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Abstract—The problem of determining the number of spatial de-
grees of freedom (d.o.f.) of the signals carrying information in a
wireless network is reduced to the computation of the geometric
variation of the environment with respect to the cut through which
the information must flow. Physically, this has an appealing in-
terpretation in terms of the diversity induced on the cut by the
possible richness of the scattering environment. Mathematically,
this variation is expressed as an integral along the cut, which we
call cut-set integral, and whose scaling order is evaluated exactly in
the case of planar networks embedded in arbitrary three-dimen-
sional (3-D) environments. Presented results shed some new light
on the problem of computing the capacity of wireless networks,
showing a fundamental limitation imposed by the size of the cut
through which the information must flow. In an attempt to remove
what may appear as apparent inconsistencies with previous litera-
ture, we also discuss how our upper bounds relate to corresponding
lower bounds obtained using the techniques of multihop, hierar-
chical cooperation, and interference alignment.

Index Terms—Capacity, degrees of freedom (d.o.f.), interference,
scaling laws, wireless networks.

1. INTRODUCTION

NTERFERENCE is one of the key aspects of a wireless net-
I work. Transmitted electromagnetic signals propagate in the
environment through line of sight, reflection, diffraction, and
scattering. Received signals are given by the superposition of the
propagating signals, plus thermal noise. A precise mathematical
model of this process is crucial to determine the ultimate limits
of communication that can be achieved through cooperation of
the network’s nodes. This paper attempts a characterization of
the interference in terms of signal diversity available at the re-
ceivers, which is then related to the amount of information that
can be transmitted through wave propagation.
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A wireless interference network is composed of a set of
sources S, a set of destinations D, and a set of relays R. Let
7T = S U R and assume that the cardinality of all of these sets
is proportional to n. Each node in & wants to communicate
with a corresponding node in D, and all transmissions occur in
a given spatial domain and in a narrow frequency band around
the same carrier frequency. Interference is modeled as linear
superposition of the propagating signals at the receiver. An
information-theoretic model of the above scenario is that of
a linear transformation of complex random processes, plus
additive noise

Y(t)=H®)X() + Z(t), teR{.
X(t) is the random vector process representing the signals trans-
mitted by the sources and the relays, Y (¢) represents the sig-
nals received by the destinations, Z(¢) is a vector of complex,
circularly symmetric white Gaussian processes of zero mean
and unit variance. Transmitted and received signals are mod-
eled as random, complex waveforms, representing amplitude
and phases of real transmitted and received sinusoidal signals.
The elements of the matrix H(¢) are complex channel coef-
ficients representing the attenuation and phase shifts between
transmitters and receivers. These coefficients model the state,
at time £, of the physical propagation channel. Given the envi-
ronment and the positions of the nodes, they are deterministi-
cally dictated by the physics of the propagation process. This
deterministic point of view is the main leitmotiv of this paper.
It contrasts with the classic information-theoretic approach that
assumes a stochastic space-time model for H(t).

Considering coding across time blocks of 1" seconds, all
transmitted codewords are subject to the unit power constraint

/|Xs(t)|2dt§T VseT
JT

which implies the total power constraint:!

Z / |X,(t)2dt <nT =0(n), asn—oo. (1)
Jr

seT

A long standing open problem is determining the optimal
strategy of operation of the network modeled above. Several
proposals have been made in the literature, which we briefly de-
scribe below.

I'Throughout the paper we use the following subset of the Bachman-Landau
notation for positive functions of the natural numbers: f(rn) = O(g(n)) as
n — oo if Ik > 0,n0 : Vn > ng f(n) < kg(n); f(n) = Q(g(n)) asn —
oo if g(n) = O(f(n)); f(n) = O(g(n)) asn — oo if f(n) = O(g(n))
and f(n) = Q(g(n)). The intuition is that f is asymptotically bounded up to
constant factors from above, below, or both, by ¢.
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Fig. 1. TDMA-direct scheme. In this strategy there is no spatial reuse of the
channel.

A. TDMA-Direct

The simplest strategy of operation is time division multiple
access (TDMA) with direct transmission between sources and
destinations. In this case, time is divided into slots and in turn
each node in S transmits to its intended destination in D during
its assigned time slot. Relay nodes are not used. Assuming unit
bandwidth, the Shannon-Hartley formula yields an information
rate per-source destination pair of at most

max

1
R(n) < —1 1
(n) -n 08 < + s€8,deD,te(0,T]

Hatt)) =001/
as n — oo, where the equality holds because the term inside the
logarithm depends only on the model chosen for the propagation
channel and is independent of 7. This situation is depicted in
Fig. 1 and we make note that it is characterized by time reuse,
but no spatial reuse of the channel.

B. TDMA-Multihop

Time reuse is combined with spatial reuse by adopting a
TDMA strategy in conjunction with multihop relay. In this
case, routing paths are established between sources and desti-
nations and point-to-point coding and decoding is performed
at each hop along the paths, using a TDMA scheme to control
the total amount of interference at each transmission, which is
treated as noise. Following the first work of Gupta and Kumar
[1], this scheme has been analyzed under a variety of models
for the propagation channel, see [2]-[5]. In a geometric setting
in which nodes are scattered in a region of the plane propor-
tional to n, and sources, destinations, and relays are randomly
selected, it leads to a lower bound of

R(n) > Q(1/v/n), asn — oo
a great improvement compared to the TDMA-direct scheme.
The bound can be intuitively explained as follows. Due to the
random assignment of sources, destinations, and relays, roughly
half of the nodes located on one side of the network wish to
communicate to another half located on the other side. The rate
that each source can sustain to its intended destination depends
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Fig. 2. TDMA-multihop scheme. This strategy is characterized by spatial
reuse, but no diversity due to the physical propagation channel is exploited.

on the number of routing paths that can be established simul-
taneously across the cut that separates these two regions. We
can construct these paths by letting each node select, as the next
relay, a nearby neighbor located at most at a constant distance
from it. In this way, each hop transmission generates a small
interference footprint around it. If routing paths crossing the
cut are sufficiently spaced from each other, so that the corre-
sponding interference footprints do not overlap too much, then
the total amount of interference at each hop can be controlled
using a TDMA scheme and the routes can be performed simul-
taneously, at constant rate. Since the number of nodes accessing
these paths is of the order of n and the number of paths crossing
the cut and spaced by at least a constant distance is proportional
to the length of the cut, i.e., it is of the order of \/n, the result
then follows. This situation is depicted in Fig. 2, and we make
note that it is characterized by spatial reuse, but no diversity due
to the physical propagation channel is exploited.

C. MIMO-Hierarchical Cooperation

Hierarchical cooperation is a network strategy originally pro-
posed by Ozgiir, Lévéque, and Tse [6], although some ideas
were also present in the work of Aeron and Saligrama [7]. The
objective of the strategy is to exploit the spatial diversity pro-
vided by the physical propagation channel to achieve a better ca-
pacity scaling. The network area is recursively divided into clus-
ters and within each cluster nodes form a distributed single-user
multiple antenna system (MIMO) performing joint encoding
and communicating with the nodes in another cluster that per-
form joint decoding. Within each cluster, information is then re-
distributed recursively by iterating the above scheme. This sit-
uation is depicted in Fig. 3. Under certain stochastic assump-
tions on the matrix H(¢), and knowledge of its realization at all
nodes, each MIMO transmission can achieve a rate that is pro-
portional to the number of transmitting antennas, and this allows
the per-node rate to remain almost constant, as the total number
of nodes, and the number of recursive layers, grows. A great im-
provement compared to the multihop case. Precise scaling laws
have been worked out in [8] and [9].
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Fig. 3. Hierarchical cooperation. The spatial diversity provided by the propa-
gation channel is exploited at each MIMO transmission.

The strategy requires to assume a specific stochastic model of
the physical propagation channel to obtain the promised advan-
tage over the multihop scheme. Accordingly, H(¢) is modeled
as a random matrix, whose elements are

Hpa(t) = r el ® )

where 7}, is the (random) distance between the kth transmitter
and the [th receiver and 1 < a < 2 is a constant. The phase
shifts u; (¢) are white random processes, uniform in [0, 2] and
independent in &, [. Hence, the magnitude of the channel coeffi-
cients tends to zero as a small power of the distance (path loss as-
sumption), and the phases vary randomly with time and space in
a uniform independent and identically distributed (i.i.d.) fashion
(fading assumption). We make note that this strategy exploits
the diversity due to the physical propagation channel through
repeated MIMO transmissions.

D. Interference Alignment

Interference alignment is another strategy that exploits the
diversity due to the physical propagation channel. It was pro-
posed by Cadambe and Jafar [10] and Maddah-Ali, Motahari,
and Khandani [11]. The main idea is that assuming H(¢) varies
randomly, one can perform coding over many realizations, and
transmit codewords that span a subspace where they overlap,
at all the receivers where they constitute interference, and a
subspace where they remain decodable, at the intended desti-
nations. Recently, Ozgiir and Tse [12] have shown that inter-
ference alignment can achieve the same performance as hierar-
chical cooperation, under the same stochastic model of the prop-
agation channel given in (2). We make note that these results
also rely on the diversity introduced by the stochastic model of
the propagation channel.

E. Our Contribution

All the constructive strategies described above must obey the
information-theoretic cut-set upper bound [13]. An easy state-
ment of this in our context is as follows. Letting n nodes be
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distributed arbitrarily on either side of a cut which divides the
network into two parts, we have

R(n) < 1 max rank H(¢)O(logn),

< asn — o0o. (3)
n t€[0,T]

In words, one can at most beamform the total power into each
of the equivalent point to point channels provided by the matrix
H(t).

This paper studies max;co 7 rankH() from first physical
principles, and shows that a natural upper bound, over all scat-
tering environments and node locations, exists and depends on
the geometric variation of the environment with respect to the
cut through which the information must flow. We call this max-
imum value the number of degrees of freedom (d.o.f.) of the
wireless network. Mathematically, it can be upper bounded by
an integral, that we call cut-set integral. This bound can then
be used to determine in what environments the stochastic as-
sumptions of the strategies described above could be valid, and
in what environments these assumptions fail. Hence, our focus
is not to design novel achievable coding schemes, but rather to
derive information-theoretic outer bounds on what physics per-
mits to achieve.

The rest of the paper is organized as follows. The next sec-
tion provides a summary of the results and of the technical ap-
proach used in the analysis. Section III relates the physics of
the propagation process to the information-theoretic model, and
formally introduces the number of d.o.f. of the radiated field.
The following two sections are devoted to computing upper
bounds on the number of d.o.f. by using two different methods:
in Section IV we follow a singular value decomposition ap-
proach; in Section V we follow a spatial bandwidth approach,
introduce the concept of cut-set integral, and then provide so-
lutions to this integral in two geometric settings of practical in-
terest. Section VI draws conclusions and provides some final
observations.

II. STATEMENT OF RESULTS

A. Geometric Configurations

In a previous work, the number of d.o.f. of wireless networks
in two-dimensional (2-D) and three-dimensional (3-D) settings
has been studied from first physical principles [14]. Considering
a scale-free model in which all distance lengths are normalized
by the carrier wavelength, it has been shown that when nodes
are distributed inside a disc of area proportional to n in such
a way that roughly n sources lie inside the inner half of the
disc and wish to communicate with n destinations in the outer
annulus, then the number of d.o.f. is bounded by an order of
n'/2 log n. This bound holds for any scattering environment and
node locations inside the disc. Similarly, when an order of n
nodes are distributed inside a ball of volume proportional to 7,
then the number of d.o.f. is bounded by an order of n?/3(log n)?.
These configurations are depicted in Fig. 4(a) and (b).

In this paper, we consider the two configurations of planar
networks depicted in Fig. 4(c) and (d), as well as develop a gen-
eral method to bound the number of d.o.f. in arbitrary geome-
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Fig. 4. Some canonical geometries.

tries having rotational symmetry. As before, all distance lengths
are normalized to the wavelength, so that the configurations are
scale-invariant. The considered geometries have the advantage
of decoupling the effect of the environment from the network.
In the first case, an order of n nodes are placed on the base of
a half sphere of area proportional to n and are surrounded by
an arbitrary scattering environment of volume proportional to
n3/2_ In the second case, an order of n nodes are placed on the
base of a cylinder of area proportional to n and are surrounded
by an arbitrary scattering environment of volume proportional
to h X m, where h is a given constant. We show that the number
of d.o.f. in the first case can be as large as n, while in the second
case it is bounded by an order of h+/n(logn)?.

These results suggest that while a scattering environment that
is large compared to the number of nodes inside it (half sphere
case) does not provide a bottleneck to the number of d.o.f., the
environment becomes a bottleneck when its size is comparable
to the number of nodes inside it (disc, sphere, cylinder cases).

Finally, a precise quantification of the available spatial
resource is given in the more general setting of arbitrary ge-
ometries having rotational symmetry, introducing the notion
of cut-set integral, a geometric measure of the richness of the
scattering environment induced on the network cut through
which the information must flow.

B. Technical Approach

Our approach is based on the functional analysis of the
vector space spanned by the electromagnetic field propagating
in the environment. After drawing a correspondence between
the information-theoretic channel and the electromagnetic
vector space, we evaluate the dimensionality of this space using
two different methods. The first one determines the number
of significant singular values that are sufficient to construct a
finite-rank approximation of the propagation operator. This is
the same method as the one used in [14], applied to different
geometric configurations. It has the appeal of revealing the
natural phase transition of the number of independent channels
available in the environment. However, for one of the two
considered geometries, it requires some additional assumptions
to obtain closed form solutions. The second method computes
the number of d.o.f. as a cut-set integral using reconstruction
by space-bandlimited functions. This allows an exact analytical
representation of the scaling order of the number of d.o.f., for
the two geometries of interest. It can in principle be applied
to any geometry having rotational symmetry and it leads to
the natural interpretation of the cut-set integral as the amount
of diversity induced on the cut by the possible richness of the
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scattering environment. The roots of both strategies are in the
papers of Bucci and Franceschetti [16], [17], subsequently
expanded by Bucci, Gennarelli, and Savarese [18]. We outline
the main steps of their methods required in our case, extend
the theory to general two-dimensional cut-sets, and finally
provide an application to the two specific network geometries
of interest.

III. SETTING UP THE PROBLEM

A. Information-Theoretic and Physical Channel Model

With reference to the half-sphere and cylinder depicted in
Fig. 4(c) and (d), we consider communication from n nodes
placed inside the inner disc on the base of the half-sphere, or
cylinder, to n nodes placed in the outer annulus. We call the
corresponding inner and outer volumes separated by the surface
cut which divides the half-sphere or cylinder in half, D and V,
respectively. We introduce an arbitrarily small constant separa-
tion distance ¢ between these two volumes. This ensures that
transmitters and receivers do not coincide so that the kernel of
the propagation operator does not have singularities. We con-
sider empty space outside D, as the presence of scatterers in
V' does not increase the number of d.o.f. The heuristic justifi-
cation is that a closed surface captures the whole information
flow radiating out of D and so backscattering does not increase
the number of d.o.f. A more rigorous argument appears in [14,
Sec. III-B].

The information-theoretic representation of the channel is
depicted in Fig. 5(a). The narrowband signal X () is a sinu-
soidal waveform modulated by some input symbols. The effect
of the physical propagation process is modeled as of producing
a phase-shifted and magnitude-attenuated copy of the trans-
mitted waveform. The spatial variation of the environment and
node positions over time is captured by a random variation of
the attenuation and phase shift over time. A commonly used
model is to assume the attenuation being fixed and the phase
shift to evolve randomly over time in an i.i.d. fashion, see
(2). This corresponds to having small scale movements in the
environment of the order of the wavelength, which affect only
the phase but not the magnitude of the received waveform.
This variation due to environmental effects does not change the
narrowband nature of the signal.

The corresponding physical picture is depicted in Fig. 5(b).
An operator F maps the input signal X (¢) into a certain current
density inside the inner volume D. This includes both the source
currents on the transmitting antennas and the induced currents
on the antennas and the scatterers. Its space-time representation
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Fig. 5. Block diagram of the communication operator. (a) Information-theo-
retic model. (b) Physical model.

is given by i(r4, t). The total power constraint in (1) translates
into the equivalent constraint

/ dt/ li(rg,t)|?drg < nT = O(n), asn —oco. (4)
T Jp

The current density may change over time due to the modula-
tion of the signal by the input symbols and to variations in the
environment and node positions. At any time, we assume an ar-
bitrary distribution, as long as it occupies a narrow frequency
band and it satisfies (4). Hence, the fading process that is mod-
eled by a stochastic variation of H(#) in the information-the-
oretic model, is accounted here by considering, at any time, an
arbitrary current density inside D satisfying the total power con-
straint (4).

We write the space-frequency representation of the current,
obtained by taking the temporal Fourier transform, as I(r4, f).
By the narrowband nature of the signals, we can suppress the de-
pendence on frequency from the notation above and write I(r4).
We proceed performing an harmonic analysis around frequency
f

Let us define the Hilbert space Z C Lo(D) of square inte-
grable functions of support D with inner product

(I,I’)IE/DI*(I‘d)II(I‘d)dI‘d

where * denotes the complex conjugate. By Parseval theorem,
the power constraint (4) can then be rewritten as

173 = (1, 1)z = O(n), asn — oc.
The current density generates a narrowband electric field E(r)
which is measured in a domain V strictly outside the volume
D. The measured field belongs to the Hilbert space £ C Lo(V)
with inner product given by

(E‘7 El>g =
Jv

E*(r)E'(r)dr.

The operator G : Z — & that maps the current into the field is
given by

Ex)=(G1I) = /D G(rq,v)I(ry)dry, reV. 5)

3071

Having normalized all distances by the wavelength, in free
space, we have

i B —j27|rg—r|
g(rd7r): ‘ﬂ([ VV)@

- 2/& (2m)2 )  |rq—r|

where I is the identity operator, 149 and ¢q are the permeability
and permittivity of the vacuum. Since the domains D and V' are
disjoint, the kernel in (5) is square integrable and the radiation
operator G is compact.

Finally, an operator XC maps the field to the voltage measured
at the receiving antennas, and the additive noise is the same in
the two models.

B. The Degrees of Freedom of the Radiated Field
Let Ex C &€ be an N-dimensional subspace of £. The devia-
tion of £y from £ is defined as

ANC inf ||E—E'|¢.
(.6n) = sup inf || = £

= sup
Eece B
The Kolmogorov N -width, or N-diameter, of £ is defined as

dn () = inf A€, Ex) (6)

where the infimum is taken over all subspaces of £ of finite
dimension N [22, Ch. I]. The quantity (6) characterizes the best
accuracy obtained by approximating the space of radiated fields
£ by an N-dimensional subspace of £. Given a level of accuracy
€ > 0, the number of d.o.f. of the radiated field is defined as

N (&) = min{N : dn (&) < €}

Thus, N.(€) denotes the dimension of the minimal subspace
representing the radiated field in V' within an e accuracy.

Remark: Since we deal with continuous fields, the definition
of d.o.f. naturally depends on the accuracy level € of the approx-
imation and it is different from the usual information-theoretic
definition. For a discussion of the significance of this approach
we refer to the classic work of Slepian [19] which adopts the
same point of view of natura non facit saltus as the one of this
paper. It turns out that due to a sharp threshold transition be-
havior of dy (€), the number of d.o.f. as defined above is weakly
dependent on ¢, which makes the definition quite suitable for
practical scenarios. In Slepian’s own words: in relevant math-
ematical models of the real world, principal quantities of the
model such as the number of d.o.f.] must be insensitive to small
changes of secondary quantities of the model [such as the pre-
cision € of the measurement apparatus].

The d.o.f. as defined above were introduced in [17]. They
can also be interpreted in terms of the Kolmogorov e-entropy,
see [17], [20]. The correspondence with the number of spatial
modes that are physically separable and available for commu-
nication was also given in [21]. This correspondence was also
used in [14] to evaluate the cut-set bound (3) for the geometries
depicted in Fig. 4(a) and (b). Next, we consider the geometries
in Fig. 4(c) and (d).
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IV. THE SINGULAR VALUE DECOMPOSITION APPROACH

The N-diameter of £ and the number of d.o.f. can be eval-
uated via the singular value decomposition of the radiation op-
erator G [22, Ch. IV]. Let G : £ — T denote the adjoint op-
erator of G, defined by (G I, E)e = (I,GTE)z. The singular
value decomposition of G can be obtained from the eigende-
composition of the associated self-adjoint compact operators
G'G : T — T and GG' : £ — &, considering the following
eigenvalue problems:

{ (G'G vk )(r) = ofux(r)

(66" w)() = puetr)” PR O

The eigenvectors {vy } and {us} are the right and left singular
functions of the operator G, respectively, while the coefficients
oy, are the singular values of G. The compactness of G implies
that the eigenvectors {v} and {u;} form a complete orthog-
onal basis set for Z and &, respectively, and the singular values
are nonnegative real numbers. Expanding the integral kernel in
(5) in terms of the singular functions, we obtain the following
singular value decomposition of G:

oo

E(x)=(G)(x) =Y onl,op)r ux(r), TeEV. (8)

k=1

This shows that the field due to the current I € 7 is the linear
combination of the left singular functions {uy}, and that the
weight given to the kth term in the summation is the product
of the kth singular value and the projection of I onto the right
singular function vy.

The following theorem provides the connection between the
number of d.o.f. of the radiated field and the singular value de-
composition of G.

Theorem4.1: [22, Theorem 2.5, p. 69] Let the singular values
{or} in (7) be ordered in decreasing order of magnitude o¢ >
02 > -+ > 0p > 0py1 > 0,k > 2. Then,

dN(g):JN-i-l-/ N:1/27

and an optimal N-dimensional subspace &£y for which
An(E,EN) = dn(€) is given by En = spanfuq,...,un}.

It follows that the N-widths of the radiation operator G are
determined precisely by the behavior of the (N + 1)th singular
value oy 41, and that to achieve the optimal representation of
the field it suffices to approximate the image of any I € 7
under G by the first N + 1 terms of the singular value decom-
position (8). Since for compact operators limy_.., o, = 0,
it is possible to approximate the radiated field at any desired
level of accuracy € by choosing N large enough, and the d.o.f.
are determined by the index of the first singular value having
magnitude smaller than e.

A. Application to the Half-Sphere

The treatment is similar to the one for spherical geometries
in [14], Section IV. Hence, only the relevant steps are summa-
rized in what follows. Consider the configuration depicted in
Fig. 4(c). The domain D, containing the source nodes on its
base, is the half-sphere of radius \/n centered at the origin; the
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domain V, containing the destination nodes, is the outer spher-
ical half-annulus obtained subtracting D from a half-sphere of
radius 2+/n centered at the origin. Let M denote the surface of
the sphere of radius v/n + § centered at the origin. Since M en-
closes the domain of the sources, the field on M uniquely deter-
mines the field at any point in V. Thus, it suffices to determine
the number of d.o.f. of the field on M.

Following [14], we refer to the magnetic vector potential A €
A C Ly(M), and perform the singular value decomposition of
the Green function G that maps the source current density I to
the magnetic vector potential. Analogous results can be obtained
using the multipole expansion of the electric field [23] for spher-
ical sources, and performing the singular value decomposition
of the of the dyadic Green function G : 7 — &, instead than of
G:7— A

The Green function operator for the magnetic vector potential
is given by

A(r) = (GI) = /D G(rq,r)(rq)dry,

reM (9

where

o e 27|rg—r|
(ra:¥) = o
The singular value decomposition of the operator in (9) was
evaluated in [14], Section IV. Given this decomposition, we
have the following result, proven in the Appendix.

Theorem 4.2: For any € > 0

N.(A)=Q(n), asn — oco.
The above shows that the number of d.o.f. of the magnetic vector
potential scales at least linearly in n, as n — oo. The elec-
tromagnetic field is obtained from the magnetic vector poten-
tial through differentiation operations which do not decrease the
number of d.o.f. It follows that it is not possible to approximate
the field within any constant error by interpolating less than an
order of n functions.

The considered geometrical configuration provides an ex-
ample of a wireless network for which the number of d.o.f.
provided by the large scattering environment that surrounds the
nodes in space is not a limitation to communication, as it scales
proportionally to the surface of the sphere enclosing sources
and scattering objects. The size of the spatial cut separating
the sources from the destinations can be interpreted here as
a resource to be shared by the independent communication
channels, each of which occupies a fraction of space on this cut.

B. Application to the Cylinder

Consider now the cylindrical geometry illustrated in Fig. 4(d),
in which n nodes are placed inside a disc of radius y/n and wish
to communicate to 7 nodes which lie inside the annulus formed
subtracting the domain of the sources from a concentric disc of
radius y/n, and where scattering objects can be arbitrarily placed
inside the cylindrical volume of height h.

The singular value decomposition of the operator (9) in this
geometric setup does not seem to be analytically tractable. We
outlined an approximate computation in [15], which we do not
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wish to repeat here, by assuming the two discs at the bases of
the cylindrical domain to be infinite planar electric conductors.
With this approximation, the singular values exhibit a step-like
behavior around the value hy/n.

This suggests that the number of d.o.f. of the radiation oper-
ator scales proportionally to the lateral surface of the cylinder
enclosing the sources. We make note that the lateral surface
of the cylinder represents the cut through which the informa-
tion must flow and can be interpreted as the spatial resource
to be shared by the independent communication channels, each
of which occupies a fraction of space on this cut. In the next
section, we rigorously prove the above statements using a dif-
ferent method which does not require any approximation. Fur-
thermore, this method can be applied to any geometric setting
with rotational symmetry.

V. CUT-SET INTEGRAL APPROACH

In this section, we consider a general geometric setting where
the radiating sources are enclosed in a convex domain with ro-
tational symmetry, and the field is observed over a two-dimen-
sional domain having rotational symmetry.

Extending the theory developed by Bucci and Franceschetti
[16], [17], and by Bucci, Gennarelli, and Savarese [18], we
approximate the radiated field using spatial bandlimited func-
tions. The number of d.o.f. of the radiated field is then upper
bounded by the Nyquist number associated to this approxima-
tion. The bandwidth is determined by choosing an appropriate
parametrization of the surface representing the cut through
which the information must flow, and it is given in terms of an
integral that we call cut-set integral.

After outlining the general theory, we apply it to evaluate
an upper bound to the number of d.o.f. for the half-sphere and
cylinder geometries illustrated in Fig. 4(c) and (d).

A. One-Dimensional Cut-Set

We briefly review the results in [16]-[18] necessary for our
derivation. All lengths are normalized by the wavelength. We
consider the field radiated by finite size sources enclosed in a
convex domain D and observed over a one-dimensional analytic
curve M of length S. Let the maximal radial component of both
D and M be ©(y/n). Let ¢ : M — R denote a parametriza-
tion of the observation curve. Let s : M — [0, S] denote the
arc-length coordinate along the observation curve M and let t
denote the unit vector tangent to s.

Given a pointr(s) € M and apointry € D,let R = r(s) —
rg, and let R be the unit vector of R, see Fig. 6. Define now the
reduced field

F(&) = B (10)
where ¢ is the arbitrary parametrization of the observation curve
M, and 1) is an arbitrary analytical phase factor. The extraction
of an appropriate phase factor along the curve will lead to a
spatial baseband representation of the field. We make note that
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Fig. 6. The case of a one-dimensional observation domain.

this operation does not change the information content of the
field. Substituting (5) into (10), we have

F(&) = (G'T) = /D G(ra, €)e7© I(xg)dra

where G’ denotes the operator that maps the current I to the
reduced field.

Our objective is to approximate F'(¢) using fields with band-
width w, and to do so we consider the bandlimited reduced field
obtained by convolving F’ with a sinc function in the £ domain?

Fu€) = %singwf

where * denotes the convolution operator. We can now define a
dyadic Green function G/, (r4, {(r)) for the bandlimited reduced
field £, (&) as follows:

* F(8),

Fw(f)— g1/1
sinw(¢ =¢') ,

:// £-¢

The representation error in approximating F' by F), is given by

g ( (i-,f/)dfll(l‘d)drd.
:/ Ag(rd,f)l(rd)drd.
D

where AG(ry, &) =
all &,

Gu(ra,§) —

G'(rq, &), so that we have, for

FAF(E) llE< max|AG(ra, O | T -

Notice that the above is obtained by maximizing over rg, i.e.,
considering all possible scatterers’ configurations inside D.

The asymptotic behavior of |[AG(r4, &)| as n — oo is studied
by the steepest descent method in [17]. The main idea of this
method is to reduce the computation of the complex integrals
appearing in |AG(r4, £)| to asymptotically equivalent ones that
can be explicitly evaluated.

2Equivalently, for closed curves the convolution is with the Dirichlet kernel
D, (&) which gives the wth degree Fourier series approximation to the periodic
F.
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It turns out that letting

0(€) = max | 2L ((6) ~ 20 R (5. )

(1)
which is referred to as the local bandwidth at point &, the error
in approximating the reduced field decreases to zero exponen-
tially as the bandwidth w exceeds the critical value w(¢). Thus,
although F' is not bandlimited in the transformed domain of the
parametric coordinate £, it can be approximated at any desired
level of accuracy via bandlimited functions, provided that the
bandwidth is sufficiently larger than w(&). More precisely, given
any desired level of accuracy € > 0 there exists an xy > 1 such
that

JAF(E)] <€, if w > xw().
Furthermore, as the dimension of the system increases, i.e., as
n — 0o, we have that y = 1 4+ O(n~?/3) — 1, so that the
reduced field tends to become bandlimited.

The phase factor ¢/ can now be chosen such that the critical
value w(§) is minimized for all £. This can be accomplished by

letting
ﬂ =7 maxa—R—l—mina—R
d¢ ra  O0E ra OE

which can be plugged back into (11) obtaining

w)=m (nllriux % - ngn %) . (12)

Next, we choose the parametrization ¢ of the observation do-
main so that w is constant along the curve, i.e., w(§) = W for
all ¢ € M. For this parametrization, the field at any point on the
curve M is now arbitrarily close to one of bandwidth slightly
greater than the constant W, and we evaluate its number of d.o.f.
in terms of the Nyquist number associated to . We do so by
first substituting into (12)

OR _ R s
o0& 9s O¢
obtaining
Wdé = m | max 8—R — min 8—R ds. (13)
ry 88 ryg 38

Then, we integrate along the curve M, obtaining

s
W/ d&:w/ <max8—R—min8—R>ds
J M 0 v Os ry 08
s

:7r/ <maxﬂ-f — minf{-f) ds.

0 rg rg

Finally, we compute the Nyquist number associated to the band-
width W as

UYL

™

s
= / <maXR~f—minR-E> ds.
0 rq rg

No =

(14)
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This dimensionless quantity is the analogous, in the spatial do-
main, of the communication-theoretic time-bandwidth product.
It represents the dimension of the space of signals of bandwidth
W, observed over the domain M. Strictly speaking, however,
its significance can only be taken in an asymptotic sense, since
the only signal that is both bandlimited and spacelimited is the
trivial always-zero signal [24]. In practice, the field is only ap-
proximately bandlimited and it is observed over a finite domain.
As the system size tends to infinity, the bandlimitation error be-
comes arbitrarily small, and an accurate field reconstruction is
possible interpolating only slightly more than Ny optimal func-
tions over a finite domain. The basis functions used for the re-
construction are complex exponential functions of &, if M is a
closed curve, or prolate spheroidal functions, in the case of open
observation domains. Formally, in [17] it is established, using
results in [22] and [24], that

Theorem 5.1: For any € > 0
1
N.(&)=0 <N010g —> , asn — oo
€

so the number of d.o.f. is slightly larger than N and it is practi-
cally independent of the error €, in the sense that the error can be
€n = O(A%O,) for any v > 0, as n — oo, and change the scaling
order of the number of d.o.f. by at most a logarithmic factor.3

Remark: We call (14) the cut-set integral associated to the cut
M and the set D. It measures the total incremental variation of
the tangential component of R along the cut M. The physical
interpretation is that of measuring the richness of the informa-
tion content of the field radiated from D, by considering a vari-
ational measure of the environment in DD with respect to the cut
M through which the information must flow. It follows that if
the combined effect of the source and the receiver’s geometries
are such that R is “highly variable” in the sense of the integral
above, then the scattered field has a large information content.
We also make note that this notion of boundary measure in the
sense of total geometric variation seems related to the more gen-
eral concept of Caccioppoli sets in mathematics [25].

B. Two-Dimensional Cut-Set

We now generalize the results outlined in the previous sec-
tion to surface-cuts with rotational symmetry. Given a cylin-
drical coordinate system (p, ¢, z), consider the field radiated
by finite size sources enclosed in a convex domain D bounded
by a surface with rotational symmetry, obtained by rotating a
curve D’ lying in the plane ¢ = 0 about the z axis. The field
is observed over a surface of revolution M external to D and
generated by the rotation of a meridian curve M’, lying in the
plane ¢ = 0, about the z axis. Let the maximum radial com-
ponent of both D’ and M’ be of order ©(/n).

3The result of [17] is actually sharper than what reported here, being
N(&) = No + O((No)'/3(log1/€)?/3) + O(log Nolog(1/€)). Our
slightly weaker but more compact form is good enough for our purposes and it
is chosen to simplify the rest of the presentation.
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The electromagnetic field on M can be expanded in a com-
plete orthogonal set of cylindrical vector waves [26]. This rep-
resentation is given by

+oo
E(p,¢.2) = > Emlp,2)e’™? (15)

m=—00

where each function E,,(p, z) corresponds to the two-dimen-
sional electric field generated by the current density I,,(p, z),
which is the mth term of the Fourier series expansion in the an-
gular domain ¢

“+o0

I(p,qﬁ,z): Z Im(p>z)ejm¢'

m=—00o

An upper bound on the number of d.o.f. N.(€) of the field
on M can now be computed proceeding in three steps. First,
we consider the electric field measured on the one-dimensional
curve M obtained by intersecting M with a plane at constant z.
We bound the number of d.o.f. of the radiated field measured on
the circumference My by evaluating the Nyquist number N in
(14). Notice that the integrand in (14) is equal to the difference
between two cosines and thus it is upper bounded by 2, so Ny in
this case can be bounded by the length of the circumference M,
which is of order O(/n). Due to the cylindrical geometry, the
extreme values of OR/0s are opposite and constant along M.
It follows from (13) that any parametrization ¢ proportional to
the arc-length is optimal. In particular, we can choose £ equal to
the azimuthal angle ¢, so the approximating functions used for
the reconstruction are the harmonics {e/™?}.

We let Ny = O(y/n) and, making use of the field represen-
tation in (15), define the optimal approximation

+ Ny log(1/€)

>

m=—Ng log(1/¢)

Eny(py¢,2) = Ey(p,2)e’™?. (16)

In the second step, we approximate each two-dimensional elec-
tric field component E,,(p, z) in (16) using a suitable minimal
set of basis functions. Observe that F,,(p, z) does not depend
on ¢, so we can study its characterization on the one-dimen-
sional meridian curve M’ lying on the plane ¢» = 0. In order to
find a uniform upper bound independent of m, we can assume
to have an arbitrary current distribution I(p, z) in the domain
D’ and apply the method illustrated in the previous section to
bound the number of d.o.f. of the radiated field E,,(p, z) mea-
sured on M’ by evaluating the corresponding Nyquist number
in (14), which we denote by Nj.

Finally, in the third step, we can combine results and conclude
that the overall Nyquist number N is given by

No
S
m=—Nj
ZO(NONé)
= O(vnNg),

as n — O0.

a7
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Fig. 7. Construction of the half-sphere and cylinder geometries by rotations.

By Theorem 5.1, we have

Ny log(1/€)

S Nylog(1/e)

— Ny log(1/€)
-0 (Ngot (log 1/6)2)
= O(V/nNg(log 1/€)?),

Ne(&) =

(18)

as n — 0O0.

C. Application to the Half-Sphere

Consider the geometry depicted in Fig. 7(a). The domain D
is the half-sphere of radius \/n centered at the origin, obtained
by rotating the quarter-circle D’ by the axis of symmetry. The
field is measured on the surface of a sphere of radius /n + §
centered at the origin, obtained by rotating the half circumfer-
ence M’ of radius \/n + § by the axis of symmetry. As usual,
by the uniqueness theorem it suffices to determine the field on
this surface to characterize the field in the outside domain.

In this setting, a simple upper bound to N/ is obtained by
noticing that the integrand in (14) is at most 2 and that the length
of M’ is O(y/n) as n — o0, so that

Ny = O(Vn),

Substituting (19) into (17) and (18), we obtain

asn — oQ.

19)

N = O(n),
Ne(€) = O(n(log1/e)?),

asn — 00,

as n — 0.

D. Application to the Cylinder

Consider now the cylindrical geometry illustrated in Fig. 7(b),
in which the domain D is the cylinder centered at the origin
of radius \/n and height h, obtained by rotating the rectangle
D’ by the axis of symmetry. By the uniqueness theorem the
field inside the outer annulus enclosed by the surface obtained
rotating rectangle M’ of length \/n and height h about the z
axis, is determined by the field on the enclosing surface.*

To bound N in this setting we decompose the integral in the
left-hand side (LHS) of (14) into the sum of four terms, each
one corresponding to a side of M’. Since M’ has height h, the
integral along each vertical side is at most 2h and, by symmetry,
the integrals along the two horizontal sides are equal, so it suf-
fices to study the integral over the domain {r(s) = (s,0,h) :
s € [0,4/n]}. For any point r(s) in this domain, it is easy to
see by elementary geometry that the extreme values of R-tare

4The edges of the rectangle are smoothed, so M’ is analytic.
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obtained at the two ppints r1 and 7o Aillustrated in Flg2 7(b), for
which we have that 1 -1 = 1,and Ry - = (1+ 555) 72 Tt
follows that

vin L L
/ <maxR-t— minR-t)ds
Jo rq€D’ rq€D’
/ " <1 M >_% d
= — —_— s
Jo (s+0)2
Ja o ok
< / G
h2
70 L+ ooy
no1°
= h arctan 5
S + \/ﬁ
< 2h (20)

where the inequality follows from /1 + x2 < 1 + 22 for all z.
Finally, substituting

N{ < 8h

into (17) and (18), we obtain

N = O(hy/n), asn — oo,
Ne(€) = O (hv/n(log1/€)?) ,

as n — 0O0.

VI. CONCLUDING REMARKS

This paper presented a physical approach to determining the
number of d.o.f. available for communication in wireless inter-
ference networks. This corresponds to the number of indepen-
dent channels available across any cut separating sources from
destinations. It has been characterized, in arbitrary three-dimen-
sional geometries, as an integral representing a variational mea-
sure of the difference vector between the sources’ environment
and the cut’s surface. If such vector is highly variable in the
sense of the defined integral measure, then the scattered field
has a large information content in terms of number of available
d.o.f.

The cut-set integral has then been computed in two canonical
cases of interest. In these cases, it reduces to the wavelength-
normalized geometric measure of the surface through which the
information must flow.

We now wish to make some additional final remarks. The
number of d.o.f. is a geometric measure which depends only
on the physical environment surrounding the network. It is
independent of the number of nodes forming the network. The
number of nodes can then be chosen of smaller or equal order
than the spatial resource represented by the cut-set integral
to avoid information bottlenecks. For example, this is what
happens in the half-sphere canonical configuration, where the
number of nodes placed on the base of the half-sphere is of the
same order of the cut-set surface.
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The above point of view is also taken in the recent works
[27], [28], where the authors argue that hierarchical coopera-
tion schemes can be used with success in environments where
the density of the nodes is small compared to the spatial re-
source available to them. In their model, however, the trans-
mission power of the nodes must scale with the network’s size
to cope with increasing internode distances occurring at low
node densities. When this is possible, the number of d.o.f. is
not a bottleneck to cooperative schemes, and capacity results
obtained exploiting signal diversity through hierarchical coop-
eration or interference alignment do not contradict the physical
limits studied in this paper.

A final remark goes to the relationship between our results,
the recent deterministic approach to wireless networks put forth
by Avestimehr, Diggavi, and Tse [29], and the noisy network
coding approach of Lim, Kim, El Gamal, and Chung [30].
These authors propose constructive schemes that are shown to
be within a constant gap to the information-theoretic cut-set
bound. This bound depends on the propagation channel and
on the network topology, but this dependence is not explicitly
modeled. Our approach takes the opposite point of view: rather
than seeking novel coding schemes closer to the cut-set bound,
we have focused on the physical limits of what the cut-set
bound can be, and we have identified these limits by scaling the
network’s spatial dimension.

APPENDIX A
PROOF OF THEOREM 4.2

As shown in [14], the (unordered) singular values for the ge-
ometry in the configuration depicted in Fig. 4(c) are

o = 2 Hh,@(%(\/m 8))Yio.m (6, qﬁ)Hg
X ||7k(2mpa) Yie,m (a, da)llz
—or ‘h,ﬁ2>(zw(\/ﬁ+ 5))‘

1
2

X (/ |7k (27 pa) Yk,m(0d7¢d)|2drd> 2D
D

for k = 0,1,..., where (p4, 84, Pa) is the representation of
rq € D in a canonical spherical coordinate system, ji is the
spherical Bessel function of the first kind and order k, h,(f) is
the spherical Hankel function of second kind and order &, and
Y%,m is the (kth, mth) spherical harmonic function.

The following technical lemma provides a uniform lower
bound to the singular values up to k ~ 27\/n, and is needed
to prove the theorem.

Lemma A.1: Let0 < ¢; < ¢, < 1. Then, for all ¢;2m+/n <

k < ¢ 2my/n
1
Jk:Q(—n1/4) 22)

as n — oQ.
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Proof: Tt is convenient to rewrite the integral in (21) in
terms of cylindrical Bessel functions of fractional order as
follows:

/ﬂ|jk(2WTd)y%J(9da¢dN2drd
JD

1V 2 2
=5 ; |7k (277rq)|*radra

1 v
—/ |J,"€(27r7"d)|27“dd7"d
8 Jo

];2
% [( (2 /) - (Wn—

1) (J,;(2Wﬁ))2]
(23)

where for notational convenience we defined k 2 k + %, and
we used the normalization and symmetry properties of the
harmonic functions in deriving the first equality; the second
equality follows from [31, identity (10.1.1)]; finally, the third
identity is obtained using [31, identity (5.54.2)] and the re-
currence relations of Bessel functions [32, identity (9.1.27)].
Substituting (23) into (21) and rewriting the Hankel function in
cylindrical coordinates, we obtain

1
™ 2

A(v/n + 6)%

O =

H1£2)(27r(\/ﬁ + 5))’ [(Jlic(Qﬂ-\/ﬁ))z

2

~\4dr2n

where J; () denotes the derivative of the Bessel function with

respect to the argument z. In order to find a lower bound for

oy, we study the asymptotic behavior of the special functions
appearing in the right-hand side (RHS) of (24).

We use Olver’s uniform asymptotic expansions for Bessel

functions [32, p. 368] and the corresponding error bounds [33]

to obtain that, as n — oo
xi (e G) D

@i _ 4G \*
1) | = 2 (/;% (1 —zg>

1
2

1) <J,;(27r\/ﬁ)>2] (24)

(25)
() )
71(02) :Q( j (1;sz>4 Al/;ﬂ;C)) o

wherein the constants only depend on ¢, ¢, and §; Ai(-) and
Ai’(-) denote the Airy function of the first kind and its deriva-
tive with respect to the argument; z = m/n ¢ [i ci’] de-
notes the ratio between the argument and the index in the Bessel
functions; zs £ Qﬁ(‘/_'i'(s) =z + 225 denotes the same ratio

for the Hankel functlon The function ¢ £ ((z) is defined as
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%(—C( )32 = fl V“; Ldu, z > 1, and is negative for all
z > 1. Similarly, we define (s = ((zs). Notice that ¢ and (s are
bounded, since by assumption 0 < ¢; < ¢, < 1.

Next, we study the asymptotic behavior of Ai( - ) and Ai’(-).
Observe that the argument of the Airy function in (25) is com-
plex valued, and it has phase —gﬂ', as (s < 0. Thus, we use
the asymptotic expansions for the Airy functions off the nega-
tive real axis [32, 10.4.59], and the corresponding bound on the

error term [34, p. 116], to obtain that, as n — oo

‘Ai (e—%”l%%(&)‘ =

:Q(‘(/%%g)_% ) (28)

where the constants only depend on ¢;, ¢, and 4. Similarly, as
¢ < 0 for z > 1, the asymptotic expansions for the Airy func-
tions on the negative real axis [32, 10.4.62] and [34, p. 394] yield

Al (12-%4):9<(—/;%<) 1sm(§g( <>3/2+g))
(29)

(30)

asn — oo.
Substituting (28), (29), and (30) into (25), (26), and (27),

using (24) and the fact that Cé((l_ )) = Q(1) as n — oo, we
obtain that, for all ¢;2my/n < k < cu27r\/ﬁ

J— <%% {cos2 <§/;(_g)3/2 N %)
o))
=Q <n {1 + (22 = 2)sin® <§I~§(_O3/2 . %)} %)
—a(). mn—w

where we used z = 2”73/5 in deriving the second equality, and
the fact that the term in square brackets is uniformly bounded
away from zero forall z > - > 1. [ ]

= |-

3D

At this point we can pr0V1de a proof for Theorem 4.2.
Proof: The proof shows that, given any subspace A’ C A
of dimension 2(n) as n — oo, there exists a current density I €
7 whose corresponding magnetic vector potentials A cannot be
approximated in A’ with constant error as n — oo.
By Theorem 4.1, it suffices to consider subspaces generated
by the left singular functions of the Green function operator.
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Thus, let 0 < ¢ < ¢, < 1 and consider the subspace A’
generated by left singular functions associated to the (¢, — ¢;)n
largest singular values. For n large enough, it is always possible
to find an index k € [2mc;/n, < 2mcy,\/n] such that the kth left
singular function orthogonal to .A’. Consider the input current
density

I(rq) = |I||zvr(rq), rq€ D

for such index k. The corresponding magnetic vector potential
is

A(I‘) = GI(I‘d) = ||I||Iuk(rd), reV.

Since uy is orthogonal to A’, the squared error in approximating
A(r) with its orthogonal projecting on .A’ is equal to the norm
of A(r). On the other hand, the power constraint (4) and Lemma
A.l yield

IA®)I* = [I]IZlow]* > vnP.

Thus, taking the limit as n — oo, it follows that the error in
approximating A in A’ tends to infinity, so A cannot be approx-
imated in A’. ]
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