Uk)| ≤ ϑ|Vk| a.s.

where ϑ is a non-negative random variable, we have

(W̃k + F̂ (Vk, Uk)− f(Vk, Uk))
2 ≤ (W̃k + ϑ|Vk|)2.
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Therefore, if

1
T

(
∑L

k=1W
2
k +

∑T
k=L+1(W̃k + ϑ|Vk|)2 ∈ (Var [W ]− δ,Var [W ] + δ), (5.45)

the attacker will deceive the controller. Thus, by noticing the similarity of (5.6) and (5.45), and

utilizing Theorem 20, we deduce

lim
T→∞

P f,T
Dec ≥ Pa

(
ϑ <

√
δβ
)
. •

5.4 Exploration vs. Exploitation

In Section 5.2, the attacker learning was only limited to the exploration phase, i.e, Âk =

ÂL for all k ≥ L + 1, and the attacker only aimed to destroy the plant during the hijacking

(exploration) phase. Now in this section, we assume the attacker can refine its estimate of the

open-loop gain during the hijacking (exploration) phase. In other words, the learning of open-loop

gain a may or may not continue during the exploitation phase. Additionally, the attacker can

use different learning algorithms in the two phases, and in the hijacking (exploitation) phase, the

attacker has the additional degree of freedom of being able to choose the control input to the

plant.

In addition, in Section 5.2, only the variance test (5.5) was considered as a possible

detection strategy. Here, we study the trade-off between the performance of the learning algorithm,

and the performance of arbitrary detection and control strategies adopted by the controller,

providing a tight bound on the scaling of the expected time required to detect the attack, as

the probability of detection tends to one. We also show that this bound can be achieved by the

learning-based attack and a detection strategy.

In Section 5.2 the control input Uk assumed to be any measurable function of Y k−1
1 , in

this section, for simplicity, we assume Uk is a deterministic function of Y k−1
1 .
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Throughout this section we use the following notation. Let p0(yT1 ) be the conditional

probability of yT1 given the attacker did not hijack the system i.e. Θ1 = . . .ΘL = ΘL+1 =

. . .ΘT = 0. Likewise, p1(yT1 ) is the conditional probability of yT1 given the attacker intervene as

MITM i.e. Θ1 = . . . = ΘL = 0 and ΘL+1 = . . .ΘT = 1.

5.4.1 Main results

We start by defining the following performance measure.

Definition 10 Given the class of learning-based attacks, the ε-deception time T (ε) is the duration

required by the controller to make a decision regarding the presence or absence of an attacker

with probability of correct decision at least (1− ε), namely P a,T
Dec ≤ ε where T = L+ T (ε) + 1.

In other words, for the given class learning-based attacks, T (ε) is the largest time interval

during which the attacker can deceive the controller and remain undetected with confidence at

least ε. In this case, for all L+ 1 ≤ k ≤ T (ε) + L, we have the probability of detection

P a,T
Det = P(Θ̂k = 1|Θk = 1) < 1− ε.

We start with defining a non-divergent learning algorithm.

Definition 11 A learning algorithm M is non-divergent if its estimation error is non-increasing

in the duration of the learning i.e. for all k2 > k1

|Âk2 − a| ≤ |Âk1 − a|. (5.46)

We then continue by proving the following proposition which characterises the KL divergence

between p1(yT1 ) and p0(yT1 ) for learning-based attacks with non-divergent learning algorithm, and

is useful to derive our main results.
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Proposition3 Given the class of attacksA(L) with non-divergent learning algorithm M in Phase

2, for all n > L, the cumulative KL divergence is

D(p1(Y n
1 )||p0(Y n

1 )) = nC(n)
(ÂL − a)2

2σ2
,

where C(n) is the time averaged deception cost of the attacker until time n, namely

C(n) :=
1

n
E
[ n∑
k=L+1

V 2
k

]
. (5.47)

Proof. As the attacker does not intervene before L, for all n ≤ L,

D(p1(Y n
1 )||p0(Y n

1 )) = 0.

Thus, for all n > L, using the chain rule, we have

D(p1(Y n
1 )||p0(Y n

1 )) = (5.48)
n∑

k=L+1

D(p1(Yk|Y k−1
1 )||p0(Yk|Y k−1

1 )).

Since Uk is a deterministic function of Y k−1
1 , if Θk = 1, for all k > L, we have

Yk|Y k−1
1 ∼ N (ÂkYk−1 + Uk, σ

2).

Similarly, if Θk = 0, for all k > L, we have

Yk|Y k−1
1 ∼ N (aYk−1 + Uk, σ

2).
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Thus, for all k > L, we have

D(p1(Yk|Y k−1
1 )||p0(Yk|Y k−1

1 )) =
((Âk − a)Yk−1)2

2σ2
,

(a)

≤ ((ÂL − a)Yk−1)2

2σ2
,

(5.49)

where (a) follows from the fact that learning algorithm of the attacker in exploitation phase is

non-diverging.

By (5.48) and (5.49), for all n > L, we have

D(p1(Y n
1 )||p0(Y n

1 )) = E[
n∑

k=L+1

(Yk)
2]

(ÂL − a)2

2σ2
.

The result now follows by noticing Yk = Vk, for all k > L.

To achieve its destabilizing objectives, the attacker must remain undetected. Hence, it is

desirable for the attacker to maximize the deception time T (ε). The following theorem presents

the trade-offs between the estimation error of the attacker’s learning algorithm, the expected

deception time T (ε) of any detection strategy, and the expected energy spent by to generate the

ficticious signal in (5.2).

Theorem23. Given the class of learning-based attacks i.e. Θk = 1 for all k > L, for all

0 < ε < 1, non-divergent learning algorithm M in Phase 2, decision time T > L, and detection

strategy D such that

P a,T
Dec = O(|ε log ε|), (5.50)

and

P a,T
FA = O(|ε log ε|), (5.51)
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the deception time T (ε) = T − L− 1 satisfies

E[T (ε)|L] ≥ (1 + o(1))
2σ2 log(1/ε)

(ÂL − a)2C(n0)
as ε→ 0,

where C(n0) is defined in (5.47), and

n0 := max

{
n > L : E

[ n∑
k=L+1

V 2
k

]
< log(1/ε)

2σ2

(ÂL − a)2

}
. (5.52)

Proof. The proof of theorem consists of two parts. First, for all 0 < c < 1 and system

under learning-based attack, we show that for the probability of detection error to be small i.e.

O(|ε log ε|), the log-likelihood ratio

ST := log

(
p1(yT1 )/p0(yT1 )

)
(5.53)

should be greater than −(1− c) log ε with high probability as ε→ 0. Namely, the inequality

ST ≥ −(1− c) log ε

must hold with high probability, as ε→ 0. Second, given ÂL, we show that there exists 0 < c̄ < 1

such that for all 0 < c ≤ c̄,

P

(
T (ε) ≤ (1− c̄)2σ2 log(1/ε)

(ÂL − a)2C(n0)

)
→ 0 (5.54)

as ε→ 0.

By (5.50) and (5.51), both type I and type II errors of the hypothesis test Θk = 1 vs.

Θk = 0 are O(|ε log ε|) for k ≥ L+ 1. Thus, by [28, Lemma 4], for all 0 < c < 1,

P
(
ST ≤ −(1− c) log ε

)
= O(−εc log ε). (5.55)
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Therefore, as ε → 0, the probability in (5.55) tends to 0, which concludes the first part of the

proof.

For proving the second part, that is (5.54), we need the following lemma.

Lemma24. Given log-likelihood ratio (5.53) and for all 0 < c < 1 we have

lim
n′→∞

P
(

max
1≤k≤n′

Sk ≥ D
(
p1(Y n′

1 )||p0(Y n′

1 )
)

+ n′c

)
= 0. (5.56)

Proof of Lemma 24: We have

Sn = Mn
1 +Mn

2 ,

where

Mn
1 =

n∑
k=1

(
log

(
p1(yk|yk−1

1 )

p0(yk|yk−1
1 )

)
−D(p1(Yk|Y k−1

1 )||p0(Yk|Y k−1
1 ))

)
,

and

Mn
2 =

n∑
k=1

D(p1(Yk|Y k−1
1 )||p0(Yk|Y k−1

1 )).

Using the chain rule of KL-Divergence, we have

Mn
2 = D(p1(Y n

1 )||p0(Y n
1 )).

Thus, if event in (5.56) occurs for a fixed n1, i.e.

Mn1
1 +Mn1

2 ≥ D(p1(Y n1
1 )||p0(Y n1

1 )) + n1c,

then it implies Mn1
1 ≥ n1c. Since Yk|Y k−1

1 has normal distribution (see Proposition 3), there
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exists a constant b such that the probability in (5.56) simplifies as

P
(

max
1≤k≤n′

Sk ≥ (D(p1(yn
′

1 )||p0(yn
′

1 )) + n′c)

)
≤ P( max

1≤k≤n′
Mk

1 ≥ n′c)
(a)

≤ b/n′c2,

where (a) follows from the fact that Mk
1 is a martingale w.r.t filtration Fk = σ(Y1:k−1) with 0

mean and using the Doob-Kolmogorov extension of Chebyshev’s inequality [48]. •

Given the definition of n0 we have

E
[ n0∑
k=L+1

V 2
k

]
(ÂL − a)2

2σ2
< log(1/ε).

Therefore, using the definition of C(n0) (5.47), there exists 0 < c̄ < 1 and 0 < c′ < 1 such that

n0C(n0)
(ÂL − a)2

2σ2
+ n0c

′ = (1− c̄) log(1/ε), (5.57)

that is,

n0 =
(1− c̄)2σ2 log(1/ε)

2σ2c′ + (ÂL − a)2C(n0)
. (5.58)

Since SL = 0, as discussed in [28, Theorem 2] for all 0 < c < 1

P(T (ε) ≤ n0) ≤ P
(
T (ε) ≤ n0 and ST ≥ (1− c) log(1/ε)

)
+ P

(
ST < (1− c) log(1/ε)

)
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Now by choosing c = c̄ and using (5.57) we have

P(T (ε) ≤ n0) ≤

P
(
T (ε) ≤ n0 and ST ≥ n0C(n0)

(ÂL − a)2

2σ2
+ n0c

′
)

+ P
(
ST ≤ n0C(n0)

(ÂL − a)2

2σ2
+ n0c

′
)

≤ P
(

max
1≤k≤n0

Sk ≥ n0C(n0)
(ÂL − a)2

2σ2
+ n0c

′
)

+ P
(
ST ≤ n0C(n0)

(ÂL − a)2

2σ2
+ n0c

′
)
,

(5.59)

and the first and the second terms at the right-hand side of (5.59) approach zero by (5.56) and

Proposition 3, and (5.55), respectively.

The above theorem states that for any detection strategy D with probability of error

O(|ε(log(ε))|), the expected time to reach a decision is at least Ω
(

log(1/ε)/((ÂL − a)2C(n0))
)

.

The next theorem establishes that this bound is tight and can be achieved.

Theorem24. If the estimate ÂL is known to the controller, for all 0 < ε < 1 and class of

learning-based attacks, there exists a detection strategy D and a learning-based attack R∗, whose

learning is only limited to the exploration phase, such that for any decision time T > L, we have

P a,T
Dec = O(ε),

and

P a,T
FA = O(ε),
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and the deception time T (ε) = T − L− 1 satisfies

E[T (ε)|L] ≤ (1 + o(1))
2σ2 log(1/ε)

(ÂL − a)2C(n0 + 1)
, as ε→ 0.

Proof. Let the attack be R∗ where the attacker does not learn in exploitation phase, i.e. for all

k ≥ L+ 1, Âk = ÂL. Now, for all k > L if Θk = 1, we have

Yk|Y k−1
1 ∼ N (ÂkYk−1 + Uk, σ

2).

Similarly, if Θk = 0, then

Yk|Y k−1
1 ∼ N (aYk−1 + Uk, σ

2).

We define sequential probability ratio test at the controller as follows. If

n∑
k=1

log

(
p1(yk|yk−1

1 )

p0(yk|yk−1
1 )

)
≥ log(1/ε),

then at time n, Θ̂n = 1, and if

n∑
k=1

log

(
p0(yk|yk−1

1 )

p1(yk|yk−1
1 )

)
≥ log(1/ε),

then at time n, Θ̂n = 0. For this test, the probability of error is at most ε, and the proof is along

the same direction as [157, Theorem 1]. Given the learning-based attack, we let decision time T

be

T = min

{
n :

n∑
k=1

log

(
p1(yk|yk−1

1 )

p0(yk|yk−1
1 )

)
≥ log(1/ε)

}
. (5.60)

Using [28, Lemma 2], for system under attack A(L) and for all c > 0, there exist a b > 0 such
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that

P

( n∑
k=1

log

(
p1(yk|yk−1

1 )

p0(yk|yk−1
1 )

)
< (D(p1(Y n

1 )||p0(Y n
1 ))− nc)

)
≤ e−bn.

(5.61)

Using the definition of n0 (5.52) for all n̄ > n0 we have

log(1/ε) ≤ E
[ n̄∑
k=L+1

V 2
k

]
(ÂL − a)2

2σ2

= D(p1(Y n̄
1 )||p0(Y n̄

1 )),

where the equality follows from Proposition 3. Thus, for any n̄ > n0, there exist a constant c̄ > 0

such that

log(1/ε) ≤ D(p1(Y n̄
1 )||p0(Y n̄

1 ))− n̄c′.

Thus, using (5.61) we have for all n̄ > n0 we have

P

( n̄∑
k=1

log

(
p1(yk|yk−1

1 )

p0(yk|yk−1
1 )

)
< log(1/ε)

)
≤ e−bn̄.

Consequently, using (5.60) and (5.58) the result follows.

As ε → 0, C(n0) → C(n0 + 1), and |ε| ≤ |ε log ε|. Also, an attacker whose learning is

only limited to the exploration phase satisfies the condition (5.46) with equality. Thus, the bounds

in Theorems 23 and 24 are tight in the limit ε→ 0.

The attackR∗ which achieves the bound on T (ε) is a learning-based attack whose learning

is limited to the exploration phase, and the attacker focuses on destabilizing the system in the

exploitation phase and does not continue to learn beyond time L. The corresponding detection

strategy is a sequential probability ratio test which computes the ratio of posterior probability

214



of the two hypothesis i.e. attacker is present or absent, and makes a decision when this ratio

crosses the threshold log(1/ε) [202]. This strategy has been studied under the assumption that

the samples are i.i.d. and we extend the analysis here to the dependent case of the feedback signal

at the controller.

Since |Âk−a| at any time k is unknown to the attacker, the precise value of T (ε) cannot be

determined by the attacker using the above theorems. Also, Theorem 24 assumes the knowledge

of the attacker estimate ÂL at the controller. Next, we derive several useful corollaries from

Theorems 23 and 24 about attack and detection strategies.

In the following, for simplicity of presentation we restrict the class of learning in the

exploration phase, although we expect that our results can be extended to more general settings.

Definition 12 Let L be the class of all learning algorithms such that if M ∈ L, then

P(|ÂL − a| > η) ≤ c

(ηL)α
,

where η > 0, α ≥ 1, L is duration of exploration phase, and ÂL is the estimate of a after L

samples.

Thus, the class L provides an unbiased estimate of a as the learning duration n→∞, and this

estimate converges to the interval [a − η, a + η] at rate O(1/(ηn)α). There are many practical

learning algorithms that fall in this class. For example, in [158] it is shown that the least squares

(LS) algorithm (5.10) satisfy

P(|ÂL − a| > η) ≤ 2

(1 + η2)L/2
.

The following corollary provides a trade-off between the duration of the exploration phase

L and the deception time T (ε) of the attacker.

Corollary5. For any learning algorithm M ∈ L in the exploration phase and non-divergent
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learning algorithm in the exploitation phase, and any δ > 0, if

2σ2 log(1/ε)

(ÂL − a)2C(n0)
> K,

then expected deception time is E[T (ε)|L] ≥ K. Moreover, with probability at least 1− δ the

length of exploration phase L must satisfy

L ≥

√
KC(n0)

2σ2 log(1/ε)

(
c

δ

)1/α

.

Proof. Using Theorem 23, if
2σ2 log(1/ε)

(ÂL − a)2C(n0)
> K,

then E[T (ε)|L] ≥ K. Therefore,

|ÂL − a| ≤

√
2σ2 log(1/ε)

KC(n0)
.

For η =
√

2σ2 log(1/ε)/KC(n0) and class L of learning algorithms, the duration of exploration

phase L is

L ≥

√
KC(n0)

2σ2 log(1/ε)

(
c

δ

)1/α

,

with probability at least 1− δ.

It follows that to achieve an expected deception time of at least K, the duration L of the

exploration phase should be at least Ω(
√
K).

The following corollary presents the relationship between the estimation error of the

learning algorithm and the deception cost of the user irrespective of the class of learning algorithm,

and its proof follows from the statement of Theorem 23 by eliminating (1 + o(1)) factor.

Corollary6. (Uncertainty principle for the attacker). Given T (ε), class of learning-based attacks
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with non-divergent learning algorithmM in exploitation phase, and detection strategyD satisfying

(5.50)-(5.51), the product of the estimation error and the average deception cost of the attacker is

at least

(ÂL − a)2C(n0) ≥ 2σ2 log(1/ε)

E[T (ε)|L]
.

Thus, for a given ε and E[T (ε)|L], the estimation error at the end of exploration phase and

the deception cost of the attacker cannot be made arbitrarily small simultaneously. This holds

irrespective of the learning algorithm.

Unlike the attacker, the controller would want to minimize the deception time T (ε). This

can be achieved by designing appropriate detection strategies and control policies. The control

policy can play a crucial role in the reduction of the deception time. However, this can be done at

the expense of the energy in the control signal Uk. The following corollary provides the trade-off

between the energy spent by the controller and the deception time T (ε).

Corollary7. Given the class of learning-based attacks, if E[T (ε)|L] ≤ K, and for all k ≥ L+ 1

2E[ÂkVkUk] ≥ −σ2 − E[Â2
kV

2
k ], (5.62)

then the expected energy of the control signal

R(n0) :=
1

n0

E
[ n0∑
k=L+1

U2
k

]
,

must satisfy

R(n0) ≥ 2σ2 log(1/ε)

(ÂL − a)2K
.
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Proof. Since W̃k is independent of Uk and Vk and E[W̃k] = 0 we have

E[V 2
k+1]− E[U2

k ] = (5.63)

E[Â2
kV

2
k ] + σ2 + 2E[ÂkVkUk]

Thus, by (5.62), we deduce

E[V 2
k+1] ≥ E[U2

k ],

so we have

C(n0) =
1

n0

E
[ n0∑
k=L

V 2
k

]
≥ 1

n0

E
[ n0∑
k=L

U2
k

]
.

The result now follows by applying Corollary 6.

The above corollary shows that the expected control energy of the signal until time n0 after

the attack starting at k = L will be inversely proportional to the upper bound on the deception

timeK. In other words, if the controller requires the deception time to beO(K), then the expected

control energy R(n0) should be Ω(1/K). Alternatively, the expected deception time is at least

Ω(1/R(n0)). Since the L is unknown, the controller can maintain a high level of expected signal

energy E[U2
k ] at every time instance k.

The following example shows the existence of a linear control policy that satisfies the

condition (5.62).

Example7 For attacker R∗ whose learning is only limited to the exploration phase, if ÂL ≥ 0.5

then there exist a linear controller Uk = −K̄Vk that satisfies (5.62) while stabilizing the virtual

system (5.2).

Proof. In this example, the attack is R∗, and Âk = ÂL during the exploitation phase. In this
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proof we first determine conditions on control gain K̄ to ensure the control policy Uk = −K̄Vk

satisfies (5.62) and stabilizes the virtual system (5.2), and then show these conditions could

happen simultaneously, provided ÂL ≥ 0.5. If |ÂL − K̄| < 1, then the controller stabilizes the

virtual plant in (5.2). Thus, we have

ÂL − 1 < K̄ < ÂL + 1. (5.64)

As Uk = −K̄Vk, (5.62) is equivalent to

ÂL(2K̄ − ÂL) ≤ σ2

E[V 2
k ]
. (5.65)

Furthermore, since ÂL > 0, (5.65) is equivalent to

K̄ ≤ ÂL
2

+
σ2

2ÂLE[V 2
k ]
. (5.66)

Thus if the control gain K̄ satisfies the conditions (5.64) and (5.66), the controller Uk =

−K̄Vk satisfies (5.62) while stabilizing the virtual system (5.2). Hence, it remains to prove

conditions (5.64) and (5.66) occurs simultaneously, as follows.

ÂL
2

+
σ2

2ÂLE[V 2
k ]
≤ ÂL

2
+

1

2ÂL
< (5.67a)

ÂL +
1

2ÂL
≤ ÂL + 1, (5.67b)

where (5.67a) follows by noting E[V 2
k ] ≥ σ2 (by rewriting (5.63) for Vk and Vk−1, clearly we

have E[V 2
k ] ≥ σ2), and (5.67b) follows by the hypothesis ÂL ≥ 0.5.
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5.5 Conclusions

We studied attacks on cyber-physical systems which consist of exploration and exploitation

phases, where the attacker first explores the dynamic of the plant, after which it hijacks the system

by playing a fictitious sensor reading to the controller/detector while and feeding a detrimental

control input to the plant.

Future work will explore the extension of the established results to partially-observable

vector systems where the input (actuation) matrix is not identity, revising the attacker full access

to both sensor and control signals, designing optimal privacy-enhancing signals, and studying the

relation between our proposed privacy-enhancing signal with the noise signal utilized to achieve

differential privacy [34]. Further, since the controller does not know the exact time instant at

which an attack might occur, a more realistic scenario would be that of continual testing, i.e., that

in which the integrity of the system is tested at every time step and where the false alarm and

deception probabilities are defined with a union across time. We leave this treatment for future

research.

Chapter 5, in part, is a reprint of the material in M. J. Khojasteh, A. Khina, M. Franceschetti,

T. Javidi, “Learning-based attacks in cyber-physical systems,” arXiv:1809.06023, 2018, being

prepared for publication. The dissertation author was the primary investigator and author of

this paper. The last part of this chapter, in part, is a reprint of the material in A. Rangi, M. J.

Khojasteh, M. Franceschetti, “Learning-based attacks in cyber-physical systems: exploration vs.

exploitation,” 2019, being prepared for publication. The dissertation author was the co-primary

investigator and co-author of this paper.
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